首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 2001 epidemic of foot-and-mouth disease (FMD) in the UK resulted in the death of nearly 10 million livestock at a cost that was estimated to be up to 8 billion pounds. Owing to the controversy surrounding the epidemic, the question of whether or not alternative policies would have resulted in significantly better control of the epidemic remains of great interest. A hexagonal lattice simulation of FMD in Cumbria is used to address the central question of whether or not better use could have been made of expert knowledge of FMD transmission to target pre-emptive culling, by assuming that the premises at greatest risk of becoming infected can be targeted for culling. The 2000 UK census and the epidemiological database collected during the epidemic are used to describe key characteristics of disease transmission, and the model is fit to the epidemic time-series. Under the assumptions of the model, the parameters that best fit the epidemic in Cumbria indicate that a policy based on expert knowledge would have exacerbated the epidemic compared with the policy as implemented. However, targeting more distant, high-risk farms could be more valuable under different epidemic conditions, notably, if risk factors of sufficient magnitude could be identified to aid in prioritizing vaccination or culling of farms at high risk of becoming infected.  相似文献   

2.
Classical Swine Fever Virus (CSFV) causes classical swine fever, a highly contagious hemorrhagic fever affecting both feral and domesticated pigs. Outbreaks of CSF in Europe, Asia, Africa and South America had significant adverse impacts on animal health, food security and the pig industry. The disease is generally contained by prevention of exposure through import restrictions (e.g. banning import of live pigs and pork products), localized vaccination programmes and culling of infected or at‐risk animals, often at very high cost. Current CSFV‐modified live virus vaccines are protective, but do not allow differentiation of infected from vaccinated animals (DIVA), a critical aspect of disease surveillance programmes. Alternatively, first‐generation subunit vaccines using the viral protein E2 allow for use of DIVA diagnostic tests, but are slow to induce a protective response, provide limited prevention of vertical transmission and may fail to block viral shedding. CSFV E2 subunit vaccines from a baculovirus/insect cell system have been developed for several vaccination campaigns in Europe and Asia. However, this expression system is considered expensive for a veterinary vaccine and is not ideal for wide‐spread deployment. To address the issues of scalability, cost of production and immunogenicity, we have employed an Agrobacterium‐mediated transient expression platform in Nicotiana benthamiana and formulated the purified antigen in novel oil‐in‐water emulsion adjuvants. We report the manufacturing of adjuvanted, plant‐made CSFV E2 subunit vaccine. The vaccine provided complete protection in challenged pigs, even after single‐dose vaccination, which was accompanied by strong virus neutralization antibody responses.  相似文献   

3.
Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R(0), may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress.  相似文献   

4.
We present a model of disease transmission on a regular and small world network and compare different control options. Comparison is based on a total cost of epidemic, including cost of palliative treatment of ill individuals and preventive cost aimed at vaccination or culling of susceptible individuals. Disease is characterized by pre-symptomatic phase, which makes detection and control difficult. Three general strategies emerge: global preventive treatment, local treatment within a neighborhood of certain size and only palliative treatment with no prevention. While the choice between the strategies depends on a relative cost of palliative and preventive treatment, the details of the local strategy and, in particular, the size of the optimal treatment neighborhood depend on the epidemiological factors. The required extent of prevention is proportional to the size of the infection neighborhood, but depends on time till detection and time till treatment in a non-nonlinear (power) law. The optimal size of control neighborhood is also highly sensitive to the relative cost, particularly for inefficient detection and control application. These results have important consequences for design of prevention strategies aiming at emerging diseases for which parameters are not nessecerly known in advance.  相似文献   

5.
Pre-emptive culling is becoming increasingly questioned as a means of controlling animal diseases, including classical swine fever (CSF). This has prompted discussions on the use of emergency vaccination to control future CSF outbreaks in domestic pigs. Despite a long history of safe use in endemic areas, there is a paucity of data on aspects important to emergency strategies, such as how rapidly CSFV vaccines would protect against transmission, and if this protection is equivalent for all viral genotypes, including highly divergent genotype 3 strains. To evaluate these questions, pigs were vaccinated with the Riemser® C-strain vaccine at 1, 3 and 5 days prior to challenge with genotype 2.1 and 3.3 challenge strains. The vaccine provided equivalent protection against clinical disease caused by for the two challenge strains and, as expected, protection was complete at 5 days post-vaccination. Substantial protection was achieved after 3 days, which was sufficient to prevent transmission of the 3.3 strain to animals in direct contact. Even by one day post-vaccination approximately half the animals were partially protected, and were able to control the infection, indicating that a reduction of the infectious potential is achieved very rapidly after vaccination. There was a close temporal correlation between T cell IFN-γ responses and protection. Interestingly, compared to responses of animals challenged 5 days after vaccination, challenge of animals 3 or 1 days post-vaccination resulted in impaired vaccine-induced T cell responses. This, together with the failure to detect a T cell IFN-γ response in unprotected and unvaccinated animals, indicates that virulent CSFV can inhibit the potent antiviral host defences primed by C-strain in the early period post vaccination.  相似文献   

