首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shoot growth, root growth and macro-nutrient uptake by a high-yielding (5t/ha grain) winter oilseed rape crop have been measured. Maximum rooting density in the top 20cm of soil was 9.4 cm cm−3 and roots reached a depth of at least 1.8 m. Maximum nutrient uptakes were 364 kg ha−1 for N, 43 kg ha−1 for P, 308 kg ha−1 for K, 287 kg ha−1 for Ca and 16 kg ha−1 for Mg. A 30-day drought coincided with the flowering period and root and shoot growth, as well as nutrient uptake rates, were reduced. Nutrient concentrations in the soil solution necessary to sustain the nutrient fluxes into the root system by diffusive supply have been calculated. Peak values were in the range 10 μM for P to 87 μM for N, lower than the observed concentrations, and it was concluded that nutrient transport to roots was not a limitation to uptake by this rape crop.  相似文献   

2.
Recently, there has been a resurgence of interest in bioorganic fertilizers as part of sustainable agricultural practices to alleviate drawbacks of intensive farming practices. N2-fixing and P-solubilizing bacteria are important in plant nutrition increasing N and P uptake by the plants, and playing a significant role as plant growth-promoting rhizobacteria in the biofertilization of crops. A study was conducted in order to investigate the effects of two N2-fixing (OSU-140 and OSU-142) and a strain of P-solubilizing bacteria (M-13) in single, dual and three strains combinations on sugar beet and barley yields under field conditions in 2001 and 2002. The treatments included: (1) Control (no inoculation and fertilizer), (2) Bacillus OSU-140, (3) Bacillus OSU-142, (4) Bacillus M-13, (5) OSU-140 + OSU-142, (6) OSU-140 + M-13, (7) OSU-142 + M-13, (8) OSU-140 + OSU-142 + M-13, (9) N, (10) NP. N and NP plots were fertilized with 120 kg N ha–1 and 120 kg N ha–1 + 90 kg P ha- for sugar beet and 80 kg N ha–1 and 80 kg N ha–1 + 60 kg P ha–1 for barley. The experiments were conducted in a randomized block design with five replicates. All inoculations and fertilizer applications significantly increased leaf, root and sugar yield of sugar beet and grain and biomass yields of barley over the control. Single inoculations with N2-fixing bacteria increased sugar beet root and barley yields by 5.6–11.0% depending on the species while P-solubilizing bacteria alone gave yield increases by 5.5–7.5% compared to control. Dual inoculation and mixture of three bacteria gave increases by 7.7–12.7% over control as compared with 20.7–25.9% yield increases by NP application. Mixture of all three strains, dual inoculation of N2-fixing OSU-142 and P-solubilizing M-13, and/or dual inoculation N2-fixing bacteria significantly increased root and sugar yields of sugar beet, compared with single inoculations with OSU-140 or M-13. Dual inoculation of N2-fixing Bacillus OSU-140 and OSU-142, and/or mixed inoculations with three bacteria significantly increased grain yield of barley compared with single inoculations of OSU-142 and M-13. In contrast with other combinations, dual inoculation of N2-fixing OSU-140 and P-solubilizing M-13 did not always significantly increase leaf, root and sugar yield of sugar beet, grain and biomass yield of barley compared to single applications both with N2-fixing bacteria. The beneficial effects of the bacteria on plant growth varied significantly depending on environmental conditions, bacterial strains, and plant and soil conditions.  相似文献   

3.
Weed control is important and one of the more expensive inputs to sugar beet production. The introduction of genetically modified herbicide tolerant (GMHT) sugar beet would result in a major saving in weed control costs in the crop for growers, including control of problem weeds such as perennial weeds and weed beet. However, there would be other economic consequences of growing GMHT beet, some of which would manifest themselves in other parts of the rotation, such as the previous crop, the cereal stubbles that proceed most beet crops, soil tillage and spray application. The average national saving for UK sugar beet growers if they could use the technology would be in excess of £150 ha?1 yr?1 or £23 million yr?1, which includes reductions in agrochemical use of c. £80 ha,?1 yr?1 or £12 million yr?1. However, for some growers, the gains would be much larger and for a few, less than these figures. The possible cost savings are sufficiently large that they could ensure that sugar beet production, with its regionally important environmental benefits as a spring crop, remains economically viable in the UK post reform of the EU sugar regime.  相似文献   

