首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for sequential immunostaining of two antigens in the same section and the application to neuronal elements in the CNS is described. This method employs the peroxidase-antiperoxidase (PAP) technique as a first sequence, followed by glucose oxidase-antiglucose oxidase (GAG) complex as the second sequence, yielding rich brown and vibrant blue reaction products, respectively. Application of the PAP/GAG immunoreagents as dual markers for various neuropeptide and neurotransmitter systems is described in detail and the procedure is outlined. Comparisons with other dual staining methods are discussed and the application to other systems is presented.  相似文献   

2.
With the aid of a sheep antiserum against rat brain glutamate decarboxylase (GAD), the endogenous marker for GABAergic neurons, we have labeled immunocytochemically various types of nerve cells in the main olfactory bulb of rats, with and without topic injections of colchicine. The peroxidase-antiperoxidase procedure was applied to floating Vibratome and frozen sections. A large part of the periglomerular cell population and practically all granule cells in the deep layers contain GAD-like immunoreactivity in untreated rats, while tufted and mitral cells (the projection neurons) are unstained. This observation confirms a previous study with a rabbit antiserum against mouse brain GAD, which suggested that GABAergic neurons with presynaptic dendrites contain high somatal concentrations of GAD. We show, however, that immunostaining of granule cell bodies decreases progressively from the internal plexiform layer to the deep portion of the granule cell layer. Many cell processes in the glomeruli are densely stained. They presumably represent synaptic gemmules of the numerous GAD-positive periglomerular cells, which thus could provide initial, inhibitory modulation of the afferent input. In the external plexiform layer immunostaining of the neuropil is substantially denser in the superficial half than in the deep half. This may reflect a corresponding gradient of inhibition related to unequal frequency of occurrence of synaptic gemmules of granule cell dendrites. Alternatively such a graded immunostaining of cell processes could be related to the corresponding gradient in the density of immunostaining of granule cell bodies in the deep layers, in accordance with recent data indicating that superficial and deep granule cells project their ascending dendrites respectively to superficial and deep portions of the external plexiform layer. Furthermore, we have demonstrated the presence of additional classes of GAD-positive neurons, microneurons in the external plexiform layer, small neurons in the periglomerular region, the external plexiform layer, the mitral cell layer, the internal plexiform layer, and medium-size neurons in the granule layer and the white matter. The small- and medium-size GAD-positive neurons appear weakly immunoreactive in untreated rats, but become densely stained after topic colchicine injection. Such cells presumably lack presynaptic dendrites and may correspond to different types of short axon cells demonstrated by the Golgi method.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A site-directed anti-peptide antibody, CNB-1, that recognizes the alpha 1 subunit of rat brain class B calcium channels (rbB) immunoprecipitated 43% of the N-type calcium channels labeled by [125I]omega-conotoxin. CNB-1 recognized proteins of 240 and 210 kd, suggesting the presence of two size forms of this alpha 1 subunit. Calcium channels recognized by CNB-1 were localized predominantly in dendrites; both dendritic shafts and punctate synaptic structures upon the dendrites were labeled. The large terminals of the mossy fibers of the dentate gyrus granule neurons were heavily labeled, suggesting that the punctate labeling pattern represents calcium channels in nerve terminals. The pattern of immunostaining was cell specific. The cell bodies of some pyramidal cells in layers II, III, and V of the dorsal cortex, Purkinje cells, and scattered cell bodies elsewhere in the brain were also labeled at a low level. The results define complementary distributions of N- and L-type calcium channels in dendrites, nerve terminals, and cell bodies of most central neurons and support distinct functional roles in calcium-dependent electrical activity, intracellular calcium regulation, and neurotransmitter release for these two channel types.  相似文献   

4.
We localized alkaline phosphatase in the metaphyses of fetal bovine tibial bone by use of avidin-biotin-immunoperoxidase and immunogold-silver staining procedures. Low melting-point, paraffin-embedded sections of periodate lysine-paraformaldehyde-fixed undecalcified bone were used for immunostaining. We suggest that the combination of intact embryonic bone with this fixative and the immunohistochemical procedures used in this study may have helped to preserve antigenicity and thus to improve the efficiency of immunolabeling. Similar patterns of alkaline phosphatase localization were produced by the immunoperoxidase and immunogold-silver staining methods. The latter, although free of immunoreagents such as diaminobenzidine, must be monitored closely to avoid nonspecific staining during the silver enhancement procedure. Both methods revealed a concentration of the enzyme in osteoblasts and in areas of osteoid that lined the bone trabeculae. The results support the findings of earlier enzyme cytochemical studies in which osteoblasts were shown to have significant alkaline phosphatase activity.  相似文献   