6.
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, continues to be a serious economic problem for the British cattle industry. The Eurasian badger (Meles meles) is partly responsible for maintenance of the disease and its transmission to cattle. Previous attempts to manage the disease by culling badgers have been hampered by social perturbation, which in some situations is associated with increases in the cattle herd incidence of bTB. Following the licensing of an injectable vaccine, we consider the relative merits of management strategies to reduce bTB in badgers, and thereby reduce cattle herd incidence. We used an established simulation model of the badger-cattle-TB system and investigated four proposed strategies: business as usual with no badger management, large-scale proactive badger culling, badger vaccination, and culling with a ring of vaccination around it. For ease of comparison with empirical data, model treatments were applied over 150 km(2) and were evaluated over the whole of a 300 km(2) area, comprising the core treatment area and a ring of approximately 2 km. The effects of treatment were evaluated over a 10-year period comprising treatment for five years and the subsequent five year period without treatment. Against a background of existing disease control measures, where 144 cattle herd incidents might be expected over 10 years, badger culling prevented 26 cattle herd incidents while vaccination prevented 16. Culling in the core 150 km(2) plus vaccination in a ring around it prevented about 40 cattle herd breakdowns by partly mitigating the negative effects of culling, although this approach clearly required greater effort. While model outcomes were robust to uncertainty in parameter estimates, the outcomes of culling were sensitive to low rates of land access for culling, low culling efficacy, and the early cessation of a culling strategy, all of which were likely to lead to an overall increase in cattle disease.  相似文献   

7.
Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spread of highly transmissible animal diseases between farms based on outbreak data. The method allows for the identification of high-risk areas for propagating spread in an epidemiologically underpinned manner. A central concept is the transmission kernel, which determines the probability of pathogen transmission from infected to uninfected farms as a function of interfarm distance. The authors show how an estimate of the transmission kernel naturally provides estimates of the critical farm density and local reproduction numbers, which allows one to evaluate the effectiveness of control strategies. For avian influenza, the analyses show that there are two poultry-dense areas in The Netherlands where epidemic spread is possible, and in which local control measures are unlikely to be able to halt an unfolding epidemic. In these regions an epidemic can only be brought to an end by the depletion of susceptible farms by infection or massive culling. The analyses provide an estimate of the spatial range over which highly pathogenic avian influenza viruses spread between farms, and emphasize that control measures aimed at controlling such outbreaks need to take into account the local density of farms.  相似文献   

8.
A model for indirect vector transmission and epidemic development of plant viruses is extended to consider direct transmission through vector mating. A basic reproduction number is derived which is the sum of the R0 values specific for three transmission routes. We analyse the model to determine the effect of direct transmission on plant disease control directed against indirect transmission. Increasing the rate of horizontal sexual transmission means that vector control rate or indirect transmission rate must be increased/decreased substantially to maintain R0 at a value less than 1. By contrast, proportionately increasing the probability of transovarial transmission has little effect. Expressions are derived for the steady-state values of the viruliferous vector population. There is clear advantage for an insect virus in indirect transmission to plants, especially where the sexual and transovarial transmission rates are low; however information on virulence-transmissibility relationships is required to explain the evolution of a plant virus from an insect virus.  相似文献   

9.
Disease control by managers is a crucial response to emerging wildlife epidemics, yet the means of control may be limited by the method of disease transmission. In particular, it is widely held that population reduction, while effective for controlling diseases that are subject to density-dependent (DD) transmission, is ineffective for controlling diseases that are subject to frequency-dependent (FD) transmission. We investigate control for horizontally transmitted diseases with FD transmission where the control is via culling or harvest that is non-selective with respect to infection and the population can compensate through DD recruitment or survival. Using a mathematical model, we show that culling or harvesting can eradicate the disease, even when transmission dynamics are FD. Eradication can be achieved under FD transmission when DD birth or recruitment induces compensatory growth of new, healthy individuals, which has the net effect of reducing disease prevalence by dilution. We also show that if harvest is used simultaneously with vaccination, and there is high enough transmission coefficient, application of both controls may be less efficient than vaccination alone. We illustrate the effects of these control approaches on disease prevalence for chronic wasting disease in deer where the disease is transmitted directly among deer and through the environment.  相似文献   

