首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mittler R  Lam E 《Plant physiology》1995,108(2):489-493
Programmed cell death (pcd) is thought to occur during the autolysis of xylem vessels. Although several ultrastructural aspects of this differentiation process have been characterized, certain key aspects of this process remain unsolved. Here we demonstrate in pea (Pisum sativum) that nuclei of vessel elements undergoing pcd contain fragmented nDNA. This finding may provide evidence for the activation of a DNA degradation mechanism prior to the final disruption of the nucleus that occurs during the autolysis stage of this differentiation process. In situ detection of DNA fragmentation in nuclei of vessel elements undergoing pcd may therefore suggest that this death process involves the activation of a mechanism for DNA degradation, similar to that activated during apoptosis in animal cells. In addition, this differentiation process may serve as a useful positive control for the in situ detection of pcd in other developmental pathways and during the hypersensitive response of plants to avirulent pathogens.  相似文献   

2.
Programmed cell death during embryogenesis in maize   总被引:9,自引:0,他引:9  
Programmed cell death (PCD) in plants is considered an integral part of development. Evidence of DNA fragmentation, occurring at specific sites and times during embryo formation in maize (Zea mays L.), was obtained using terminal deoxyribonucleotidyl transferase-mediated dUTP-fluorescein nick end labelling (TUNEL) and by genomic DNA ladder detection. During the crucial period of elaboration of the primary shoot and root axis (14-20 d after pollination), TUNEL-positive nuclei are present in the scutellum, coleoptile, root cap and principally in the suspensor. Additional evidence of a form of programmed cell death occurring in these tissues comes from the detection of a DNA ladder. Upon completion of the differentiation process, all embryonic cells are TUNEL-negative, indicating that possible programmed cell death events during maize embryogenesis are confined to structures or organs that do not contribute to the adult plant body.  相似文献   

3.
Rat vaginal epithelial cells (VEC) undergo division and differentiation under the influence of oestradiol in a programmed manner. The differentiation process of VEC leads to keratinization, cornification and subsequent desquamation of the dead cells. This process of programmed cell death, referred to as terminal differentiation may share some common pathways with cell death by apoptosis but differ substantially in many aspects. Terminal differentiation of VEC is accompanied by the loss of majority of the organelles including the nucleus. To understand the mechanisms that underlie this process we have analysed the regulation of DNase I (a key effector of apoptotic cell death) in rat VEC under the influence of oestradiol. The present study demonstrates that under physiological conditions, cell death in the VEC is mainly through terminal differentiation although a few cells may undergo apoptotic death involving DNA fragmentation. Unaltered levels of bcl-2 message upon oestradiol administration suggest an important role played by this molecule in preventing death of the VEC by apoptosis.  相似文献   

4.
Neuronal death during nervous system development, a widely observed phenomenon, occurs through unknown mechanisms. Recent evidence suggests an active, destructive process requiring new gene expression. Sulfated glycoprotein-2 (SGP-2), a secretory product of testicular Sertoli cells has been shown to up-regulate in several nonneural tissues undergoing programmed cell death and in several types of neuronal degeneration. In order to determine if this message up-regulates in neurons undergoing developmentally determined cell death, we have studied the expression of SGP-2 mRNA in the developing and adult rat central nervous system (CNS) with in situ hybridization. We also report on the expression of this message in nonneural tissues from several regions of the developing embryo. The developing and adult rat central nervous system as well as widely varied tissues in the rat embryo express SGP-2 mRNA in a pattern that does not correlate with regions undergoing developmental cell death. In the nervous system, SGP-2 mRNA is expressed in neuronal populations including motor neurons, cortical neurons, and hypothalamic neurons at ages when the period of developmental cell death has passed. In a nonneural tissue (palatal shelve epithelium) for which a developmental cell death period has been described, SGP-2 mRNA was not present in the region where cell death occurs. We conclude that SGP-2 mRNA expression cannot be correlated with programmed cell death in neural or nonneural tissues. The results of this study as well as recently reported SGP-2 homologies indicate a possible role for this protein in secretion and lipid transport.  相似文献   