4.
Sadana  U.S.  Claassen  N. 《Plant and Soil》2000,218(1-2):233-238
Understanding of the mechanisms of Mn supply from the soil and uptake by the plants can be improved by using simulation models that are based on basic principles. For this, a pot culture experiment was conducted with a sandy clay loam soil to measure Mn uptake by summer wheat (Triticum aestivum L. cv. Planet), maize (Zea mays L. cv. Pirat) and sugar beet (Beta vulgaris L. cv. Orbis) and to simulate Mn dynamics in the rhizosphere by means of a mechanistic model. Seeds of three crops were sown in pots containing 2.9 kg soil in a controlled growth chamber. Root and shoot weight, Mn content of plants, root length and root radius were determined 8 (13 days in case of sugar beet) and 20 days after germination. Soil and plant parameters were determined to run nutrient uptake model calculations. Manganese content of the shoot varied from 25 mg kg-1 for sugar beet to 34 mg kg-1 for maize. Sugar beet had the lowest root length/shoot weight ratio but the highest relative shoot growth rate, resulting in the highest shoot demand on the root. This is reflected by the Mn influx which was 0.9 × 10-7, 1.7 × 10-7 and 2.5 × 10-7 nmol cm-1 s-1 for wheat, maize and sugar beet, respectively. Nutrient uptake model calculations predicted similar influx values. Initial Mn concentration of 0.2 μM in the soil solution decreased to only 0.16 μM for wheat, 0.13 μM for maize and 0.11 μM for sugar beet at the root surface. This shows that manganese transport to the root was not a limiting step. This was confirmed by the fact that an assumed 20 times increase in maximum influx (Imax) increased the calculated Mn influx by 3.7 times. Sensitivity analysis demonstrated that for controlling Mn uptake the initial soil solution concentration (C Li), the root radius (r0), Imax and the Michaelis constant (K m) were the most sensitive factors in the listed order. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
As little as 0.8 kg aldicarb ha-1 applied to bands of soil 15 cm wide × 15 cm deep, in which sugar beet seeds were sown, increased beet yields as much as did 2.6 or 5.0 kg ha-1 rotary cultivated into the top 15 cm of soil lightly or moderately infested with beet cyst-nematode, Heterodera schachtii. In a very heavily infested soil, 1.7 kg ha-1 applied to the bands of soil increased beet yields as much as 2.6 kg ha-1 rotavated into the top 15 cm of the soil; yields were further increased by 5.0 and 9.9 kg ha-1 rotavated in but not by 3.5 kg ha-1 in the bands of soil. Soil populations of the nematode increased little or not at all whether the soil was treated with aldicarb or not. The band treatment was achieved by a vertical band- reciprocating harrow technique, which is described. The advantages of this new technique for the control of beet cyst-nematode and other soil pests of widely spaced row crops are safer application of less pesticide, thereby minimising cost of treatment and any risk to the environment, faster seedbed preparation and adequate control of pest population increase on the susceptible crop, especially if coupled with biological control.  相似文献   

6.
The root system of plants is subject to fast cycles of renewal and decay within the growing season. In water and/or nutrient stress conditions, this turnover may become strategic for plant survival and productivity, but knowledge about its mechanisms is still insufficient. In order to investigate the effects of nitrogen fertilization on growth and turnover of sugar beet roots, an experiment was carried out over two growing seasons in northern Italy with two levels of N supply (0, 100 kg ha–1). Biomass production and partitioning were followed during growth, and fibrous root dynamics were inspected by means of computer-aided procedures applied to minirhizotron images.In conditions of N shortage, lower yields (storage roots) were associated with greater allocation of biomass to tap roots (final tap-root/shoot ratio = 5.6 vs. 4.1) and shallower distribution of fibrous root length density. The maximum depth of roots was not affected by N, but unfertilized plants reached it more slowly.The ratio of cumulative root dead length to produced length at the end of the growing period (TDL max/TPL max) was used as the most suitable approach for assessing overall root turnover. This ratio was greater in controls (0.73 vs. 0.50), which showed lower root longevity (–34% life-span on average), indicating that a greater proportion of root growth was renewed by unfertilized plants over the season.  相似文献   

7.

