首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
In telotrophic ovary of Creophilus maxillosus, the differentiation of the oocyte and nurse cells takes place within the linear clusters of sister oogonial cells. The amplification of rDNA occurs in the nuclei of pro-oocytes which are the most posterior cells of the clusters. During the consecutive oogonial divisions extrachromosomal rDNA segregates preferentially to the pro-oocyte of the next generation. We analyzed the ultrastructure of pro-oocytes and pro-nurse cells in the early and late phase of rDNA amplification in pupal ovary of Creophilus maxillosus. We found that pro-oocytes of the same generation contain variable amounts of extrachromosomal rDNA and that the presence of extra DNA is not limited to the nuclei of pro-oocytes; extra DNA is also present in the nuclei of some pro-nurse cells. Pro-oocytes can experience partial loss of extrachromosomal DNA during early oogonial divisions which is caused by the imprecise segregation of this material to the posterior pole. We believe that this imperfect segregation is a source of extrachromosomal DNA present in the nuclei of pro-nurse cells. Ultrastructural analysis showed that multiple nucleoli do not disperse in oogonial mitoses but remain associated with extrachromosomal chromatin and segregate with it to the posterior pole of the pro-oocyte. We also analyzed the ultrastructure of the germ plasm--a cytoplasmic structure present at the posterior pole of pro-oocytes. We have found that this structure contains spectrin and at the ultrastructural level is strikingly similar to the spectrosome which is present in germline cells of Drosophila. We also found spectrin in the intercellular bridges which connect oogonial cells and are known to contain fusomes.  相似文献   

2.
Summary During the premetamorphic development of coleopteran telotrophic ovaries the culsters of sister oogonial cells, in which the differentiation of nurse cells and oocytes occurs, are arranged in linear chains. This results from a series of mitoses with the consistent orientation of the spindle parallel to the long axis of the ovariole. As a result of incomplete cytokinesis, the oogonial cells in each sibling cluster are linked to each other by intercellular bridges occupied by fusomes. As a rule, at each cluster division the basal cell (i.e. the oocyte progenitor) starts to divide first. From this cell a wave of mitoses spreads toward the anterior end of the cluster, resulting in a mitotic gradient. It is suggested that the failure of the fusomes in adjacent cells to fuse into one continuous fusome (i.e. polyfusome) allows the spindles to orientate with their long axes parallel to the long axis of the sibling cluster. This would explain why the oogonial divisions in coleopteran telotrophic ovaries generate linear chains of cells rather than the cyst-like arrangement which is typical for polytrophic sibling clusters. Dividing sibling clusters within ovarioles are arranged in bundles. The presence of intercellular bridges between sibling clusters seems to be the underlying cause of this nonrandom distribution of the mitotically active clusters. The transverse bridges have been found to occur between the basal cells as well as between the cells located more anteriorly in adjacent sibling clusters. The transverse bridges are filled with typical fusomes, which in more anterior parts of sibling clusters may fuse with the fusomes of adjacent sister oogonial cells into polyfusomes. The transverse bridges between the basal cells are incorporated in the oocytes. The pattern of sibling cluster formation described in this paper apparently occurs widespread in polyphagous Coleoptera, since it has been found in three relatively distantly related families.  相似文献   

3.
The participation of extrachromosomal DNA (extra DNA) in RNA synthesis in the nuclei of terminal oogonial cells and oocytes in the pupal ovary of Creophilus maxillosus (Staphylinidae, Coleoptera) was examined by autoradiography. It was found that extra DNA in the nuclei of terminal oogonial cells, although predominantly in a condensed and heterochromatic state, produces numerous nucleoli and incorporates 3H-uridine during the interphases between successive differential divisions. Moreover, it was shown that extra DNA is active in RNA synthesis at the same stage of pupal development in which it is synthesized and accumulated, i.e. in the nuclei of terminal oogonial cells. As soon as the oocyte forms RNA synthesis ceases in the extrachromosomal DNA body cells showed that nucleolar material does not disappear during division but remains, at least partly, connected with the extra DNA body.  相似文献   

