首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cultures of water fern Azolla pinnata R. Br. exposed for 1 weekto either 30, 50 or 80 nl l-1 O3 showed significant reductionsin rates of growth and N2 fixation, and had fewer heterocysts.Although the levels of glutamine synthetase (GS) and glutamatedehydrogenase (GDH) activity were decreased by low concentrationsof O3 exposures (30 or 50 nl l-1), significant increases inlevels of the same enzymes were caused by higher concentrationsof O3 (80 nl l-1). Increased levels of total protein, polyamines(putrescine and spermidine), and the xanthophyll-cycle precursorof abscisic acid (ABA), violaxanthin, were also found with higherlevels of O3 (80 nl l-1). Levels of ABA itself were significantlyincreased by low level O3 fumigation (30 nl l-1) but significantlydecreased by exposure to 80 nl l-1 O3. This may indicate thathigher levels of atmospheric O3 inhibit the final stages ofABA biosynthesis from violaxanthin.Copyright 1994, 1999 AcademicPress Abscisic acid, nitrogen assimilation, nitrogen fixation, ozone pollution, polyamines, violaxanthin  相似文献   

2.
A 50-year-old Pinus sylvestris L. stand was exposed for 2 yearsto low concentrations of SO2 and NO2 in an open-air exposureexperiment in northern Sweden. The mean SO2 concentrations inthe centre of the exposed plot during the 1988 exposure from14 June to 25 September, and during the 1989 exposure from 6June to 30 September were 15 nl 1–1 and 12 nl 1–1,respectively. The corresponding values for NO2 were 15 nl 1–1and 10 nl 1–1, respectively. The concentration in thecontrol plot was never higher than a few ppb, and mostly below1 nl 1–1. Needles sampled from the SO2 and NO2-exposed area showed reducedactivities of glutathione reductase (GR; EC 1.6.4.2 [EC] ) and superoxidedismutase (SOD; EC 1.15.1.1 [EC] ) compared with controls. The GRactivity showed decreased levels in autumn and winter, whilethe exposure had ceased, and SOD showed decreased activity duringthe second summer of exposure. Neither membrane-bound nor water-solubleanti-oxidants such as -tocopherol, carotenoids or glutathionechanged due to the exposure. The sulphur/nitrogen ratio wasincreased in needles that were exposed to SO2 and NO2 implyinga changed nutrition balance. The results suggest that the capacityof SOD and GR in the ascorbate-glutathione pathway was reduceddue to the exposure to air pollutants. Key words: Anti-oxidants, -tocopherol, glutathione, pigments, Pinus sylvestris L  相似文献   

3.
The effects of exposure of up to 2 h with sulphur dioxide ona range of plant species was observed by measuring changes inthe rate of net photosynthesis under closely controlled environmentalconditions. Ryegrass, Lolium perenne ‘S23’ was thespecies most sensitive to SO2; significant inhibition was detectedat 200 nl l–1. Fumigations at 300 nl l–1 also inhibitedphotosynthesis in field bean (Vicia faba cv. ‘Three FoldWhite’ and ‘Blaze’) and in barley (Hordeumvulgare cv. ‘Sonja’). No effect was detected inwheat (Triticum aestivum cv. ‘Virtue’) at concentrationsup to 600 nl l–1 SO2, or in oil-seed rape (Brassica napuscv. ‘Rafal’) except at 800 nl l–1 SO2). Recoverycommenced immediately after the fumigation was terminated andwas complete within 2 h when inhibition had not exceeded 20%during the SO2 treatment. Key words: Sulphur dioxide, short-term fumigation, photosynthesis  相似文献   

4.
Reactions to the input of acidic gases were investigated inleaves of Quercus robur L. exposed to different concentrationsof SO2 (80, 120, and 160 nl I–1) for 32 to 70 d. Two-year-oldoaks were grown in nutrient solutions with varied nitrogen formand were fumigated in closed chambers. An attempt was made toidentify the mechanisms of proton neutralization by consideringthe uptake of nitrogen, the increase in sulphur and carboxylatecontents, and the excretion of hydroxyl ions or protons. Inaddition, nitrate reductase activity was determined in the leaves. The reduction of sulphur was not involved in the neutralizationof protons generated by SO2-uptake, whereas organic acid metabolismplayed a decisive role. Depending on SO2-concentration, durationof fumigation and nitrogen supply, oaks reacted with a reductionin the size of the carboxylate pool in the leaves, and/or withan increase in proton excretion (or a decrease in hydroxyl ionexcretion). Nitrate reductase activity increased in the leavesof nitrate-grown oaks exposed to the highest SO2-concentration(160 nl l–1) for 42 d. The capacity of the mechanismsconsidered is sufficient for the neutralization of the calculatedamounts of protons resulting from SO2-uptake. Key words: Leaves, neutralization, protons, Quercus, sulphur dioxide  相似文献   