5.
Follicular dendritic cells (FDCs) are immune accessory cells found in the follicles of secondary lymphoid organs where they promote B cell maturation in germinal centers (GCs) that develop following antigen exposure. Recently, we published a method for isolating functional murine FDCs in high purity. We reasoned that disruption of FDC reticula in vivo would alter FDC morphology. The present study was undertaken to determine the morphological features of isolated FDCs. FDC-M1 and immune complex (IC) labeling were used to identify FDCs in isolated preparations. Results at the light-microscopic level revealed that isolated FDCs trapped ICs, expressed FDC-M1 and cadherins, but generally appeared non-dendritic. However, at the ultrastructural level, the majority of FDCs exhibited dendrites and typical euchromatic nuclei that appeared as single, bilobed, or double nuclei. Based on morphology, four varieties of FDCs were distinguishable, possibly indicative of differences in maturity. Remarkably, ICs trapped by FDCs showed a distinctive periodic arrangement consistent with that known to induce immune responses by thymus independent-2 (TI-2) antigens that engage and cross-link multiple B cell receptors. The ability of FDCs to trap ICs and then display these T-cell-dependent antigens with repeating periodicity suggests that multiple B cell receptors are cross-linked by antigen on FDCs, thus promoting B cell stimulation and proliferation. Rapid proliferation is characteristic of the GC reaction, and the arrangement of T-dependent antigens in this periodic fashion may help to explain the profuse B cell proliferation in the GC microenvironment. This work was supported by National Institutes of Health Grant AI-17142. Electron microscopy and confocal microscopy were performed at the VCU Department of Neurobiology and Anatomy Microscopy Facility supported, in part, by funding from an NIH-NINDS Center core grant (5P30NS047463).  相似文献   

6.
A simple and efficient method for raising steroid antibodies in rabbits   总被引:3,自引:0,他引:3  
The production of estradiol antibodies by two immunization procedures was monitored by means of an enzyme-immunoassay. Procedure A consisted of three intramuscular injections given at two-week intervals, followed by five intravenous booster injections and procedure B consisted of multiple intradermal injections given once. Procedure A gave much higher antibody titer. In both procedures the sensitivities of assays using the antisera increased initially and reached a plateau after three to four months of immunization. Consistent changes in specificities were observed. A shortened procedure A is proposed as a simple and efficient procedure for raising steroid antibodies in rabbits.  相似文献   

7.
An optimal fixation method and intensification procedure may be required in brain immunohistochemistry to obtain intense and widespread staining for a specific antigen, in cases where ordinary fixation and conventional immunohistochemistry result in only partial demonstration of the antigen. In the present study of localization of corticotropin-releasing factor immunoreactivity (CRFI) in rat brain, the importance of such intensification is shown. We describe a fixation procedure in which perfusion of rat brain with Bouin's solution is followed by a PBS wash and a further perfusion with either Zamboni's fluid or 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4), for subsequent investigation of the detailed localization of CRFI in cerebral cortex and subcortical structures. The cobalt-glucose oxidase-diaminobenzidine (Co-GOD) intensification method has been modified to increase the sensitivity of immunostaining by reducing the concentration of glucose oxidase, which is added to the final incubation solution as a generator of hydrogen peroxide. The use of cobalt acetate instead of cobalt chloride appears to slightly suppress background staining in the Co-GOD method. Combination of the two modified procedures was applied to visualize intense and widespread CRFI in a variety of rat brain regions, including median eminence, cerebral cortex, and central amygdaloid nucleus.  相似文献   

8.
We tried to control immunolabeling conditions so that information about antigen concentration could be achieved by quantifying labeling patterns. Working with immunogold labeling procedures in ultrathin cryosections, we observed that differential penetration of immunoreagents causes considerable differences in labeling efficiency between various cell structures. Therefore, in these nonembedded sections, labeling densities can only be used to measure variations in antigen concentration within one cell structure. After embedding the tissue in 30% polyacrylamide (PAA), differences in penetration were negated. The equalizing effect of PAA on the labeling efficiency enabled us to design a simple immunocytochemical method by which concentrations of a protein can be measured in situ at subcellular levels, provided that no variations in the protein's structural conformation occur that would affect its immunoreactivity. In spite of a higher sensitivity observed for Ig-gold, we preferred to use protein A-gold in our system because of the low nonspecific labeling and the more precise antigen detection by the latter immunomarker.  相似文献   