4.
In the typical meroistic insect ovary, the oocyte nucleus synthesizes little if any RNA. Nurse cells or trophocytes actively synthesize ribosomes which are transported to and accumulated by the oocyte. In the telotrophic ovary a morphological separation exists, the nurse cells being localized at the apical end of each ovariole and communicating with the ooocytes via nutritive cords. In order to determine whether the genes coding for ribosomal RNA (rRNA) are amplified in the telotrophic ovary of the milkweed bug Oncopeltus fasciatus, the percentages of the genome coding for ribosomal RNA in somatic cells, spermatogenic cells, ovarian follicles, and nurse cells were compared. The oocytes and most of the nurse cells of O. fasciatus are uninucleolate. DNA hybridizing with ribosomal RNA is localized in a satellite DNA, the density of which is 1.712 g/cm(-3). The density of main-band DNA is 1.694 g/cm(-3). The ribosomal DNA satellite accounts for approximately 0.2% of the DNA in somatic and gametogenic tissues of both males and females. RNA-DNA hybridization analysis demonstrates that approximately 0.03% of the DNA in somatic tissues, testis, ovarian follicles, and isolated nurse cells hybridizes with ribosomal RNA. The fact that the percentage of DNA hybridizing with rRNA is the same in somatic and in male and female gametogenic tissues indicates that amplification of ribosomal DNA does not occur in nurse cells and that if it occurs in oocytes, it represents less than a 50-fold increase in ribosomal DNA. An increase in total genome DNA accounted by polyploidization appears to provide for increasing the amount of ribosomal DNA in the nurse cells.  相似文献   

5.
Tribolium castaneum has telotrophic meroistic ovarioles of the Polyphaga type. During larval stages, germ cells multiply in a first mitotic cycle forming many small, irregularly branched germ-cell clusters which colonize between the anterior and posterior somatic tissues in each ovariole. Because germ-cell multiplication is accompanied by cluster splitting, we assume a very low number of germ cells per ovariole at the beginning of ovariole development. In the late larval and early pupal stages, we found programmed cell death of germ-cell clusters that are located in anterior and middle regions of the ovarioles. Only those clusters survive that rest on posterior somatic tissue. The germ cells that are in direct contact with posterior somatic cells transform into morphologically distinct pro-oocytes. Intercellular bridges interconnecting pro-oocytes are located posteriorly and are filled with fusomes that regularly fuse to form polyfusomes. Intercellular bridges connecting pro-oocytes to pro-nurse cells are always positioned anteriorly and contain small fusomal plugs. During pupal stages, a second wave of metasynchronous mitoses is initiated by the pro-oocytes, leading to linear subclusters with few bifurcations. We assume that the pro-oocytes together with posterior somatic cells build the center of determination and differentiation of germ cells throughout the larval, pupal, and adult stages. The early developmental pattern of germ-cell multiplication is highly similar to the events known from the telotrophic ovary of the Sialis type. We conclude that among the common ancestors of Neuropterida and Coleoptera, a telotrophic meroistic ovary of the Sialis type evolved, which still exists in Sialidae, Raphidioptera, and a myxophagan Coleoptera family, the Hydroscaphidae. Consequently, the telotrophic ovary of the Polyphaga type evolved from the Sialis type. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

6.
The morphoanatomy of the ovary in Veturius sinuatus (Eschscholtz) was studied by light and transmission electron microscopy. Data from the female gonad of this species provide more extended and precise knowledge regarding the organization of the ovary in Passalidae. Ovaries are composed of a pair of long telotrophic meroistic ovarioles, with some differences compared to the bauplan of this ovary type in Polyphaga (Coleoptera). The terminal filament has an enlarged proximal region with irregularly shaped cells in apparent degeneration process embedded in a membranous system. Globular structures with amorphous content associated with interstitial cells are distributed throughout the tropharium. Trophocytes develop with the reduction of the plasma membrane between sibling nurse cells of each cluster. Previtellogenic oocytes have an irregular shape and various cytoplasmic prolongations. As oogenesis advances, a single prolongation in the anterior part of the oocyte extends to the tropharium. The ovary structure is comparable to that found in other American species of passalids, and further, the conformation of the terminal filament could be a plesiomorphic character of the family.  相似文献   