Background and aims

Relevant soil properties and nutrient distributions influencing crop root growth might be different under no-till (NT) and mouldboard plough (MP) management. The possible different root systems within different managements might have key impact on crop nutrient uptake and consequently crop production. Our objective was to assess the long-term combined effects of tillage and phosphorus (P) fertilization on corn (Zea mays L.) root distribution and morphology.

Methods

Corn root and soil samples were collected during the silking stage at five depths (0–5, 5–10, 10–20, 20–30 and 30–40 cm) and three horizontal distances perpendicular to the corn row (5, 15 and 25 cm) under MP and NT with three P fertilizations (0, 17.5, and 35 kg P ha?1) for a long-term (22 years) experiment in eastern Canada. Root morphology and soil properties were determined.

Results

NT practice decreased corn root biomass by ?26 % compared to MP, mainly by decreasing the primary and secondary roots. Additionally, corn roots in NT tend to be more expansive on the surface layer with higher root length and surface densities for the depth of 0–5 cm at two sampling distances of 15 and 25 cm. The 35 kg P ha?1 rate increased the root biomass by 26 and 41 % compared to the 0 and 17.5 kg P ha?1 rates.

Conclusions

No-tillage practice and low rates of P fertilization reduce corn roots. This is probably caused by the weed competition in NT and the continued downward P status with low P rates over 22 years.
  相似文献   

8.
Information concerning the sugar status of plant cells is of greatimportance during all stages of the plant life cycle. The aim of this work wasto study primary carbohydrate metabolism in hairy roots of red beet. Growth ofhairy roots of red beet in vitro and changes in concentration of major nutrientsand sugar in the media were measured over a growth cycle of 16 days. We havealso determined the levels of key enzymes in the pathways of sucrose metabolism.Sucrose concentration decreased as hairy root growth proceeded while no changein glucose and fructose levels in the medium was found during the first 3 daysindicating that external sucrose is preferably taken to the cell before it ishydrolyzed by extracellular invertase. The increase in glucose and fructoselevels in the media after 5 days of culture indicates extracellular hydrolysisof sucrose which was further supported by the activity of acid invertaseobserved during that time in the culture medium. The uptake of mineral nutrientsby hairy root of red beet was monitored continuously during the culture cycle.The preferential use of NH4 + overNO3 at the beginning of the culture andacidification of culture media were the two most notable results concerningnitrogen nutrition during hairy root growth of red beet.  相似文献   

9.
Summary A transformed root culture of Cichorium intybus L. cv. Lucknow Local grown in different configurations of bioreactors was examined. The roots grown in an acoustic mist bioreactor showed the best performance in terms of increased specific growth rate (0.072d−1) and esculin content (18.5gl−1), the latter of which was comparable to that of shake flask data. C. intybus hairy root cultures grown in an acoustic mist bioreactor produced nearly twice as much esculin as compared to roots grown in bubble column and nutrient sprinkle bioreactors. Studies relating to on-line estimation of conductivity and osmolarity to predict the growth of hairy root cultures are also discussed. The results demonstrate the efficacy and the advantages of an acoustic mist bioreactor for the cultivation of hairy root cultures, especially with reference to C. intybus hairy roots.  相似文献   

10.
Three experiments (1971–3) on medium-textured soils of low organic-matter content examined the effects of soil density on seedling emergence and yield of sugar beet, and the interactions between soil density and the requirement for nitrogen (N) and phosphate (P2O5) fertilizers. Three soil densities were produced by rolling and harrowing, dutch harrowing twice, and power harrowing once; each was tested with 75, 150 and 225 kg ha-1 N and 0, 100 and 200 kg ha-1 P2O5. Most seedlings emerged on the medium-density treatment produced by dutch harrowing twice. The crop in the least dense soil treatment, produced by power harrowing once, consistently yielded slightly more sugar than the medium-density treatment, which yielded significantly more than the most dense treatment. In dense soil, created by rolling and harrowing, there was a response to more fertilizer N than the less dense ones; the crop did not respond to phosphate fertilizer. Mechanical impedance, not toxic concentrations of ethylene in the soil atmosphere, appeared to be the cause of reduced yield on the dense soils; these reductions were considerable at dry soil bulk densities in excess of 1·5 g ml-1.  相似文献   