9.
The dansyl chloride procedure commonly used in amino acid analysis has been modified and adapted to peptide analysis. Two dansylation procedures are described. Procedure A is the simpler and more suitable for peptides not containing histidine, tyrosine, or N-terminal glutamic acid and glutamine. Procedure B is applicable to all peptides. The latter procedure employs (1) a more basic buffer which permits dansylation of the tyrosine hydroxyl and prevents the conversion of dansylglutamic and glutamine to dansylpyroglutamic acid and (2) a formic acid step which hydrolyzes the unstable imidazole-dansyl moiety of histidine. The techniques have been evaluated in a study of model peptides. They have also been applied to an examination of the purity of synthetic peptides and the characterization of a naturally occurring peptide.  相似文献   

10.
In order to study the molecular mechanisms of neurogenesis, monoclonal antibodies (MAbs) were produced against antigens of the developing rat hippocampus. MAb 3G7-F8 was used for immunohistochemical localization of the corresponding antigen of paraffin sections of the rat brain at days 0, 5, 14, and 21 of the postnatal development. In the hippocampus of newborn and 5-day-old rats, positive immunostaining was observed in the cytoplasm and proximal segments of processes of neurons located in granular, polymorph, and pyramidal layers, as well as in entorhinal cortex. In granule cell bodies and neurons of entorhinal cortex specific staining decreased by day 14 and disappeared by day 21 after birth, whereas neurons of pyramidal and polymorph layers remained immunopositive. Diffuse specific staining in the cerebellum was observed beginning from day 5 after birth in the Purkinje cell layer. On days 14-21 positive reaction was observed in Purkinje cell bodies and in the layer containing dendrites of Purkinje cells and parallel fibers. External and internal granular layers remained immunonegative. No specific staining was observed in other regions of the brain, as well as in the control slices. These data suggest that the antigen detected by the 3G7-F8 antibody is involved in the formation of the neuronal connections.  相似文献   

11.
To identify and localize the protein products of genes encoding distinct L-type calcium channels in central neurons, anti-peptide antibodies specific for the class C and class D alpha 1 subunits were produced. Anti-CNC1 directed against class C immunoprecipitated 75% of the L-type channels solubilized from rat cerebral cortex and hippocampus. Anti-CND1 directed against class D immunoprecipitated only 20% of the L-type calcium channels. Immunoblotting revealed two size forms of the class C L-type alpha 1 subunit, LC1 and LC2, and two size forms of the class D L-type alpha 1 subunit, LD1 and LD2. The larger isoforms had apparent molecular masses of approximately 200-210 kD while the smaller isoforms were 180-190 kD, as estimated from electrophoresis in gels polymerized from 5% acrylamide. Immunocytochemical studies using CNC1 and CND1 antibodies revealed that the alpha 1 subunits of both L-type calcium channel subtypes are localized mainly in neuronal cell bodies and proximal dendrites. Relatively dense labeling was observed at the base of major dendrites in many neurons. Staining in more distal dendritic regions was faint or undetectable with CND1, while a more significant level of staining of distal dendrites was observed with CNC1, particularly in the dentate gyrus and the CA2 and CA3 areas of the hippocampus. Class C calcium channels were concentrated in clusters, while class D calcium channels were generally distributed in the cell surface membrane of cell bodies and proximal dendrites. Our results demonstrate multiple size forms and differential localization of two subtypes of L-type calcium channels in the cell bodies and proximal dendrites of central neurons. The differential localization and multiple size forms may allow these two channel subtypes to participate in distinct aspects of electrical signal integration and intracellular calcium signaling in neuronal cell bodies. The preferential localization of these calcium channels in cell bodies and proximal dendrites implies their involvement in regulation of calcium-dependent functions occurring in those cellular compartments such as protein phosphorylation, enzyme activity, and gene expression.  相似文献   