5.
植物细胞程序死亡的机理及其与发育的关系   总被引:41,自引:3,他引:41  
崔克明 《植物学通报》2000,17(2):97-107
细胞程序死亡(PCD)是在植物体发育过程中普遍存在的,在发育的特定阶段发生的自然的细胞死亡过程,这一死亡过程是由某些特定基因编码的“死亡程序”控制的。PCD的细胞分化的最后阶段。细胞分化的临界期就牌死亡程序执行中的某个阶段。PCD包含启动期和清除期三个阶段,其间CASPASE家族起着重要作用。PCD在细胞和组织的平衡、特化,以及组织分化、器官建成和对病原体的反应等植物发育过程中起着重要作用。PCD  相似文献   

6.
Factors controlling ovarian apoptosis   总被引:4,自引:0,他引:4  
Apoptosis is a form of programmed cell death that is essential for the development of the embryo and adult tissue plasticity. In adults, it is observed mainly in those tissues undergoing active differentiation such as the hematopoietic system, testis, ovary, and intestinal epithelium. Apoptosis can be triggered by many factors, such as hormones, cytokines, and drugs, depending on the type of the cell. While the intracellular signaling mechanisms may vary in different cells, they all display similar morphological and biochemical features at the later stages of the apoptotic process. This review focuses on the factors controlling ovarian apoptosis, emphasizing observations made on GnRH-induced apoptotic process in goldfish follicles.  相似文献   

7.
崔克明 《植物学报》2000,17(2):97-107
细胞程序死亡(PCD)是在植物体发育过程中普遍存在的,在发育的特定阶段发生的自然的细胞死亡过程,这一死亡过程是由某些特定基因编码的“死亡程序”控制的。PCD是细胞分化的最后阶段。细胞分化的临界期就处于死亡程序执行中的某个阶段。PCD包含启动期、效应期和清除期三个阶段,其间caspase家族起着重要作用。PCD在细胞和组织的平衡、特化,以及组织分化、器官建成和对病原体的反应等植物发育过程中起着重要作用。PCD中的形态学变化和生物化学变化都有着严格的时序性。植物的PCD和动物的PCD有许多共性,包括细胞形态和DNA降解等变化。也有一些不同,植物PCD的产物既可被其它细胞吸收利用;也可用于构建自身的次生细胞壁。  相似文献   

8.
9.
10.
11.
Spermidine (Spd) treatment inhibited root cell elongation, promoted deposition of phenolics in cell walls of rhizodermis, xylem elements, and vascular parenchyma, and resulted in a higher number of cells resting in G(1) and G(2) phases in the maize (Zea mays) primary root apex. Furthermore, Spd treatment induced nuclear condensation and DNA fragmentation as well as precocious differentiation and cell death in both early metaxylem and late metaxylem precursors. Treatment with either N-prenylagmatine, a selective inhibitor of polyamine oxidase (PAO) enzyme activity, or N,N(1)-dimethylthiourea, a hydrogen peroxide (H(2)O(2)) scavenger, reverted Spd-induced autofluorescence intensification, DNA fragmentation, inhibition of root cell elongation, as well as reduction of percentage of nuclei in S phase. Transmission electron microscopy showed that N-prenylagmatine inhibited the differentiation of the secondary wall of early and late metaxylem elements, and xylem parenchymal cells. Moreover, although root growth and xylem differentiation in antisense PAO tobacco (Nicotiana tabacum) plants were unaltered, overexpression of maize PAO (S-ZmPAO) as well as down-regulation of the gene encoding S-adenosyl-l-methionine decarboxylase via RNAi in tobacco plants promoted vascular cell differentiation and induced programmed cell death in root cap cells. Furthermore, following Spd treatment in maize and ZmPAO overexpression in tobacco, the in vivo H(2)O(2) production was enhanced in xylem tissues. Overall, our results suggest that, after Spd supply or PAO overexpression, H(2)O(2) derived from polyamine catabolism behaves as a signal for secondary wall deposition and for induction of developmental programmed cell death.  相似文献   