7.
The ovary in Callosobruchus analis consists of telotrophic ovarioles with the so called nurse cells confined to one chamber at the anterior end of the ovariole. There are three types of lipids in the ovary: (1) L1 bodies that are present in the early oocytes, in the posterior prefollicular tissue and in the follicular epithelium and contain unsaturated phospholipids; (2) L2 bodies that have a complete or incomplete sheath of phospholipids and a triglyceride core; (3) L3 bodies that are formed of highly saturated triglycerides. Lipids are absent from the trophic tissue. In a mature oocyte the L1 and L2 bodies are cortical in distribution while the L3 bodies are centrally located. The mitochondria contain lipoproteins with RNA. The yolk spheres are acid mucopolysaccharides and protein in nature. The precursors of the yolk spheres appear first in the cortical coplasm and are absent from the follicular epithelium or the trophic tissue. The nucleolus of the oocyte shows evidence of extrusions that are believed to pass into the ooplasm. There are no nutritive cords connecting the trophic tissue to the oocytes; nor is there any evidence of any histochemically demonstrable nutritive material being contributed to the oocyte by the trophic tissue. The circumstantial evidence points towards a contribution of the raw materials to the oocyte by the haemolymph either through or in between the follicular epithelium in some soluble form or as submicroscopic particles.  相似文献   

8.
Germ line cell cluster formation in ovarioles of three different stages, each from a different mayfly species, was studied using ultra-thin serial sectioning. In the analysed ovariole of Cloeön sp., only one linear, zigzag germ line cell cluster was found, consisting of sibling cells connected by intercellular bridges which represent remnants of preceding synchronized mitotic cycles followed by incomplete cytokinesis. A polyfusome stretched through all sibling cells. At the tip of the ovariole, cytokinesis occurred without preceding division of nuclei; thus, intercellular bridges were lined up but the remaining cytoplasm between the bridges had no nuclei. The analysed Siphlonurus armatus vitellarium contained five oocytes at different stages of development. Each oocyte in the vitellarium was connected via a nutritive cord to the linear cluster of its sibling cells in the terminal trophic chamber. Each cluster had the same architecture as was found in Cloëon. The 3-dimensional arrangement and distribution of closed intercellular bridges strongly suggest that all five clusters are derived from a single primary clone. The position of oocytes within each cluster is random. However, each oocyte is embraced by follicular or prefollicular cells whilst all other sibling cells are enclosed by somatic inner sheath cells, clearly distinguishable from prefollicular cells. In the analysed ovariole of Ephemerella ignita, two small linear clusters were found in the tropharium beside two single cells, two isolated cytoplasmic bags with intercellular bridges but no nuclei, and some degenerating aggregates. One cluster was still connected to a growing oocyte via a nutritive cord. In all species the nurse cells remained small and no indications of polyploidization were found. We suggest that this ancient and previously unknown telotrophic meroistic ovary has evolved directly from panoistic ancestors.  相似文献   

9.
The ovary of Polystoechotes punctatus consists of several ovarioles of meroistic-polytrophic type. Histological, histochemical and ultrastructural studies revealed that the extrachromosomal amplification of rDNA takes place in the oocyte nucleus. Prior to previtellogenic growth the oocyte nucleus contains the chromosomes of meiotic prophase and a condensed extra DNA body. Initial split of extrachromosomal DNA material into several fragments coincides with the appearance of a spherical, fine granular body (referred to as primary nucleolus). Its gradual fragmentation accompanied by further dispersion of amplified DNA results in the formation of a growing number of multiple nucleoli. Until mid previtellogenesis each multiple nucleolus contains detectable amount of rDNA. In the advanced stages of previtellogenesis rDNA can hardly be visualized within the multiple nucleoli, while chromosomes form a few dense aggregates randomly disposed in the karyoplasm. At the onset of vitellogenesis the chromosomes assemble to form a karyosome. In its close vicinity DNA-positive material reaggregates. Multiple nucleoli are either found on the periphery of this aggregation or merge within it. At the final stages of vitellogenesis the number of multiple nucleoli significantly decreases.  相似文献   