5.
Fumigation of Aleppo pines with episodes of O3 (up to 110 nll) causes immediate depressions of in vivo nitrate reductase(NaR) activities, slightly delayed reductions in the rates ofethene emissions (typical of O3 plants), steady accumulationsof total polyamines (although putrescine declines), and increasesin pool sizes of reduced glutathione (GSH) and ascorbate incurrent year needles. Severe droughting produces smaller plantswith reduced stomatal conductance and CO2 assimilation ratesas well as lower protein contents. Their roots have low ratesof nitrate uptake but virtually no root NaR activities, whilelevels of shoot activities and NaR-associated proteins are unaffectedalthough they have no substrate. Less severe droughting allowsa restricted uptake of nitrate which is still reflected in reducedNaR activities, protein and total N contents, but the additionalpresence of O3 (up to 120 nl l–1) has no interactive effecton N cycling. Drought and O3 together, however, depress CO2assimilation still further, which can not be accounted for byadditional stomatal closure, but the interactive effects ofdrought and air pollution reduce levels of total phenols, GSHand ascorbate which, combined with a 12-fold reduction in glutathionereductase-(GR)-associated proteins, point to an increased susceptibilityof Aleppo pines to photoinhibition as a reason for their currentdecline in Mediterranean areas. Key words: Aleppo pine, ascorbate, ELISA, ethene, glutathione reductase, nitrate reductase  相似文献   

6.
We studied the responses of Xanthium occidentale (Bertol.) (cockleburor Noogoora burr), a noxious weed, to atmospheric CO2 enrichmentand nitrate-N concentrations in the root zone ranging from 0.5to 25 mM. CO2 enrichment (1500 cm3 m–3) increased dry-matterproduction to about the same extent (18 per cent) at all levelsof supplied N: most of the increment in dry matter was distributedequally between leaves and roots so that there was little effecton shoot-to-root dry-weight ratios. Growth was stimulated greatlyby N and plateaued at 12 mM supplied N. Shoot-to-root dry-weightand total N ratios increased with increasing N supply. CO2 enrichmenthad no effect on the total amount of N accumulated by plants,but increased the N-use efficiency of leaves. Enriched plantshad lower concentrations and quantities of N in their leavesthan controls, and therefore lower shoot-to-root total N ratios.Little free NO3 accumulated in organs of control or enrichedplants. NO3 was the major form of N in xylem sap fromdetopped plants at low supplied NO3-N, but amino N was equalin importance at high supplied NO3-N in control and enrichedplants. Concentrations of NO3 were lower in the xylemsap of CO2 enriched plants. It was concluded that the betterN-use efficiency of CO2 enriched plants could result in increasedgrowth of X. occidentale in regions of marginal soil fertilityas atmospheric levels of CO2 increase. CO2 enrichment, nitrogen, Xanthium, Noogoora burr, cocklebur  相似文献   

7.
Seeds of Sorghum bicolor (L.) Moench. were germinated on moistfilter paper for 6 d, before the seedlings were transferredto pots containing 500 µmol l-1 Ca(NO3)2 for 2 d. Theseedlings were then treated with 0 or 100 µmol l-1 Alin factorial combination with 0, 1400 or 2800 µmol l-1Si for 8 d. The background solution used throughout was 500µmol l-1 Ca(NO3)2. Aluminium treatment reduced root growthand caused a significant increase in shoot/root ratio. The presenceof silica in the solution significantly ameliorated the effectsof aluminium on root growth. Three treatment were selected for a microanalytical investigationof the basal region of the root: 2800 µmol l-1 Si only;100 µmol l-1 Al only; and a combination of the two. Inthe 2800 µmol l-1 treatment silica was deposited in theendodermis, with the greatest accumulation being in the innertangential wall (ITW). When plants were treated with 100 µmoll-1 Al only, aluminium concentration was highest in the outertangential wall (OTW) of the epidermis. The element was presentin the hypodermal walls and OTW of the endodermis and was notdetectable in the stele. With both 2800 µmol l-1 Si and100 µmol l-1 Al in the nutrient solution the two biomineralizationsites were the ITW of the endodermis, where silicon was themajor element deposited, and atypically in the OTW of the epidermiswhere both aluminium and silicon were present. The sequestrationof aluminium in the Al-Si deposit in the OTW of the epidermismay represent the mechanism that allows greater root growthin this treatment.Copyright 1993, 1999 Academic Press Sorghum bicolor (L.) Moench., aluminium, silicon, calcium, root, toxicity, biomineralization, X-ray microanalysis, freeze substitution  相似文献   