11.
Silvola  Jouko  Ahlholm  Urpo 《Plant and Soil》1995,(1):547-553
Birch seedlings (Betula pendula) were grown for four months in a greenhouse at three nutrient levels (fertilization of 0, 100 and 500 kg ha-1 monthy) and at four CO2 concentrations (350, 700, 1050 and 1400 ppm). The effect of CO2 concentration on the biomass production depended on the nutrient status. When mineralization of the soil material was the only source of nutrients (0 kg ha-1), CO2 enhancement reduced the biomass production slightly, whereas the highest production increase occurred at a fertilization of 100 kg ha-1, being over 100% between 350 and 700 ppm CO2. At 500 kg ha-1 the production increase was smaller, and the production decreased beyond a CO2 concentration of 700 ppm. The CO2 concentration had a slight effect on the biomass distribution, the leaves accounting for the highest proportion at the lowest CO2 concentration (350 ppm). An increase in nutrient status led to a longer growth period and increased the nutrient concentrations in the plants, but the CO2 concentration had no effect on the growth rhythm and higher CO2 reduced the nutrient concentrations.  相似文献   

12.
Fine roots <2 mm in diameter play a key role in regulating the biogeochemical cycles of ecosystems and are important to our understanding of ecosystem responses to global climate changes. Given the sensitivity of fine roots, especially in boreal region, to climate changes, it is important to assess whether and to what extent fine roots in this region change with climates. Here, in this synthesis, a data set of 218 root studies were complied to examine fine root patterns in the boreal forest in relation to site and climatic factors. The mean fine root biomass in the boreal forest was 5.28 Mg ha?1, and the production of fine roots was 2.82 Mg ha?1 yr?1, accounting for 32% of annual net primary production of the boreal forest. Fine roots in the boreal forest on average turned over 1.07 times per year. Fine roots contained 50.9 kg ha?1 of nitrogen (N) and 3.63 kg ha?1 of phosphorous (P). In total, fine roots in the boreal forest ecosystems contain 6.1 × 107 Mg N and 4.4×106Mg P pools, respectively, about 10% of the global nutrients of fine roots. Fine root biomass, production, and turnover rate generally increased with increasing mean annual temperature and precipitation. Fine root biomass in the boreal forest decreased significantly with soil N and P availability. With increasing stand age, fine root biomass increased until about 100 years old for forest stands and then leveled off or decreased thereafter. These results of meta analysis suggest that environmental factors strongly influence fine root biomass, production, and turnover in boreal forest, and future studies should place a particular emphasis on the root-environment relationships.  相似文献   

13.
The present study employed a sand culture experiment with three levels of zinc viz., 0.065 (control), 65.0 and 130 mg l?1 Zn (excess) as zinc sulfate, respectively, in sugarcane (Saccharum spp.), cultivar CoLk 8102. The results indicated growth depression, dark green leaves, decreased root number and length and sharp depression in mitotic activity of roots due to high doses of Zn (65 and 130 mg l?1); effects were significant at 130 mg l?1 Zn supply. The endogenous ion contents measurements revealed roots to be the major sink for excess Zn with lower amounts in leaves of sugarcane plants. High level of Zn decreased total phosphorus in leaves and increased it in roots. Fe and Cu content decreased, while, Mn increased in sugarcane plants due to high Zn in the growing medium. Plants experienced oxidative stress when exposed to higher levels of zinc. Biochemical investigations indicated high level of hydrogen peroxide, malondialdehyde contents with high chlorophyll a, b and carotenoids contents and activity of superoxide dismutase, catalase and peroxidase enzymes under high Zn conditions. These findings confirm suggest that excess Zn adversely affects root growth and mitotic efficiency, enhances chromosomal aberrations and increases growth and nutrient accumulation abnormalities, as well as oxidative stress.  相似文献   

14.
This study covers a 7-year period from 1965 to 1972, and shows the variation in flow, water chemistry and throughput of nutrients. The annual discharge of the River Frome varied considerably from year to year, ranging from a mean value of 4.48 m3 sec−1 in 1971 to one of 8.38 m3 sec−1 in 1966. The mean annual nutrient losses calculated over all 7 years of study from the River Frome catchment were: Nitrate 11.4 kg ha−1, phosphorus 0.49 kg ha−1 and potassium 8.4 kg ha−1. There has been an increase in annual throughput (in years of similar flow) of 21% in phosphate and 41% in nitrate from 1965 to 1972.  相似文献   