10.
The ovary structure of the myxophagan beetle, Hycdoscapha natans, was investigated by means of light and electron microscopy for the first time. Each of the two ovaries consists of three ovarioles, the functional units of insect oogenesis. The ovary type is telotrophic meroistic but differs strongly from the telotrophic ovary found among all polyphagous beetles investigated so far. All characters found here are typical of telotrophic ovaries of Sialidae and Raphidioptera. Both taxa belong to the Neuropterida. As in all telotrophic ovaries, all nurse cells are combined in an anterior chamber, the tropharium. The tropharium houses two subsets of germ cells: numerous nurse cell nuclei are combined in a central syncytium without any cell membranes in between, surrounded by a monolayer of single-germ cells, the tapetum cells. Each tapetum cell is connected to the central syncytium via an intercellular bridge. Tapetum cells of the posterior zone, which sufficiently contact prefollicular cells, are able to grow into the vitellarium and develop as oocytes. During previtellogenic and early vitellogenic growth, oocytes remain connected with the central syncytium of the tropharium via their anterior elongations, the nutritive cords. The morphological data are discussed in the light of those derived from ovaries of other Coleoptera and from the proposed sister group, the Neuropterida. The data strongly support a sister group relationship between Coleoptera and Neuropterida. Furthermore, several switches between polytrophic and telotrophic ovaries must have occurred during the radiation of ancient insect taxa.  相似文献   

11.
Summary In telotrophic insect ovaries, the oocytes develop in association with two kinds of supporting cells. Each ovary contains five to seven ovarioles. An ovariole consists of a single strand of several oocytes. At the apex of each ovariole is a syncytium of nurse cells (the tropharium), which connects by strands of cytoplasm (the trophic cords) to four or more previtellogenic oocytes. In addition, each oocyte is surrounded by an epithelium of follicle cells, with which it may form gap junctions. To study the temporal and spatial patterns of these associations, Lucifer yellow was microinjected into ovaries of the red cotton bug, Dysdercus intermedius. Freeze-fracture replicas were examined to analyze the distribution of gap junctions between the oocyte and the follicle cells. Dye-coupling between oocytes and follicle cells was detectable early in previtellogenesis and was maintained through late vitellogenesis. It was restricted to the lateral follicle cells. The anterior and posterior follicle cells were not dye-coupled. Freeze-fracture analysis showed microvilli formed by the oocyte during mid-previtellogenesis, and the gap junctions became located at the tips of these. As the microvilli continued to elongate until late vitellogenesis, gap junction particles between them and follicle cell membranes became arranged in long arrays. The morphological findings raise questions about pathways for the intrafollicular phase of the ion currents known to surround the previtellogenic and vitellogenic growth zones of the ovariole.Supported by the Deutsche Forschungsgemeinschaft (Schwerpunkt Differenzierung)  相似文献   

12.
Summary Cell dedifferentiation was induced inVicia faba root tissues by removing the whole root meristem (decapitation) and the behaviour of the nuclear DNA in the dedifferentiating cells was studied by means of cytophotometric and autoradiographic analyses. Cytophotometric determination after Feulgen-staining showed that: 1. the vast majority of nuclei in differentiated cells were in the DNA postsynthetic phase, but their Feulgen absorption was lower than that of DNA postsynthetic nuclei (G2, 4 C) in the meristem; 2. such a Feulgen absorption was detected in certain nuclei after root decapitation; 3. all the mitoses in the dedifferentiating tissues were diploid, fully matching the Feulgen absorption of mitoses in the meristem.After3H-thymidine (3H-T) feeding of the decapitated roots and autoradiography, the following results were obtained: 1. two populations of labeled nuclei, characterized by two different levels of scattered labeling occurred in dedifferentiating tissues, slightly labeled nuclei being much more numerous than heavily labeled nuclei; 2. the percentage of labeled nuclei was much greater than that of DNA presynthetic nuclei in the root tissues; 3. almost all the mitoses were labeled after a 16-hour3H-T feeding; 4. the percentage of slightly labeled nuclei paralleled that of dedifferentiating cells; 5. the duration of the DNA synthesis phase and that of the gap between completion of DNA synthesis and mitosis differed in heavily and slightly labeled nuclei; 6. all nuclei which entered DNA synthesis also entered mitosis.These results are interpreted to mean that: 1. after decapitation, two different DNA syntheses occur in the dedifferentiating root tissues ofV. faba: DNA reduplication in cells which dedifferentiate starting from a DNA presynthetic nuclear condition (heavily labeled nuclei) and extra DNA synthesis in cells which dedifferentiate starting from a DNA postsynthetic nuclear condition (slightly labeled nuclei); 2. extra DNA synthesis is required in these dedifferentiating cells for entry into mitosis.  相似文献   