8.
Salinity Reduces Water Use and Nitrate-N-use Efficiency of Citrus   总被引:1,自引:0,他引:1  
Five-month-old Cleopatra mandarin (Citrus reticulata Blanco)(CM) and Volkamer lemon (Citrus volkameriana Ten. and Pasq.)(VL) seedlings were grown in a glasshouse in 2·3-1 potsof Candler fine sand. Plants were irrigated with either non-saline(ECe = 0·23 dS m-1) or saline (6·13 dS m-1) waterusing 3:1 NaCl:CaCl2 solution over a 4-week period. A singleapplication of K15NO3 (19·64 atom % excess 15N) at 212mg N1-1, was substituted for a normal weekly fertilization after3 weeks and plants were harvested 7 d later. The transpirationrate, uptake of nitrogen, growth and nitrogen-use efficiency(NUE) on a dry weight basis (mg d. wt mg-1 N) of both specieswas reduced by salinity. Based on growth, water-use and chloride(Cl) accumulation in leaves, VL was more salt-sensitive thanCM, but 15N uptake was equally reduced by salinity in both species.Salinity reduced 15N uptake relatively more than shoot growthover the 7-d period, such that the 15NUE (mg d. wt µg-115N) of new shoot growth of both species increased. There wasno evidence of Cl antagonism of nitrate (NO3) uptake but totalplant 15NO3 uptake was positively correlated with whole planttranspiration in both species. Thus, it appears that reductionsin NO3 uptake are more strongly related to reduced water usethan to Cl antagonism from salt stress.Copyright 1993, 1999Academic Press Sodium, chloride, salinity, calcium, nitrate, 15NO3 uptake, nitrogen allocation, nitrogen-use efficiency, water use, Citrus reticulata, Citrus volkameriana  相似文献   

9.
Two approaches to quantifying relationships between nutrientsupply and plant growth were compared with respect to growth,partitioning, uptake and assimilation of NO3 by non-nodulatedpea (Pisum sativum L. cv. Marma). Plants grown in flowing solutionculture were supplied with NO3 at relative addition rates(RAR) of 0·03, 0·06, 0·12, and 0·18d–1, or constant external concentrations ([NO3)of 3, 10, 20, and 100 mmol m–3 over 19 d. Following acclimation,relative growth rates (RGR)approached the corresponding RARbetween 0·03–0.12 d-1, although growth was notlimited by N supply at RAR =0.18 d-1. Growth rates showed littlechange with [NO3–] between 10–100 mmol m–3(RGR=0·15 –0·16 d-1). The absence of growthlimitation over this range was suggested by high unit absorptionrates of NO3, accumulation of NO3 in tissues andprogressive increases in shoot: root ratio. Rates of net uptakeof NO3 from 1 mol m–3 solutions were assessed relativeto the growth-related requirement for NO3, showing thatthe relative uptake capacity increased with RGR between 0·03–0·06d–1 , but decreased thereafter to a theoretical minimumvalue at RGR  相似文献   