15.
Both Trichodorus spp. and Longidorus spp. damage roots of sugar-beet seedlings in sandy soil, causing Docking disorder. Trials in infested fields between 1969 and 1972 tested the effects of fumigation along the rows with different amounts of D-D or Telone applied either two weeks before sowing or immediately before sowing, application of the systemic nematicide aldicarb (Temik) in the furrow with the seed during sowing, and top-dressing with nitrogen. Seedling establishment was often decreased by fumigation immediately before sowing, especially when followed by excessive rainfall, but only rarely by earlier fumigation or by aldicarb; differences in numbers of roots harvested were smaller because hand-singling removed excess seedlings. There was usually little difference between the yield increases given by the most effective treatments, which were aldicarb at 1·12 kg active ingredient/ha and 2·2–6·6 ml D-D or Telone/m of row at either time of application. Nitrogen top-dressing never affected sugar yield significantly. Longidorus spp. and Trichodorus spp. were both controlled well in the fumigated row but much less well at 13 cm, and not at all at 25 cm from the row (i.e. mid-way between two treated rows).  相似文献   

16.
Destain  J. P.  Francois  E.  Guiot  J.  Goffart  J. P.  Vandergeten  J. P.  Bodson  B. 《Plant and Soil》1993,155(1):367-370
Since 1986, the fate of fertilizer N (NH4NO3 or NaNO3) applied in field conditions on two main arable crops, winter wheat (Triticum aestivum) and sugar beet (Beta vulgaris), has been studied using 15N. Up to a rate of 200 kg ha-1 of N, mean recovery of fertilizer by winter wheat was 70%, provided it had been split applied. Single application (with or without dicyandiamid) was less effective. For sugar beet, in 1990, 1991 and 1992, 40% of fertilizer N was found in the crop at harvest when NH4NO3 had been broadcast at 100 to 160 kg N ha-1 at sowing time. For the same N rate, recovery was 50% when row applied near the seeds and 60% for 80 kg N ha-1. For the two experimental crops, residual fertilizer N in soil was exclusively organic. It ranged from 15 to 30% of applied N and was located in the 30 cm upper layer. Losses were generally lower with winter wheat (12%) than with sugar beet (20–40%) and could be ascribed to volatilization and denitrification. Soil derived N taken up by the plant was site and year dependent.  相似文献   

17.
Hairy roots have the potential to produce a variety of valuable small and large molecules. The mist reactor is a gas phase bioreactor that has shown promise for low‐cost culture of hairy roots. Using a newer, disposable culture bag, mist reactor performance was studied with two species, Artemisia annua L. and Arachis hypogaea (peanut), at scales from 1 to 20 L. Both species of hairy roots when grown at 1 L in the mist reactor showed growth rates that surpassed that in shake flasks. From the information gleaned at 1 L, Arachis was scaled further to 4 and then 20 L. Misting duty cycle, culture medium flow rate, and timing of when flow rate was increased were varied. In a mist reactor increasing the misting cycle or increasing the medium flow rate are the two alternatives for increased delivery of liquid nutrients to the root bed. Longer misting cycles beyond 2–3 min were generally deemed detrimental to growth. On the other hand, increasing the medium flow rate to the sonic nozzle especially during the exponential phase of root growth (weeks 2–3) was the most important factor for increasing growth rates and biomass yields in the 20 L reactors. A. hypogaea growth in 1 L reactors was µ = 0.173 day?1 with biomass yield of 12.75 g DW L?1. This exceeded that in shake flasks at µ = 0.166 day?1 and 11.10 g DW L?1. Best growth rate and biomass yield at 20 L was µ = 0.147 and 7.77 g DW L?1, which was mainly achieved when medium flow rate delivery was increased. The mist deposition model was further evaluated using this newer reactor design and when the apparent thickness of roots (+hairs) was taken into account, the empirical data correlated with model predictions. Together these results establish the most important conditions to explore for future optimization of the mist bioreactor for culture of hairy roots. Biotechnol. Bioeng. 2010;107: 802–813. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
In this study, we surveyed the long term effects of liming and fertilizing in old Scots pine stands on the ectomycorrhiza (ECM) colonization, tree growth and needle nutrient concentration 35 years later. Four mature stands of Scots pine on low productive mineral soil were limed in 1959 and 1964 with total doses of limestone ranging from 3 to 15 Mg ha?1 and fertilized with nitrogen (N) in 1970. Thirty-five years after the first liming treatment, all stands were analysed for tree growth and needle nutrient concentrations and two of the stands were also analysed for ECM colonization. ECM colonization increased significantly with liming from 61.5% in the control plots to 88% in the plot with the highest limestone dose. ECM colonization increased with increasing pH in the humus layer from 62% colonization at pH?=?3.5 to 90% at pH?=?6.5 and decreased with increasing amount of extractable phosphorus (P) in the humus. Liming did not affect the frequencies of different ECM morphotypes or dead short root tips, the fine root biomass or necromass. ECM colonization was uncorrelated with needle nutrient concentrations or tree increment. Liming did not significantly affect tree growth. However, nutrient concentrations of current-year needles were affected by prior liming. Ca concentrations in current-year needles increased from approximately 15 mg g?1 in control treatments to more than 30 mg g?1 in limed plots, whereas concentrations of Mn, Al, Fe, and in two stands, B, decreased due to liming. In conclusion, liming with doses up to 15 Mg ha?1 was detectable in stands 35 years after treatment. The liming significantly increased the ECM colonization of Scots pine fine roots, increased the needle nutrient concentration of Ca and decreased the needle concentrations of Mn, Al, and Fe.  相似文献   