13.
14.
Oogenesis and the relationships between oocytes and other ovarian tissues have been studied in Sypharochiton septentriones. The ovarian tissues were examined by electron microscopy and by histochemical methods. The sac-like ovary is dorsal, below the aorta, and opens to the exterior by two posterior oviducts. Ventrally, the ovarian epithelium is folded inwards to form a series of plates of tissue, which support the developing ova. Each ovum is attached to a tissue plate by a stalk, the plasma membrane of which is bathed by the blood in the tissue plate sinus. Dorsally, ciliated vessels from the aorta enter the ovary and open into blood sinuses in the top of the plates. After each germinal epithelial cell rounds up to become a primary oogonium, it undergoes four mitotic divisions to give rise to a cluster of 16 secondary oogonia. Of these, the outer ones become follicle cells and the inner ones become oocytes. As in other molluses, the increases in nuclear and nucleolar volume are relatively greatest towards the end of previtellogenesis, when chromosomal and nucleolar activity are most intense. This phase of activity is accompanied by a great increase in cytoplasmic basophilia. Subsequently this basophilia is decreased during vitellogenesis, when chromosomal and nucleolar activity diminish. Fluid filled interstices appear in the cytoplasm during early vitellogenesis. Protein yolk deposition is associated with these interstices, but the lipid yolk appears to arise de novo. The follicle cells do not appear to be directly involved in oocyte nutrition. At times during oogenesis, certain manifestations of polarity can be found in the oocyte. This polarity is based on an apical-basal axis and can be related to the nutritive source of the oocyte, namely the blood which bathes the plasma membrane of the oocyte in the stalk. Numerous granulated cells are present in the ovarian tissue plates and ventral epithelium as storage cells containing lysosomes, and they are capable of phagocytosis and micropinocytosis of extracellular material. A scheme is outlined whereby reserves in these cells may be incorporated into the oocyte cytoplasm. Lysosomal activity is responsible for autolysis of the cells as well as resorption of unspawned ova.  相似文献   

15.
At the transition from meiosis to cleavage mitoses, Drosophila requires the cell cycle regulators encoded by the genes, giant nuclei (gnu), plutonium (plu) and pan gu (png). Embryos lacking Gnu protein undergo DNA replication and centrosome proliferation without chromosome condensation or mitotic segregation. We have identified the gnu gene encoding a novel phosphoprotein dephosphorylated by Protein phosphatase 1 at egg activation. Gnu is normally expressed in the nurse cells and oocyte of the ovary and is degraded during the embryonic cleavage mitoses. Ovarian death and sterility result from gnu gain of function. gnu function requires the activity of pan gu and plu.  相似文献   

16.
Centrosomes split in the presence of impaired DNA integrity during mitosis   总被引:1,自引:0,他引:1  
A well-established function of centrosomes is their role in accomplishing a successful mitosis that gives rise to a pair of identical daughter cells. We recently showed that DNA replication defects and DNA damage in Drosophila embryos trigger centrosomal changes, but it remained unclear whether comparable centrosomal responses can be provoked in somatic mammalian cells. To investigate the centrosomal organization in the presence of impaired DNA integrity, live and ultrastructural analysis was performed on gamma-tubulin-GFP and EGFP-alpha-tubulin-expressing Chinese hamster ovary cells. We have shown that during mitosis in the presence of incompletely replicated or damaged DNA, centrosomes split into fractions containing only one centriole. This results in the formation of multipolar spindles with extra centrosome-like structures. Despite the extra centrosomes and the multipolarity of the spindles, cells do exit from mitosis, resulting in severe division errors. Our data provide evidence of a novel mechanism showing how numerous centrosomes and spindle defects can arise and how this can lead to the formation of aneuploid cells.  相似文献   