10.
Effects of Nitrogen Nutrition on Photosynthesis in Cd-treated Sunflower Plants   总被引:10,自引:0,他引:10  
Increased nitrogen supply stimulates plant growth and photosynthesis.Since it was shown that heavy metals may cause deficienciesof essential nutrients in plants the potential reversal of cadmiumtoxicity by increased N nutrition was investigated. The effectson photosynthesis of low Cd (0, 0.5, 2 or 5 mmol m-3) combinedwith three N treatments (2, 7.5 or 10 mol m-3) were examinedin young sunflower plants. Chlorophyll fluorescence quenchingparameters were determined at ambient CO2and at 100 or 800 µmolquanta m-2 s-1. The vitality index (Rfd) decreased approx. three-timesin response to 5 mmol m-3Cd, at 2 and 10 mol m-3N. The maximumphotochemical efficiency of PSII reaction centres (Fv/ Fm) wasnot influenced by Cd or N treatment. The highest Cd concentrationdecreased quantum efficiency of PSII electron transport (II)by 30%, at 2 and 10 mol m-3N, mostly due to increased closureof PSII reaction centres (qP). Photosynthetic oxygen evolutionrates at saturating CO2were decreased in plants treated with5 mmol m-3Cd, at all N concentrations. The results indicatethat Cd treatment affected the ribulose-1,5-bisphosphate (RuBP)regeneration capacity of the Calvin cycle more than other processes.At the same time, the amounts of soluble and ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco) protein increased with Cd treatment.Decreased photosynthesis, but substantially increased Rubiscocontent, in sunflower leaves under Cd stress indicate that asignificant amount of Rubisco protein is not active in photosynthesisand could have another function. It is shown that optimal nitrogennutrition decreases the inhibitory effects of Cd in young sunflowerplants. Copyright 2000 Annals of Botany Company Helianthus annuus L., cadmium, nitrogen, photosynthesis, Rubisco, sunflower  相似文献   

11.
In a coastal area of southern Chile (41° S), the major ammoniumassimilating enzyme glutamine synthetase (GS) was detected ina green dinoflagellate bloom during April 2003. High chlorophylla concentrations (1000 µg L–1) attributable to Gymnodiniumcf. chlorophorum in surface waters were associated with highand very low nitrate reductase activities. Coincident with thebloom, dissolved inorganic nitrogen concentrations were nearthe detection limit (NO3 + NH4+ <0.5 µM). SinceGS correlates with the use of ammonium as an external nitrogensource, we suggest that GS activity seems to be a good indicatorof ammonium utilization in a period dominated by a single dinoflagellatespecies.  相似文献   

12.
Differences in premature leaf abscission and in visible steminjury in genetic lines of poplar followed continuous fumigationswith air pollutant levels of SO2 (90–100 nl l–1)and O3 (70–80 nl l–1) either separately or together.The clones used were: Populus deltoides var. missiouriensisMarsh., P. nigra cv. ‘italicd’ L., and the hybridsP. nigra cv. ‘italica’ xP. deltoides (He-X/3) andP. nigra cv.‘italica’ x P. nigra cv. ‘Serres’(He-K/7). While most leaf abscission occurred within 20 d fromthe start of fumigation, stem lesions (intumescences), appearedonly after 72 d. Their anatomical characteristics include theformation of lysigenous aerenchyma in the lower parts of theintumescence, the sloughing of superficial cells from the injuredarea, and the development of crystalline formations on the surfaceof the lesions. P. deltoides exhibited the least morphologicalresponse to the gases. Ethylene released from fumigated leaves was determined at thesame gas concentration of SO2 (100 nl l–1), O3 (75 nll–1) and their mixture. Leaves of P. deltoides consistentlyshowed the lowest ethylene production after the gas treatments.P. ‘italica’ production was higher but was littlealtered by the treatments. The two hybrids He-X/3 and He-K/7showed the greatest increases in ethylene evolution with time.With He-K/7 exposed to the gas mixture the production of ethylenedecreased after the initial sharp rise during days 1–2,and reflected the considerable leaf damage observed after day3. The results suggest that sensitivity to air pollution, (as shownby leaf abscission and the formation of stem intumescences)can be correlated with the level of pollutant-induced ethyleneevolution from leaves. Initially high levels could induce abscission,whilst prolonged production could be responsible for intumescenceinitiation. The discussion proposes a series of events fromSO2 and/or O3 entry into the leaf and the physiological reasonsfor the clonal differences. Key words: Sulphur dioxide, ozone, ethylene, poplar, leaf abscission, stem lesions  相似文献   