10.
We applied optimal control theory to an SI epidemic model to identify optimal culling strategies for diseases management in wildlife. We focused on different forms of the objective function, including linear control, quadratic control, and control with limited amount of resources. Moreover, we identified optimal solutions under different assumptions on disease-free host dynamics, namely: self-regulating logistic growth, Malthusian growth, and the case of negligible demography. We showed that the correct characterization of the disease-free host growth is crucial for defining optimal disease control strategies. By analytical investigations of the model with negligible demography, we demonstrated that the optimal strategy for the linear control can be either to cull at the maximum rate at the very beginning of the epidemic (reactive culling) when the culling cost is low, or never to cull, when culling cost is high. On the other hand, in the cases of quadratic control or limited resources, we demonstrated that the optimal strategy is always reactive. Numerical analyses for hosts with logistic growth showed that, in the case of linear control, the optimal strategy is always reactive when culling cost is low. In contrast, if the culling cost is high, the optimal strategy is to delay control, i.e. not to cull at the onset of the epidemic. Finally, we showed that for diseases with the same basic reproduction number delayed control can be optimal for acute infections, i.e. characterized by high disease-induced mortality and fast dynamics, while reactive control can be optimal for chronic ones.  相似文献   

11.
Johne's disease is caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection and results in economic losses in the dairy industry. To control MAP transmission in herds, test-based culling has been recommended and immediate culling of high shedding animals is typically implemented. In this study, we quantified the effects of MAP control in US dairy herds, using the basic reproduction ratio R0. The effectiveness of culling strategies was evaluated for good and poor herd management (low- and high-transmission rates, respectively) by a phase diagram approach. To establish a quantitative relationship between culling rates and test properties, we defined the average detection times for low and high shedding animals. The effects of various culling strategies and test characteristics, such as test sensitivity, test turnaround time, and testing interval, were analyzed. To understand the overall effect of model parameters on R0, we performed global uncertainty and sensitivity analyses. We also evaluated the effectiveness of culling only high shedding animals by comparing three test methods (fecal culture, fecal polymerase chain reaction, PCR, and enzyme-linked immunosorbent assay, ELISA). Our study shows that, in the case of good herd management, culling of only high shedding animals may be effective in controlling MAP transmission. However, in the case of poor management, in addition to immediate culling of high shedding animals, culling of low shedding animals (based on the fecal culture test) will be necessary. Culling of low shedding animals may be delayed 6-12 months, however, if a shorter testing interval is applied. This study suggests that if farmers prefer culling only high shedding animals, faster MAP detection tests (such as the fecal PCR and ELISA) of higher sensitivity should be applied with high testing frequency, particularly on farms with poor management. Culling of infectious animals with a longer testing interval is generally not effective to control MAP.  相似文献   

12.
The expected time to extinction of a herpes virus is calculated from a rather simple population-dynamical model that incorporates transmission, reactivation and fade-out of the infectious agent. We also derive the second and higher moments of the distribution of the time to extinction. These quantities help to assess the possibilities to eradicate a reactivating infection. The key assumption underlying our calculations is that epidemic outbreaks are fast relative to the time scale of demographic turnover. Four parameters influence the expected time to extinction: the reproduction ratio, the reactivation rate, the population size, and the demographic turn-over in the host population. We find that the expected time till extinction is very long when the reactivation rate is high (reactivation is expected more than once in a life time). Furthermore, the infectious agent will go extinct much more quickly in small populations. This method is applied to bovine herpes virus (BHV) in a cattle herd. The results indicate that without vaccination, BHV will persist in large herds. The use of a good vaccine can induce eradication of the infection from a herd within a few decades. Additional measures are needed to eradicate the virus from a whole region within a similar time-span.  相似文献   