19.
Cadmium uptake from solution by plants and its transport from roots to shoots   总被引:22,自引:2,他引:20  
Summary The uptake of cadmium by the roots of plants, and its transport to shoots was examined using solution culture. Uptake by the roots of perennial ryegrass over a period of 4 hours from an aqueous solution containing 0.25 ppm cadmium as CdCl2 was (i) enhanced by killing the roots and (ii) depressed when Ca2+, Mn2+ or Zn2+ were added to the solution. The distribution of cadmium between the roots and shoots of 23 species was examined at 4 days after a single, 3-day exposure to a nutrient solution containing 0.01 ppm added Cd. In all except 3 species, i.e. kale, lettuce and watercress, more than 50 per cent of that taken up was retained in the roots. The concentration in the roots was always greater than in the shoots, and in fibrous roots of fodder beet, parsnip, carrot and radish it was greater than in the swollen storage roots. When perennial ryegrass was similarly exposed to solutions containing 0.01, 0.05, and 0.25 ppm added cadmium, uptake, as measured at 3 days after adding cadmium, increased with increasing rates of addition, but the proportion retained in the roots was constant (approximately 88 per cent). There was no further transport from roots to shoots during the next 21 days, with the result that the concentration in the shoots decreased progressively with increasing growth. It is concluded that although the roots of several species can take up large quantities of cadmium from solution there are mechanisms which may restrict the movement of cadmium through plants, and thus to animals.  相似文献   

20.
Abstract

Trifluralin, a pre-emergent herbicide, is widely used in Brazil in the weed grass management in restoration areas. The objective was to evaluate the tolerance of Piptadenia gonoacantha to trifluralin. The treatments had three trifluralin doses (445, 890, and 1335?g a.i. ha?1), applied in pre-sowing, as well as the control, without herbicide. Visual intoxication, seed germination, survival rate, emergence speed index (EMI), mean germination period, seedling height, and diameter, micromorphometric parameters of plant roots collected at 60 d after sowing, root length (RL) and volume, leaf area (LA), leaf numbers, root and shoot dry matter, and fluorescence of chlorophyll a at 30, 45, and 60 d after sowing were analyzed. Visual intoxication values above 50% were observed only with 1335?g a.i. ha?1. The herbicide did not affect seed germination, EMI, average germination period, seedling height, and diameter, root micromorphometric parameters, length, dry matter or root volume, and chlorophyll a fluorescence. The dose 1335?g a.i. ha?1 caused a reduction of 41.5% in survival, 50.3% in the LA, 36.7% in the number of leaves (LN), and 59.8% in the aerial dry mass of seedlings. The trifluralin presents potential for restoration programs of degraded areas with this forest species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号