12.
The origin of programmed cell death (PCD) has been linked to the emergence of multicellular organisms. Trypanosoma cruzi, a member of one of the earliest diverging eukaryotes, is a protozoan unicellular parasite that undergoes three major differentiation changes and requires two different hosts. We report that the in vitro differentiation of the proliferating epimastigote stage into the G0/G1 arrested trypomastigote stage is associated with massive epimastigote death that shows the cytoplasmic and nuclear morphological features and DNA fragmentation pattern of apoptosis, the most frequent phenotype of PCD in multicellular organisms. Apoptosis could be accelerated or prevented by modifying culture conditions or cell density, indicating that extracellular signals influenced the epimastigote decision between life and death. Epimastigotes responded to complement-mediated immunological agression by undergoing apoptosis, while undergoing necrosis in response to nonphysiological saponin-mediated damage. PCD may participate into the optimal adaptation of T. cruzi to its different hosts, and the avoidance of a local competition between a G0/G1 arrested stage and its proliferating progenitor. The existence of a regulated cell death programme inducing an apoptotic phenotype in a unicellular eukaryote provides a paradigm for a widespread role for PCD in the control of cell survival, which extends beyond the evolutionary constraints that may be specific to multicellular organisms and raises the question of the origin and nature of the genes involved. Another implication is that PCD induction could represent a target for therapeutic strategies against unicellular pathogens.  相似文献   

13.
The notion of "morphogens" is an important one in developmental biology. By definition, a morphogen is a molecule that emanates from a specific set of cells that is present in a concentration gradient and that specifies the fate of each cell along this gradient. The strongest candidate morphogens are members of the transforming growth factor-beta (TGF-beta), Hedgehog (Hh), and Wnt families. While these morphogens have been extensively described as differentiation inducers, some reports also suggest their possible involvement in cell death and cell survival. It is frequently speculated that the cell death induction that is found associated with experimental removal of morphogens is the manifestation of abnormal differentiation signals. However, several recent reports have raised controversy about this death by default, suggesting that cell death regulation is an active process for shaping tissues and organs. In this review, we will present morphogens, with a specific emphasis on Sonic Hedgehog, a mammalian member of the Hh family, not as a positive regulators of cell differentiation but as key regulators of cell survival.  相似文献   

14.
Numerous reports have predicted/hypothesized a role for probenazole-induced protein (PBZ1) as a molecular marker in rice self-defense mechanism. However, the precise function of PBZ1 remains unknown. In the present study, we examined PBZ1 as a putative cell death marker in rice. For this, we focused our attention on a rice lesion mimic mutant (LMM), spotted leaf 1 ( spl1), which has been used to study the programmed cell death (PCD) phenomenon during lesion development in leaf. Using two-dimensional gel electrophoresis (2-DGE), 18 colloidal Coomassie brilliant blue stained protein spots were found to be differentially expressed in the leaves of spl1 mutant. After analysis of these spots by MALDI-TOF-MS, we identified the PBZ1 protein to be highly inducible in spl1. On the basis of these results, we proceeded to verify whether PBZ1 is highly expressed in the tissues undergoing PCD in rice. To do so, we performed immunoblot analysis and immunolocalization and used transgenic lines carrying the PBZ1 promoter fused with GFP. Results demonstrated that the expression levels and localizations of PBZ1 dramatically coincided with tissues undergoing PCD, namely, during leaf senescence, root aerenchyma formation, coleoptiles senescence, root cap, and seed aleurone layer. Furthermore, localization of the PBZ1 protein was also tightly correlated with TUNEL signal in the seed aleurone layer. As DNA fragmentation is a hallmark of PCD, this result clearly indicates a role for PBZ1 in rice tissues undergoing PCD. In conclusion, our results provide strong support for the hypothesis that PBZ1 is a molecular marker in rice defense response, and can serve as a novel potential marker for cell death/PCD in rice.  相似文献   