13.
The 2001 foot-and-mouth disease epidemic was controlled by culling of infectious premises and pre-emptive culling intended to limit the spread of disease. Of the control strategies adopted, routine culling of farms that were contiguous to infected premises caused the most controversy. Here we perform a retrospective analysis of the culling of contiguous premises as performed in 2001 and a simulation study of the effects of this policy on reducing the number of farms affected by disease. Our simulation results support previous studies and show that a national policy of contiguous premises (CPs) culling leads to fewer farms losing livestock. The optimal national policy for controlling the 2001 epidemic is found to be the targeting of all contiguous premises, whereas for localized outbreaks in high animal density regions, more extensive fixed radius ring culling is optimal. Analysis of the 2001 data suggests that the lowest-risk CPs were generally prioritized for culling, however, even in this case, the policy is predicted to be effective. A sensitivity analysis and the development of a spatially heterogeneous policy show that the optimal culling level depends upon the basic reproductive ratio of the infection and the width of the dispersal kernel. These analyses highlight an important and probably quite general result: optimal control is highly dependent upon the distance over which the pathogen can be transmitted, the transmission rate of infection and local demography where the disease is introduced.  相似文献   

14.
We evaluate the efficiency of various heuristic strategies for allocating vaccines against COVID-19 and compare them to strategies found using optimal control theory. Our approach is based on a mathematical model which tracks the spread of disease among different age groups and across different geographical regions, and we introduce a method to combine age-specific contact data to geographical movement data. As a case study, we model the epidemic in the population of mainland Finland utilizing mobility data from a major telecom operator. Our approach allows to determine which geographical regions and age groups should be targeted first in order to minimize the number of deaths. In the scenarios that we test, we find that distributing vaccines demographically and in an age-descending order is not optimal for minimizing deaths and the burden of disease. Instead, more lives could be saved by using strategies which emphasize high-incidence regions and distribute vaccines in parallel to multiple age groups. The level of emphasis that high-incidence regions should be given depends on the overall transmission rate in the population. This observation highlights the importance of updating the vaccination strategy when the effective reproduction number changes due to the general contact patterns changing and new virus variants entering.  相似文献   

15.
A predictive model of spread and control of rabies in red fox (Vulpes vulpes) populations was used to evaluate efficacy of culling, oral vaccination, and oral vaccination and fertility control (V + FC) as rabies control strategies. In addition, effects of season, fox population density, and a delay in starting control were modeled. At fox densities of 0.5 fox families/km2 or greater, a single oral vaccination campaign with bait uptake rates of less than 50% resulted in ineffective rabies control. An uptake rate of at least 80% was required to give a better than 80% chance of eliminating rabies. Vaccination was least effective at controlling rabies if applied 1 or 2 mo before the foxes gave birth. Seasonal timing of poison or V + FC had little effect on efficacy, which was always more successful than the oral vaccination alone. The longer the delay between the simulated start of the rabies infection and the application of a single vaccination campaign, the less successful was the control, particularly at the higher fox densities tested. At a fox density of 0.25 families/km2, all the strategies were equally successful at eliminating rabies. At higher fox densities V + FC was slightly less successful than culling, whereas vaccination-only was considerably less successful. The sole use of vaccination is not considered a viable control method for areas with high fox densities. The model suggests that an area of culling centered on the disease focus, plus an outer ring of vaccine or V + FC, could be the best strategy to control a point-source wildlife rabies outbreak.  相似文献   

16.
The current control strategies for tsetse-transmitted trypanosomosis in cattle (trypanocidal drugs, tsetse control and trypanotolerant cattle) are briefly reviewed and their adoption rates in different geographic regions of sub-Saharan Africa are presented. The impact of these control strategies and the potential use of vaccines, should they be developed, on trypanosomosis transmission were compared using a mathematical model. The relative trypanosomosis prevalence compared with no control was estimated across a range of control coverages (from none to complete control coverage) by varying the change in specific model parameters influenced by individual control measures. Based on this comparison, the relative rankings of the effect of control strategies on reducing disease prevalence were: vector control, vaccination, and drug use, in that order. In this model, trypanotolerance was assumed to decrease disease prevalence, but not to influence transmission. Differences in the predicted impact of control measures on the transmission of human sleeping sickness are discussed. Finally, the role of transmission model outputs as inputs for economic models to guide investment decisions for trypanosomosis control is emphasised.  相似文献   