17.
ABSTRACT: INTRODUCTION: Establishment of distinct follicle cell fates at the early stages of Drosophila oogenesis is crucial for achieving proper morphology of individual egg chambers. In Drosophila oogenesis, Notch-signaling controls proliferation and differentiation of follicular cells, which eventually results in the polarization of the anterior-posterior axis of the oocyte. Here we analyzed the functions of Tribolium Notch-signaling factors during telotrophic oogenesis, which differs fundamentally from the polytrophic ovary of Drosophila. RESULTS: We found Notch-signaling to be required for maintaining the mitotic cycle of somatic follicle cells. Upon Delta RNAi, follicle cells enter endocycle prematurely, which affects egg-chamber formation and patterning. Interestingly, our results indicate that Delta RNAi phenotypes are not solely due to the premature termination of cell proliferation. Therefore, we monitored the terminal /stalk cell precursor lineage by molecular markers. We observed that upon Delta RNAi terminal and stalk cell populations were absent, suggesting that Notch-signaling is also required for the specification of follicle cell populations, including terminal and stalk precursor cells. CONCLUSIONS: We demonstrate that with respect to mitotic cycle/endocycle switch Notch-signaling in Tribolium and Drosophila has opposing effects. While in Drosophila a Delta-signal brings about the follicle cells to leave mitosis, Notch-signaling in Tribolium is necessary to retain telotrophic egg-chambers in an "immature" state. In most instances, Notch-signaling is involved in maintaining undifferentiated (or preventing specialized) cell fates. Hence, the role of Notch in Tribolium may reflect the ancestral function of Notch-signaling in insect oogenesis. The functions of Notch-signaling in patterning the follicle cell epithelium suggest that Tribolium oogenesis may - analogous to Drosophila - involve the stepwise determination of different follicle cell populations. Moreover, our results imply that Notch-signaling may contribute at least to some aspects of oocyte polarization and AP axis also in telotrophic oogenesis.  相似文献   

18.
Ovaries of Palaeocoocus fuscipennis are composed of about 100 telotrophic ovarioles that are devoid of terminal filaments. In the ovariole a tropharium ( = trophic chamber) and vitellarium can be distinguished. The tropharium contains 7 trophocytes. A single oocyte develops in the vitellarium. The oocyte is surrounded by follicular cells that do not undergo diversification into subpopulations. The obtained results are discussed in a phylogenetic context.  相似文献   

19.
G Obe  B Beek  G Dudin 《Humangenetik》1975,28(4):295-302
In human leukocyte cultures st up with TC medium 199,DNA synthesis and mitotic indices were analysed by means of 3H-thymidine autoradiography and cell counting. DNA synthesis starts at around 28 hrs. The frequencies of labelled cells rise slowly and reach a maximum of around 24%. The first mitoses appear at around 38 hrs but up to 49 hrs only very few mitoses can be seen. After that time the mitotic indices rise and reach values of up to 11% cultivation in the presence of BudR for 72 hrs and staining with Hoechst 33258 stain revealed that first, second and third mitoses occur together in the cultures at this time. Irradiation of whole blood and cultivation for 72 hrs leads to mitoses containing dicentric and ring chromosomes with and without fragments, to interphases with micronuclei, to premature chromosome condensations (PCC) and to polyploid mitoses indicating that at this time first and further mitoses are present.  相似文献   

20.
Early stages of differentiation of the oocytes and nurse cells are comparatively studied in the polytrophic ovarioles in larvae, pupae and imago of the butterfly Laspeyresia pomonella and in the telotrophic ovarioles in larvae and imago of the bug Eurigaster integriceps. In L. pomonella, the oocytes and trophocytes, being the descendants of one oogonial cell, pass synchroniously through early stages of meiotic prophase up to the pachyten. After the pachyten chromosomes of the future trophocytes transform into diakinetic bivalents, whereas in the oocyte nucleus chromosomes retain their pachyten stage appearance. In the fifth instar larva of E. integriceps, two zones may be seen in the germarium of the telotrophic ovariole: the apical trophocyte zone and the distal oocyte zone. The oocytes develop up to the zygotene("bouquet") stage. As to the future trophocytes, they miss zygotene and reach directly diakinesis. Thus,the earlier divergence in the development ways of oocytes and trophocytes is observed in the telotrophic ovarioles, since the trophocyeres pass themeiotic stages more quickly then oocytes. The supposition is advanced that the quicker development of the nurse cells in the bug's ovarioles takes place due to missing the synaptonemal complex formation. The patterns of similarity and distinction between the telotrophic ovarioles in Coleoptera, on the one hand, and the polytrophic ovarioles of the butterfly L. pomonella and telotrophic ovarioles of the bug E. integricept, on the other hand, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号