13.
As rice can use both nitrate (NO3-) and ammonium (NH4+), we have tested the hypothesis that the shift in the pattern of cultivars grown in Jiangsu Province reflects the ability of the plants to exploit NO3- as a nitrogen (N) source. Four rice cultivars were grown in solution culture for comparison of their growth on NO3- and NH4+ nitrogen sources. All four types of rice, Xian You 63 (XY63), Yang Dao 6 (YD), Nong Keng 57 (NK) and Si You 917 (SY917), grew well and produced similar amounts of shoot biomass with 1 mmol/L NH4+ as the only N source. However, the roots of NK were significantly smaller in comparison with the other cultivars. When supplied with 1 mmol/L NO3-, YD produced the greatest biomass; while NK achieved the lowest growth among the four cultivars. Electrophysiological measurements on root rhizodermal cells showed that the NO3--elicited changes in membrane potential (ΔEm) of these four rice cultivars were significantly different when exposed to low external NO3- (<1 mmol/L); while they were very similar at high external NO3- (10 mmol/L). The root cell membrane potentials of YD and XY63 were more responsive to low external NO3- than those of NK and SY917. The ΔEm values for YD and XY63 rhizodermal cells were almost the same at both 0.1 mmol/L and 1 mmol/L NO3-; while for the NK and SY917 the values became larger as the external NO3- increased. For YD cultivar, ΔEm was measured over a range of NO3- concentrations and a Michaelis-Menten fit to the data gave a Km value of 0.17 mmol/L. Net NO3- uptake depletion kinetics were also compared and for some cultivars (YD and XY63) a single-phase uptake system with first order kinetics best fitted the data; while other cultivars (ND and SY917) showed a better fit to two uptake systems. These uptake systems had two affinity ranges: one had a similar Km in all the cultivars (0.2 mmol/L); the other much higher affinity system (0.03 mmol/L) was only present in NK and SY917. The expression pattern of twelve different NO3- transporter genes was tested using specific primers, but only OsNRT1.1 and OsNRT2.1 expression could be detected showing significant differences between the four rice cultivars. The results from both the physiological and molecular experiments do provide some support for the hypothesis that the more popular rice cultivars grown in Jiangsu Province may be better at using NO3- as an N source.  相似文献   

14.
The growth of four heathland species, two grasses (D. flexuosa,M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix),was tested in solution culture at pH 4.0 with 2 mol m–3N, varying the N03/NH4+ ratio up to 40% nitrate. In addition,measurements of NRA, plant chemical composition, and biomassallocation were carried out on a complete N03/NH4+ replacementseries up to 100% nitrate. With the exception of M. caerulea, the partial replacement ofNH4+ by NO3 tended to enhance the plant's growth ratewhen compared to NH4+ only. In contrast to the other species,D. flexuosa showed a very flexible response in biomass allocation:a gradual increase in the root weight ratio (RWR) with NO3increasing from 0 to 100%. In the presence of NH4+, grassesreduced nitrate in the shoot only; roots did not become involvedin the reduction of nitrate until zero ambient NH4+. The dwarfshrubs, being species that assimilate N exclusively in theirroots, displayed an enhanced root NRA in the presence of nitrate;in contrast to the steady increase with increasing NO3in Calluna roots, enzyme activity in Erica roots followed arather irregular pattern. Free nitrate accumulated in the tissuesof grasses only, and particularly in D. flexuosa. The relative uptake ratio for NO3 [(proportion of nitratein N uptake)/(proportion of nitrate in N supply)] was lowestin M. caerulea and highest in D. flexuosa. Whereas M. caeruleaand the dwarf shrubs always absorbed ammonium highly preferentially(relative uptake ratio for NO3 <0.20), D. flexuosashowed a strong preference for NO3 at low external nitrate(the relative uptake ratio for N03 reaching a value of2.0 at 10% NO3). The ecological significance of thisprominent high preference for NO3 at low NO3/NH4+ratio by D. flexuosa and its consequences for soil acidificationare briefly discussed. Key words: Ammonium, heathland lants, N03/NH4+ ratio, nitrate, nitrate reductase activity, soil acidification, specific absorption rate  相似文献   