17.
ABSTRACT: BACKGROUND: Rabies is a fatal viral disease that potentially can affect all mammals. Terrestrial rabies is not present in the United Kingdom and has been eliminated from Western Europe. Nevertheless the possibility remains that rabies could be introduced to England, where it would find two potentially suitable hosts, red foxes and badgers. With the aim to analyse the spread and emergency control of rabies in this two species host community, a simulation model was constructed. Different control strategies involving anti-rabies vaccination and population culling were developed, considering control application rates, spatial extent and timing. These strategies were evaluated for efficacy and feasibility to control rabies in hypothetical rural areas in the South of England immediately after a disease outbreak. RESULTS: The model confirmed that both fox and badger populations, separately, were competent hosts for the spread of rabies. Realistic vaccination levels were not sufficient to control rabies in high-density badger populations. The combined species community was a very strong rabies host. However, disease spread within species appeared to be more important than cross-species infection. Thus, the drivers of epidemiology depend on the potential of separate host species to sustain the disease. To control a rabies outbreak in the two species, both species had to be targeted. Realistic and robust control strategies involved vaccination of foxes and badgers, but also required badger culling. Although fox and badger populations in the UK are exceptionally dense, an outbreak of rabies can be controlled with a higher than 90% chance, if control response is quick and follows a strict regime. This requires surveillance and forceful and repeated control campaigns. In contrast, an uncontrolled rabies outbreak in the South of England would quickly develop into a strong epizootic involving tens of thousands of rabid foxes and badgers. CONCLUSIONS: If populations of both host species are sufficiently large, epizootics are driven by within-species transmission, while cross-species-infection appears to be of minor importance. Thus, the disease control strategy has to target both host populations.  相似文献   

18.
Vaccination is important for the control of some infectious diseases. This paper considers two SIR-SVS epidemic models with vaccination, where it is assumed that the vaccination for the newborns is continuous in the two models, and that the vaccination for the susceptible individuals is continuous and impulsive, respectively. The basic reproduction numbers of two models, determining whether the disease dies out or persists eventually, are all obtained. For the model with continuous vaccination for the susceptibles, the global stability is proved by using the Lyapunov function. Especially for the endemic equilibrium, to prove the negative definiteness of the derivative of the Lyapunov function for all the feasible values of parameters, it is expressed in three different forms for all the feasible values of parameters. For the model with pulse vaccination for the susceptibles, the global stability of the disease free periodic solution is proved by the comparison theorem of impulsive differential equations. At last, the effect of vaccination strategies on the control of the disease transmission is discussed, and two types of vaccination strategies for the susceptible individuals are also compared.  相似文献   

19.
We constructed dynamic Ebola virus disease (EVD) transmission models to predict epidemic trends and evaluate intervention measure efficacy following the 2014 EVD epidemic in West Africa. We estimated the effective vaccination rate for the population, with basic reproduction number (R0) as the intermediate variable. Periodic EVD fluctuation was analyzed by solving a Jacobian matrix of differential equations based on a SIR (susceptible, infective, and removed) model. A comprehensive compartment model was constructed to fit and predict EVD transmission patterns, and to evaluate the effects of control and prevention measures. Effective EVD vaccination rates were estimated to be 42% (31–50%), 45% (42–48%), and 51% (44–56%) among susceptible individuals in Guinea, Liberia and Sierra Leone, respectively. In the absence of control measures, there would be rapid mortality in these three countries, and an EVD epidemic would be likely recur in 2035, and then again 8~9 years later. Oscillation intervals would shorten and outbreak severity would decrease until the periodicity reached ~5.3 years. Measures that reduced the spread of EVD included: early diagnosis, treatment in isolation, isolating/monitoring close contacts, timely corpse removal, post-recovery condom use, and preventing or quarantining imported cases. EVD may re-emerge within two decades without control and prevention measures. Mass vaccination campaigns and control and prevention measures should be instituted to prevent future EVD epidemics.  相似文献   

20.
Sterilization has rarely been considered as an alternative to culling or vaccination to control wildlife diseases. Disease control by sterilization, as by culling, has most promise when the host'ss ability for compensatory growth following the removal of density-dependent inhibitions is limited, and when moderate reductions in population density cause disproportionately large reductions in disease prevalence, or even eliminate the disease. For many host/disease examples this will not be the case and vaccination may have overwhelming advantages or may be the only practical option. The impact of sterilization on host density and disease prevalence will develop relatively slowly because sterilization can prevent the recruitment of only one age-cohort at a time. Moreover, unless there is vertical transmission, this age-cohort will consist only of susceptibles. Culling, on the contrary, removes infected as well as susceptible animals. However, for certain disease/host examples, the r elative effectiveness of the different control strategies may be altered considerably if their variable effects on the probability of disease transmission are taken into account. Social perturbation or stress could render certain culling strategies ineffective or even counter-productive. Depending on how disease dynamics are influenced by the host'ss age-structure and reproductive investment, fertility control could offer epidemiological advantages that have been ignored by most disease/host models. We illustrate some of these principles by investigating the theoretical and practical feasibility of an hypothetical sterilization campaign to control bovine tuberculosis in badgers (and hence cattle) in Britain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号