首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
Relations between cytokinin concentrations and effects of P and vesicular-arbuscular mycorrhizal (VAM) infection were investigated in Plantago major L. ssp. pleiosperma Pilger. Both mycorrhizal infection by Glomus fasciculatum (Thaxt. sensu Gerdemann) Gerdemann and Trappe and P addition increased the shoot to root ratio, specific leaf area (SLA), and P concentrations of shoot and roots, and decreased the percentage of dry matter in the shoot during the experiment. In general, P concentration in the shoot and roots of each treatment correlated positively with the shoot to root ratio and specific leaf area, and negatively with the percentage of dry matter in the shoot. Cytokinin concentrations in the tissue of shoots and roots were determined using an enzyme-linked immunosorbent assay. Concentrations of zeatin and zeatin-ribosides in the free base and nucleotide fractions had increased more after P addition than in the case of mycorrhizal infection in both shoot and roots, whereas the P concentrations had increased less. It is suggested that zeatin and zeatin-ribosides are not the primary growth-substances involved in mediating VAM effects.  相似文献   

4.
Soils from avocado (Persea americana Mill.) orchards in Israel (IS) and California (CA), both sites with a Mediterranean climate, were sampled and analyzed for the species and quantities of vesicular-arbuscular mycorrhizal fungus (VAMF) spores in them, and for soil physical and chemical characteristics.Numbers of spores were similar in soil from IS and CA but the dominant VAMF species were very different. In IS the most common fungi were Sclerocystis sinuosa and Glomus macrocarpum. In CA, Gl. constrictum was present in every orchard examined and Gl. fasciculatum was nearly as widespread. Acaulospora spp. and other Glomus spp. also were found, including A. elegans which has never before been reported from CA.The differences in VAMF populations and species constituents found on two continents but in areas with similar climates and soil types may be due to host or edaphic factors. Different avocado rootstocks are used in the two countries and lower pH and higher soil fertility levels were present in CA soils.The total VAMF spore populations in each orchard was about 275 per 100 mL soil. The population level was not correlated with any of the soil physical or chemical characteristics examined nor with avocado cultivar or age. In IS no fungus spores were found in three orchards; available P, Ca, Mg and Cu levels were high in these soils.  相似文献   

5.
Commercially prepared, peat-based mycorrhizal inocula were studied for growth effects on asparagus grown under greenhouse and field (fumigated) conditions. The fungi tested were Glomus clarum (GC), G. intraradix (GI), G. monosporum (GM), G. versifomre (GVR) and G. vesiculiferum (GVS). GI significantly increased plant dry weight in the greenhouse and the field. Survival of mycorrhizal tissue-cultured transplants after 14 months in the field was increased by twofold over the control. In a second experiment asparagus was grown from seed in the greenhouse in peat inoculated with a G. fasciculatum-like fungus (GF), GI and GVR with applied P levels of 0, 50, 100 and 150 ppm and harvested after 13 and 17 weeks. Total dry weights of GI and GVR plants were significantly increased over those of the control and GF. Dry weight in this second experiment was positively correlated with root colonization. Root colonization at week 13 was slightly reduced with increasing levels of applied P, but not at week 17. The data suggest that the increased growth of mycorrhizal plants was not related to an increase in tissue P concentration, since there was no growth response to applied P and tissue P concentration in the mycorrhizal plants was lower than in the non-mycorrhizal plants.  相似文献   

6.
The objective of the study was to determine whether nutrient fluxes mediated by hyphae of vesicular-arbuscular mycorrhizal (VAM) fungi between the root zones of grass and legume plants differ with the legume's mode of N nutrition. The plants, nodulating or nonnodulating isolines of soybean [ Glycine max (L.) Merr.], were grown in association with a dwarf maize ( Zea mays L.) cultivar in containers which interposed a 6-cm-wide root-free soil bridge between legume and grass container compartments. The bridge was delimited by screens (44 μm) which permitted the passage of hyphae, but not of roots and minimized non VAM interactions between the plants. All plants were colonized by the VAM fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. The effects of N input to N-sufficient soybean plants through N2-fixation or N-fertilization on associated maize-plant growth and nutrition were compared to those of an N-deficient (nonnodulating, unfertilized) soybean control. Maize, when associated with the N-fertilized soybean, increased 19% in biomass, 67% in N content and 77% in leaf N concentration relative to the maize plants of the N-deficient association. When maize was grown with nodulated soybean, maize N content increased by 22%, biomass did not change, but P content declined by 16%. Spore production by the VAM fungus was greatest in the soils of both plants of the N-fertilized treatment. The patterns of N and P distribution, as well as those of the other essential elements, indicated that association with the N-fertilized soybean plants was more advantageous to maize than was association with the N2-fixing ones.  相似文献   