15.
Barley plants were grown in nutrient solution at two contrastingnitrate concentrations to produce plants of low or high nitrogen(N) status. Leaves were then exposed continuously to either0.3 mm3 dm–3 NO2 or clean air, with the roots and rootingmedium isolated from the polluted air. Uptake of NO2 was measuredin two ways; as depletion from an air stream containing thegas and using 15N-labelled NO2. Results from the two methodsagreed well and demonstrated that the flux of NO2 into the leavesof N-deficient barley was lower than that of N-sufficient plants.Nevertheless, the relative contribution of15N derived from 15NO2to the N status of the plant was greater in the plants suppliedwith low nitrate. A major factor in regulating NO2 uptake bybarley leaves appeared to be stomatal conductance, althoughinternal conductance may also be involved. The effects of NO2exposure of barley on carbon dioxide exchange rates, transpirationand water vapour conductance were also influenced by the N statusof the plant. Key words: Hordeum vulgare, 15N-labelled NO2, carbon dioxide exchange, transpiration  相似文献   

16.
Nitrate reductase activity (NRA, in vivo assay) and nitrate(NO-3) content of root and shoot and NO-3 and reduced nitrogencontent of xylem sap were measured in five temperate cerealssupplied with a range of NO-3 concentrations (0·1–20mol m–3) and three temperate pasture grasses suppliedwith 0·5 or 5 0 mol m–3 NO-3 For one cereal (Hordeumvulgare L ), in vitro NRA was also determined The effect ofexternal NO-3 concentration on the partitioning of NO-3 assimilationbetween root and shoot was assessed All measurements indicatedthat the root was the major site of NO3 assimilation in Avenasatwa L, Hordeum vulgare L, Secale cereale L, Tnticum aestivumL and x Triticosecale Wittm supplied with 0·1 to 1·0mol m–3 NO-3 and that for all cereals, shoot assimilationincreased in importance as applied NO-3 concentration increasedfrom 1.0 to 20 mol m–3 At 5.0–20 mol m–3 NO3,the data indicated that the shoot played an important if notmajor role in NO-3 assimilation in all cereals studied Measurementson Lolium multiflorum Lam and L perenne L indicated that theroot was the main site of NO-3 assimilation at 0.5 mol m–3NO-3 but shoot assimilation was predominant at 5.0 mol m–3NO-3 Both NRA distribution data and xylem sap analysis indicatedthat shoot assimilation was predominant in Dactylis glomerataL supplied with 0.5 or 5.0 mol m–3 NO-3 Avena sativa L., oats, Hordeum vulgare L., barley, Secale cereale L., rye, x Triticosecale Wittm., triticale, Triticum aestivum L., wheat, Dactylis glomerata L., cocksfoot, Lolium multiflorum Lam., Italian ryegrass, Lolium perenne L., perennial ryegrass, nitrate, nitrate assimilation, nitrate reductase activity, xylem sap  相似文献   

17.
Tuberized tap roots of Witloof chicory (Cichorium intybus L.)were forced by placing in a dark chamber in a hydroponic systemunder high RH to produce an etiolated bud, the chicon. Plantswere fed nutrient solutions with two NO3concentrations of 1·5or 18 mol m–3 NO3, or demineralized water. The nutrientsolutions were labelled with 2% atom excess 15N. Although thechicon biomass increased with increasing NO3 concentration inthe nutrient solution, the chicon dry weight remained unchanged.The increased chicon biomass was, therefore, due to more waterin the chicon. The N in the chicon originated from either anendogenous source, the root, and/or an exogenous source, thenutrient solution. Organic N reserves remobilization and transferto the chicon were not been affected by NO3 supply. At the endof the forcing period 75% of the root N had been remobilized.Differences in the amount of N in the chicons of the three treatmentswere due to the uptake of exogenous N. The flux of exogenousnitrogen to the chicon in high NO3-plants was 2- to 6-fold higherthan in the low NO3-plants and, at the end of the forcing period,exogenous nitrogen contributed 30% of total chicon N in highNO3-plants and 10% in low NO3-plants. Net uptake of NO3 by chicory plants during the forcing processwas a function of N influx and N efflux. The increase in N influxwas accompanied by an increase in exogenous N flux to the chiconand probably a shift in root and/or chicon osmotic potentialwhich increased water flux to the chicon. Since NO3 did notaccumulate in either the chicon or the root, it is proposedthat osmotic solutes, such as organic acids and amino acidsmay be involved in osmotic potential changes in chicory duringthe forcing process. Key words: Cichorium intybus L., efflux, influx, nitrogen (15NO3) nutrition, remobilization  相似文献   