12.
Summary Immuno-electron microscopy was performed on live, cultured, early postnatal cerebellar and retinal cells of the mouse to identify A2B5 antigenbearing elements. In cerebellar cultures, granule cells, some immature oligodendroglia, and astroblasts express A2B5 antigen on their cell surfaces. The typical features of astroblasts include large cisternae of the endoplasmic reticulum and a mixed population of intermediate-sized filaments and microtubules. Immature oligodendroglia cells express the antigen on their cell bodies and on procecesses filled with cytoplasm. Cytoplasm-free membranous whorls, however, are devoid of A2B5 antigen, but not of 0 or NS-1 antigens. In retinal cultures, A2B5 antigen is observed on differentiating neurons with the exception of photoreceptor cells as identified by ribbon synapses.  相似文献   

13.
Antisera against chromogranin A and B and secretogranin II were used for analysing the bovine pancreas by immunoblotting and immunohistochemistry. All three antigens were found in extracts of fetal pancreas by one dimensional immunoblotting. A comparison with the soluble proteins of chromaffin granules revealed that in adrenal medulla and in pancreas antigens which migrated identically in electrophoresis were present. In immunohistochemistry, chromogranin A was found in all pancreatic endocrine cell types with the exception of most pancreatic polypeptide-(PP-) producing cells. For chromogranin B, only a faint immunostaining was obtained. For secretogranin II, A- and B-cells were faintly positive, whereas the majority of PP-cells exhibited a strong immunostaining for this antigen. These results establish that chromogranins A and B and secretogranin II are present in the endocrine pancreas, but that they exhibit a distinct cellular localization.  相似文献   

14.
We describe the ultrastructural localization of plasma cell immunoglobulins in vibratome sections of popliteal lymph nodes. Fixation with glutaraldehyde-paraformaldehyde gave better tissue and antigen preservation than paraformaldehyde or periodic acid lysine-paraformaldehyde; biotinylated Fab fragments of sheep anti-mouse IgG-streptavidin-biotinylated horseradish peroxidase (HRP) or Fab-HRP conjugates gave similar results. With both immunoreagents, excellent tissue preservation and antigen detection was observed in the first layer of cells sectioned with the vibratome. Conjugates of anti-mouse IgG with HRP did not show any staining. Peroxidase stain was observed in the nuclear envelope, cisternae of the rough endoplasmic reticulum, and the Golgi apparatus complex. In the Golgi apparatus, staining was seen consistently in cisternae of the cis face and in adjacent vesicles; the trans cisternae showed weak or no stain, and adjacent vesicles, "coated" vesicles, and granules were not stained. This study shows that high quality of tissue preservation and antigen detection, by both light and ultrastructural immunocytochemistry, is feasible in tissue fixed with glutaraldehyde-paraformaldehyde followed by vibratome sectioning and immunostaining with Fab-biotin-streptavidin-biotin-HRP, or Fab-HRP.  相似文献   

15.
Light and electronmicroscopic studies have been made on retinal structures in the lamprey labeled by horseradish peroxidase injected into the peripheral end of the cut optic nerve or to the midbrain tectum. On total retinal preparations, labeled axons were revealed together with dendrites and ganglionic cell bodies, as well as branching (presumably retinopetal) fibers, fine endings of which come closely to the labeled dendrites of the ganglionic cells. Electron microscopic data indicate that the labeled terminations of afferent fibers from synapses with both labeled and unlabeled dendrites, as well as with unlabeled neuronal bodies. It is concluded that centrifugal fibers in lamprey retina form contacts with the bodies and dendrites of the amacrine cells and dendrites of the ganglionic cells. Results of intracellular registration of responses of various retinal elements to the electrical stimulation of the optic nerve support this conclusion.  相似文献   

16.
The cellular and subcellular localization of the neural cell adhesion molecules L1 and N-CAM was studied by pre- and postembedding immunoelectron microscopic labeling procedures in the developing mouse cerebellar cortex. The salient features of the study are: L1 displays a previously unrecognized restricted expression by particular neuronal cell types (i.e., it is expressed by granule cells but not by stellate and basket cells) and by particular subcellular compartments (i.e., it is expressed on axons but not on dendrites or cell bodies of Purkinje cells). L1 is always expressed on fasciculating axons and on postmitotic, premigratory, and migrating granule cells at sites of neuron-neuron contact, but never at contact sites between neuron and glia, thus strengthening the view that L1 is not involved in granule cell migration as a neuron-glia adhesion molecule. While N-CAM antibodies reacting with the three major components of N-CAM (180, 140, and 120 kD) show a rather uniform labeling of all cell types, antibodies to the 180-kD component (N-CAM180) stain only the postmigratory granule cell bodies supporting the notion that N-CAM180, the N-CAM component with the longest cytoplasmic domain, is not expressed before stable cell contacts are formed. Furthermore, N-CAM180 is only transiently expressed on Purkinje cell dendrites. N-CAM is present in synapses on both pre- and post-synaptic membranes. L1 is expressed only preterminally and not in the subsynaptic membranes. These observations indicate an exquisite degree of fine tuning in adhesion molecule expression during neural development and suggest a rich combinatorial repertoire in the specification of cell surface contacts.  相似文献   