7.
Two experiments were carried out to study physiological effects of vesicular-arbuseular mycorrhizal infection on Plantago major L., ssp. pleiosperma (Pilger). In the first experiment, infection by the Glomus fasciculatum (Thaxt. sensu Gerdemann) Gerdemann and Trappe increased growth, shoot to root ratio, P concentrations in both shoot and roots and total uptake of P per plant. The percentages of dry matter in both shoot and roots were lower in mycorrhizal plants.
In the second experiment different P treatments were applied to both mycorrhizal and non-mycorrhizal P. major plants to separate any effects of mycorrhizal infection from increased uptake of P. In addition to the effects found in the first experiment, mycorrhizal, P, and mycorrhizal x P interaction effects were found on root respiration rate and the concentration of soluble sugars in the roots. No clear effects on total dry weight, N and starch concentrations in shoot and roots and sugar concentraion in the shoot were found. Irrespective of the mycorrhizal treatment, increased P concentration in the shoot correlated with an increased shoot to root ratio and root respiration rate, and a decreased percentage dry matter and sugar concentration in the roots. However, the root respiration rate and the P concentration in the roots of mycorrhizal plants were enhanced more than expected from the increased P concentrations in the shoots of these plants.  相似文献   

8.
Roussel  H.  van Tuinen  D.  Franken  P.  Gianinazzi  S.  Gianinazzi-Pearson  V. 《Plant and Soil》2001,232(1-2):13-19
Plant and Soil - Although there is evidence for an interplay of signalling/recognition events at different stages during plant/fungal interactions in arbuscular mycorrhiza, the nature of signalling...  相似文献   

9.
10.
11.
Seedlings ofAcacia auriculiformis A. Cunn. ex. Benth.,Albizia lebbeck (L.) Benth.,Gliricidia sepium (Jac.) Walp andLeucaena leucocephala (Lam.) de Wit. were inoculated with an ectomycorrhizal (Boletus suillus (l. ex. Fr.) or indigenous vesicular-arbuscular mycorrhizal (VAM) fungi in a low P soil. The plants were subjected to unstressed (well-watered) and drought-stressed (water-stressed) conditions. InGliricidia andLeucaena, both mycorrhizal inoculations stimulated greater plant growth, P and N uptake compared to their non-mycorrhizal (NM) plants under both watering regimes. However, inAcacia andAlbizia, these parameters were only stimulated by either ectomycorrhiza (Acacia) or VA mycorrhiza (Albizia). Growth reduction occurred as a result of inoculation with the other type of mycorrhiza. This was attributed to competition for carbon betweenAcacia and VA mycorrhizas and parasitic association betweenAlbizia and ectomycorrhiza. Drought-stressed mycorrhizal and NMLeucaena, and drought-stressed mycorrhizalAcacia tolerated lower xylem pressure potentials and larger water losses than the drought-stressed mycorrhizal and NMAlbizia andGliricidia. These latter plants avoided drought by maintaining higher xylem pressure potentials and leaf relative water content (RWC). All the four leguminous plants were mycorrhizal dependent. The higher the mycorrhizal dependency (MD), the lower the drought tolerance expressed in terms of drought response index (DRI). The DRI may be a useful determinant of MD, as they are inversely related.  相似文献   

12.
Phosphate-solubilizing bacteria (PSB) exhibited a high efficiency to improve plant growth and nutrition in the presence of Bayovar rock phosphate when sand-vermiculive was used as a culture medium. Treatments with dual inoculum (PSB plus mycorrhiza) significantly (P≤0.05) increased alfalfa growth. Bacteria-microbial fungi interactions resulted in a greater utilization of the rock phosphate added to the rooting medium. Although Bayovar rock phosphateper se can be considered an inert substrate because it did not stimulate plant growth, metabolites released by PSB were able to transform the rock into available forms which could be utilized by alfalfa plants.Glomus fasciculatum was the most efficient mycorrhizal endophyte under the experimental conditions employed.  相似文献   

13.
The hypothesis that inoculation of transplants with vesicular-arbuscular mycorrhizal (VAM) fungi before planting into saline soils alleviates salt effects on growth and yield was tested on lettuce (Lactuca sativa L.) and onion (Allium cepa L.). A second hypothesis was that fungi isolated from saline soil are more effective in counteracting salt effects than those from nonsaline soil. VAM fungi from high- and low-salt soils were trap-cultured, their propagules quantified and adjusted to a like number, and added to a pasteurized soil mix in which seedlings were grown for 3–4 weeks. Once the seedlings were colonized by VAM fungi, they were transplanted into salinized (NaCl) soil. Preinoculated lettuce transplants grown for 11 weeks in the saline soils had greater shoot mass compared with nonVAM plants at all salt levels [2 (control), 4, 8 and 12 dS m–1] tested. Leaves of VAM lettuce at the highest salt level were significantly greener (more chlorophyll) than those of the nonVAM lettuce. NonVAM onions were stunted due to P deficiency in the soil, but inoculation with VAM fungi alleviated P deficiency and salinity effects; VAM onions were significantly larger at all salt levels than nonVAM onions. In a separate experiment, addition of P to salinized soil reduced the salt stress effect on nonVAM onions but to a lesser extent than by VAM inoculation. VAM fungi from the saline soil were not more effective in reducing growth inhibition by salt than those from the nonsaline site. Colonization of roots and length of soil hyphae produced by the VAM fungi decreased with increasing soil salt concentration. Results indicate that preinoculation of transplants with VAM fungi can help alleviate deleterious effects of saline soils on crop yield.  相似文献   