18.
The use of the photo-autotrophic nitrogen-fixing water fernAzolla as an effective source of organic nitrogen in tropicalpaddy fields has been limited by a high phosphorus requirement.Azolla species with a minimum of 1.5 to 2.0 mM phosphate (P)requirement, under controlled conditions, are known. A local Azolla species requiring at least 1.5 mM sodium phosphatefor a normal rate of multiplication and N2 fixation was exposedto N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The resultingmutant population had a significantly lower P requirement, butwas auxotrophic for glutamine with an extremely reduced glutaminesynthetase (GS) activity. An L-methionine-DL-sulphoximine (MSX)-resistant(MSXr) Azolla population, having an approximately 1.5 timeshigher GS activity than that of the wild type (WT) parent organism,was cultured and subjected to MNNG-induced mutation for lowP requirement while putting MSX as a control in the mutant selectionmedium. The resulting population of mutant Azolla was a normalprototroph with a P requirement as low as 0.75 mM for its ‘WTparent-like’ usual growth and N2 fixation. Key words: Azolla, phosphorus requirement, mutation  相似文献   

19.
We examined changes in dry weight and leaf area within Dactylisglomerata L. plants using allometric analysis to determine whetherobserved patterns were truly affected by [CO2] and N supplyor merely reflect ontogenetic drift. Plants were grown hydroponicallyat four concentrations of in controlled environment cabinets at ambient (360 µll–1) or elevated (680 µl l–1) atmospheric[CO2]. Both CO2and N enrichment stimulated net dry matter production.Allometric analyses revealed that [CO2] did not affect partitioningof dry matter between shoot and root at high N supply. However,at low N supply there was a transient increase in dry matterpartitioning into the shoot at elevated compared to ambient[CO2] during early stages of growth, which is inconsistent withpredictions based on optimal partitioning theory. In contrast,dry matter partitioning was affected by N supply throughoutontogeny, such that at low N supply dry matter was preferentiallyallocated to roots, which is in agreement with optimal partitioningtheory. Independent of N supply, atmospheric CO2enrichment resultedin a reduction in leaf area ratio (LAR), solely due to a decreasein specific leaf area (SLA), when plants of the same age werecompared. However, [CO2] did not affect allometric coefficientsrelating dry weight and leaf area, and effects of elevated [CO2]on LAR and SLA were the result of an early, transient stimulationof whole plant and leaf dry weight, compared to leaf area production.We conclude that elevated [CO2], in contrast to N supply, changesallocation patterns only transiently during early stages ofgrowth, if at all. Copyright 2000 Annals of Botany Company Allometric growth, carbon dioxide enrichment, Cocksfoot, Dactylis glomerata L., dry weight partitioning, leaf area ratio, nitrogen supply, shoot:root ratio, specific leaf area  相似文献   

20.
Effects of chilling (5 °C) period, light and applied nitrogen(N) on germination (%), rate of germination (d to 50% of totalgermination; T50%) and seed imbibition were examined inClematisvitalba L. In the absence of chilling, light and N, germinationwas minimal (3%). When applied alone, both chilling and N increasedgermination. Chilling for 12 weeks increased germination to64%, and 2.5 mM NO-3or NH+4increased germination to 10–12%.Light did not increase germination when applied alone, but didwhen applied in combination with chilling and/or N. Half theseed germinated when light was combined with 2.5 mM NO-3or NH+4.The influence of chilling, light and/or N on germination wasgreater when combined, than when either factor was applied alone.Both oxidized (NO-3) and reduced (NH+4) forms of N increasedgermination, but non-N-containing compounds did not, suggestingthe response was due to N and not ionic or osmotic effects. Without additional N, T50%decreased from 16–20 d at zerochilling, to around 5 d at 8 and 12 weeks chilling. AlthoughT50%was not influenced by an increase in NO-3or NH+4from 0.5to 5.0 mM , it did increase with additional applied N thereafter.However, the magnitude of the N effect was small compared tothat of chilling. Like germination, seed imbibition increasedwith a longer chilling period, but in contrast imbibition decreasedslightly with increased applied NO-3or NH+4. It is argued thatincreased imbibition is not directly related to an increasein total germination, but that it may be related to the rateof germination. Possible mechanisms involved in the reductionin dormancy ofC. vitalba seed are discussed. Clematis vitalba L.; germination; dormancy; imbibition; rate of germination; chilling; light; nitrate; ammonium; nitrogen; phytochrome  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号