17.
Wang  B.  Gonzalo-Ruiz  A.  Sanz  J.M.  Campbell  G.  Lieberman  A.R. 《Brain Cell Biology》2002,30(5):427-441
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 μm in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

18.
The nerve endings in the intramural ganglia of the rat's heart are connected by synaptic and non-synaptic junctions with the dendrites and neuron bodies. Peri-membrane indurations of synaptic complexes may look relatively symmetrical or asymmetrical depending on the orientation of the section in relation to the elements of the Akert's presynaptic lattice. In non-synaptic junctions the indurations are symmetrical, but the presynaptic one may be more complicated in its structure. The synaptic complexes are disposed in the field of synaptic dilatations of axons and in the sites of interlacing thin "preterminal" parts of axons with dendrites. They connect preganglionic fibres with dendrites, neuron bodies and with the filamentous and fungiform thorns.  相似文献   

19.
Tetrahymena thermophila cells have two types of polarized morphogenesis: divisional morphogenesis and oral reorganization (OR). The aim of this research is the analysis of cortical patterns of immunostaining during cell division and in OR using previously characterized antibodies against fenestrin and epiplasm B proteins. During cell division, the anarchic field of basal body proliferation of the new developing oral apparatus (AF) showed concomitant strong binding of the fenestrin antigen and withdrawal of a signal of the epiplasm B antigen. At a specific stage, the fenestrin antigen also appeared as a character of the anterior cortex pole, with a co-localized decrease in the detected epiplasm B antigen. The fenestrin antigen also showed a polarity of duplicating basal bodies in ciliary rows. Indirect immunofluorescence and immunogold labeling experiments were performed in the absence and presence of an inhibitor of activity of serine/threonine kinases, 6-dimethylaminopurine (6-DMAP) as an inducer of the oral replacement process. In the presence of 6-DMAP, one class of cells started OR, and some others were trapped and affected in cell division. Both types of cells showed an instability of oral structures and formed enlarged primordial oral fields. These anarchic fields (AFs) bind the fenestrin antigen, with disappearance of epiplasmic antigen staining. Only one protein (about 64 kDa) is detected in western blots by the anti-fenestrin antibody and it accumulated in 6-DMAP-treated cells that are involved in uncompleted morphogenetic activity. At a defined stage of oral development, both during cell division and in OR, the fenestrin antigen served as a marker of polarity of the cell of the anterior pole character.  相似文献   

20.
Dendrites represent arborising neurites in both vertebrates and invertebrates. However, in vertebrates, dendrites develop on neuronal cell bodies, whereas in higher invertebrates, they arise from very different neuronal structures, the primary neurites, which also form the axons. Is this anatomical difference paralleled by principal developmental and/or physiological differences? We address this question by focussing on one cellular model, motorneurons of Drosophila and characterise the compartmentalisation of these cells. We find that motorneuronal dendrites of Drosophila share with typical vertebrate dendrites that they lack presynaptic but harbour postsynaptic proteins, display calcium elevation upon excitation, have distinct cytoskeletal features, develop later than axons and are preceded by restricted localisation of Par6-complex proteins. Furthermore, we demonstrate in situ and culture that Drosophila dendrites can be shifted from the primary neurite to their soma, i.e. into vertebrate-like positions. Integrating these different lines of argumentation, we propose that dendrites in vertebrates and higher invertebrates have a common origin, and differences in dendrite location can be explained through translocation of neuronal cell bodies introduced during the evolutionary process by which arthropods and vertebrates diverged from a common urbilaterian ancestor. Implications of these findings for studies of dendrite development, neuronal polarity, transport and evolution are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号