15.
杜仲次生木质部分化过程中的细胞编程死亡   总被引:3,自引:0,他引:3  
通过电子显微镜观察、DNA断裂检测及类似半胱氨酸蛋白酶(caspase-like proteases,CLPs)降解检测等技术,对杜仲(Eucommia ulmoides Oliv.)次生木质部分化过程的细胞编程死亡进行了研究。分化中的次生木质部细胞总DNA凝胶电泳检测到DNA ladder,并通过TUNEL检测进一步确定了DNA被降解。Western blot结果表明:caspase-8和caspase-3状蛋白酶(caspase-8-和caspase-3-like proteases,CLPs)及多聚ADP-核糖聚合酶(poly(ADP-ribose) polymerase,PARP)在次生木质部分化过程中被降解。这些研究结果表明,杜仲次生木质部的细胞分化是一个典型的编程性死亡(Programmed cell death,PCD)过程,CLPs可能参与了此过程。  相似文献   

16.
Apoptosis and necrosis, two major forms of cell death, can be distinguished morphologically and biochemically. Internucleosomal DNA fragmentation (INDF) is a biochemical hallmark of apoptosis, and caspase-activated DNase (CAD), also known as DNA fragmentation factor 40 kDa (DFF40), is one of the major effector endonucleases. DNase γ, a Mg2+/Ca2+-dependent endonuclease, is also known to generate INDF but its role among other apoptosis-associated endonucleases in cell death is unclear. Here we show that (i) INDF occurs even during necrosis in cell lines, primary cells, and in tissues of mice in vivo, and (ii) DNase γ, but not CAD, is the effector endonuclease for INDF in cells undergoing necrosis. These results document a previously unappreciated role for INDF in necrosis and define its molecular basis.  相似文献   

17.
18.
19.
Teratogen-induced cell death is a common event in the pathogenesis associated with tissues destined to be malformed. Although the importance of this cell death is recognized, little information is available concerning the biochemistry of teratogen-induced cell death. We show that three teratogens, hyperthermia, cyclophosphamide and sodium arsenite induce an increase in cell death in day 9.0 mouse embryos with concurrent induction of DNA fragmentation, activation of caspase-3 and the cleavage of poly (ADP-ribose) polymerase (PARP). Teratogen-induced cell death is also selective, i. e., some cells within a tissue die while others survive. In addition, cells within some tissues die when exposed to teratogens while cells in other tissues are relatively resistant to teratogen-induced cell death. An example of the latter selectivity is seen in the cells of the developing heart, which are resistant to the cytotoxic potential of many teratogens. We show that the absence of cell death in the heart is accompanied by the complete lack of DNA fragmentation, activtion of caspase-3 and the cleavage of PARP.  相似文献   

20.
Programmed cell death is an important process during development that serves to remove superfluous cells and tissues, such as larval organs during metamorphosis, supernumerary cells during nervous system development, muscle patterning and cardiac morphogenesis. Different kinds of cell death have been observed and were originally classified based on distinct morphological features: (1) type I programmed cell death (PCD) or apoptosis is recognized by cell rounding, DNA fragmentation, externalization of phosphatidyl serine, caspase activation and the absence of inflammatory reaction, (2) type II PCD or autophagy is characterized by the presence of large vacuoles and the fact that cells can recover until very late in the process and (3) necrosis is associated with an uncontrolled release of the intracellular content after cell swelling and rupture of the membrane, which commonly induces an inflammatory response. In this review, we will focus exclusively on developmental cell death by apoptosis and its role in tissue remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号