14.
White fluorescent light (5 W m−2) inhibited subhook growth in derooted Alaska pea cuttings. In the inner tissue of the subhook, it inhibited the increase in osmotic potential during 18 h incubation. In the epidermis, on the other hand, light did not affect the osmotic potential. Light increased the minimum-stress relaxation time (T0) of the inner tissue cell walls, but did not change T0 of the epidermal cell wall. Light decreased tissue stress determined by the split test and the ability of the inner tissue to extend by water absorption. The short-term light effect on subhook growth. T0, and the tissue stress almost disappeared when pea cuttings were transferred to darkness. These facts suggest that light changes the mechanical properties of the cell wall in the inner tissue of shoots, and decreases tissue stress, which is considered to be the driving force of shoot growth.  相似文献   

15.
16.
蕨类植物的VA菌根及其协同进化的初步研究   总被引:1,自引:0,他引:1  
蕨类植物的VA菌根及其协同进化的初步研究赵之伟张涛和兆荣(云南大学生物系,昆明650091)(云南大学生态地植物研究所,昆明650091)StudiesonVAMycorrhizalStateofPteridophytesandTheirCoevo...  相似文献   

17.
Interactions between introduced plants and soils they colonize are central to invasive species success in many systems. Belowground biotic and abiotic changes can influence the success of introduced species as well as their native competitors. All plants alter soil properties after colonization but, in the case of many invasive plant species, it is unclear whether the strength and direction of these soil conditioning effects are due to plant traits, plant origin, or local population characteristics and site conditions in the invaded range. Phragmites australis in North America exists as a mix of populations of different evolutionary origin. Populations of endemic native Phragmites australis americanus are declining, while introduced European populations are important wetland invaders. We assessed soil conditioning effects of native and non‐native P. australis populations on early and late seedling survival of native and introduced wetland plants. We further used a soil biocide treatment to assess the role of soil fungi on seedling survival. Survival of seedlings in soils colonized by P. australis was either unaffected or negatively affected; no species showed improved survival in P. australis‐conditioned soils. Population of P. australis was a significant factor explaining the response of seedlings, but origin (native or non‐native) was not a significant factor. Synthesis: Our results highlight the importance of phylogenetic control when assessing impacts of invasive species to avoid conflating general plant traits with mechanisms of invasive success. Both native (noninvasive) and non‐native (invasive) P. australis populations reduced seedling survival of competing plant species. Because soil legacy effects of native and non‐native P. australis are similar, this study suggests that the close phylogenetic relationship between the two populations, and not the invasive status of introduced P. australis, is more relevant to their soil‐mediated impact on other plant species.  相似文献   

18.
19.
Clark  L.J.  Bengough  A.G.  Whalley  W.R.  Dexter  A.R.  Barraclough  P.B. 《Plant and Soil》1999,209(1):101-109
Values of the maximum axial growth pressure (σmax) of seedling pea (Pisum sativum L.) roots reported in the literature, obtained using different apparatuses and cultivars, range from 0.3 MPa to 1.3 MPa. To investigate possible reasons for this large range, we studied the effect of apparatus and cultivar on measurements of σmax in peas. We describe four types of apparatus which can be used to measure axial root growth force and hence σmax, and used them to measure σmax in seedling pea roots using cultivar Meteor. Two of these apparatuses were also used to compare σmax for three pea cultivars (Helka, Meteor and Greenfeast). Both cultivar and apparatus significantly affected σmax , but there were greater differences between apparatuses than between the three cultivars. Estimating root cross-sectional area from the diameter of cross-sections, rather than from in situ measurements (i.e. measurements made with the root still in place in the apparatus) may explain these differences. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
As known from literature lateral buds from pea ( Pisum sativum ) plants are released from apical dominance when repeatedly treated with exogenous cytokinins. Little is known, however, about the endogenous role of cytokinins in this process and whether they interact with basipolar transported IAA, generally regarded as the main signal controlling apical dominance. This paper presents evidence that such an interaction exists.
The excision of the apex of pea plants resulted in the release of inhibited lateral buds from apical dominance (AD). This could be entirely prevented by applying 1-naphthylacetic acid (NAA) to the cut end of the shoot. Removal of the apex also resulted in a rapid and rather large increase in the endogenous concentrations of zeatin riboside (ZR), isopentenyladenosine (iAdo) and an as yet unidentified polar zeatin derivative in the node and internode below the point of decapitation. This accumulation of ZR and iAdo, was strongly reduced by the application of NAA. The observed increase in cytokinin concentration preceded the elongation of the lateral buds, suggesting that endogenous cytokinins play a significant role in the release of lateral buds from AD. However, the effect of NAA on the concentration of cytokinins clearly demonstrated the dominant role of the polar basipetally transported auxin in AD. The results suggest a mutual interaction between the basipolar IAA transport system and cytokinins obviously produced in the roots and transported via the xylem into the stem of the pea plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号