首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isocitrate dehydrogenase kinase/phosphatase (IDHK/P) is a homodimeric enzyme which controls the oxidative metabolism of Escherichia coli, and exibits a high intrinsic ATPase activity. When subjected to electrophoresis under nonreducing conditions, the purified enzyme migrates partially as a dimer. The proportion of the dimer over the monomer is greatly increased by treatment with cupric 1,10 phenanthrolinate or 5,5'-dithio-bis(2-nitrobenzoic acid), and fully reversed by dithiothreitol, indicating that covalent dimerization is produced by a disulfide bond. To identify the residue(s) involved in this intermolecular disulfide-bond, each of the eight cysteines of the enzyme was individually mutated into a serine. It was found that, under nonreducing conditions, the electrophoretic patterns of all corresponding mutants are identical to that of the wild-type, except for the Cys67-->Ser which migrates exclusively as a monomer and for the Cys108-->Ser which migrates preferentially as a dimer. Furthermore, in contrast to the wild-type enzyme and all the other mutants, the Cys67-->Ser mutant still migrates as a monomer after treatment with cupric 1,10 phenanthrolinate. This result indicates that the intermolecular disulfide bond involves only Cys67 in each IDHK/P wild-type monomer. This was further supported by mass spectrum analysis of the tryptic peptides derived from either the cupric 1,10 phenanthrolinate-treated wild-type enzyme or the native Cys108-->Ser mutant, which show that they both contain a Cys67-Cys67 disulfide bond. Moreover, both the cupric 1,10 phenanthrolinate-treated wild-type enzyme and the native Cys108-->Ser mutant contain another disulfide bond between Cys356 and Cys480. Previous results have shown that this additional Cys356-Cys480 disulfide bond is intramolecular [Oudot, C., Jault, J.-M., Jaquinod, M., Negre, D., Prost, J.-F., Cozzone, A.J. & Cortay, J.-C. (1998) Eur. J. Biochem. 258, 579-585].  相似文献   

2.
Based on the characterization of a PCR mutation of water-soluble glucose dehydrogenase possessing pyrroloquinoline quinone (PQQ), PQQGDH-B, Ser231Cys, we have constructed a series of Ser231 variants. The replacement of Ser231 to Cys, Met, Leu, Asp, Asn, His, or Lys resulted in an increase in thermal stability. Among these variants, Ser231Lys showed the highest level of thermal stability and also showed high catalytic activity. Considering that Ser231Lys showed more than an 8-fold increase in its half-life during the thermal inactivation at 55 degrees C compared with the wild-type enzyme, and also retained catalytic activity similar to a wild-type enzyme, the application of this mutant enzyme as a glucose sensor constituent may develop into a stable glucose sensor construction.  相似文献   

3.
From the comparison of the three-dimensional structure of mesophilic pyroglutamyl peptidase from Bacillus amyloliquefaciens and the thermophilic enzyme from Thermococcus litoralis, the intersubunit disulfide bond was estimated to be one of the factors for thermal stability. Since Ser185 was corresponded to Cys190 of the thermophilic enzyme by sequence alignment, the Ser185 residue was replaced with cysteine by site-directed mutagenesis. The S185C mutant enzyme appeared to form a disulfide bond, which was confirmed by SDS-PAGE with and without 2-mercaptoethanol. The mutant enzyme showed a catalytic efficiency equivalent to that of the wild-type enzyme for hydrolysis of a synthetic peptide substrate. However, the thermal stability of the S185C mutant was found to be 30 degrees C higher than that of wild-type. Thus the introduction of a disulfide bond enhanced thermal stability without changing the catalytic efficiency of the enzyme.  相似文献   

4.
The two Cu,Zn superoxide dismutases from the amphibian Xenopus laevis (denoted XSODA and XSODB) display different heat sensitivities, XSODA being more thermolabile than XSODB. In this study, we have investigated the contribution of a free cysteine residue located close to the subunit interface of XSODA to its lower thermal stability. We have found that mutation of residue Cys 150 to Ala in XSODA makes the thermal stability of this enzyme comparable to that of the wild-type XSODB isoenzyme, while the introduction of a cysteine residue in the same position of XSODB renders this enzyme variant much more heat-sensitive. Differential scanning calorimetry experiments showed that XSODA has a melting temperature about 8.5 degrees C lower than that of XSODB. On the contrary, the melting temperature of XSODACys150Ala is very close to that of XSODB, while the melting temperature of XSODBSer150Cys is even lower than that of wild-type XSODA. These data indicate that the free cysteine residue present in XSODA affects not only the reversibility of unfolding of the enzyme but also its conformational stability. We suggest that the large effect of the Cys 150 residue on XSODA stability might be due to incorrect disulfide bond formation or disulfide bond interchange during heat-induced unfolding rather than to alteration of the interaction between the enzyme subunits.  相似文献   

5.
Site-directed mutagenesis has been used to replace Tyr-88 at the dimer interface of the N-terminal domain of lambda repressor with cysteine. Computer model building had suggested that this substitution would allow formation of an intersubunit disulfide without disruption of the dimer structure [Pabo, C. O., & Suchanek, E. G. (1986) Biochemistry (preceding paper in this issue)]. We find that the Cys-88 protein forms a disulfide-bonded dimer that is very stable to reduction by dithiothreitol and has increased operator DNA binding activity. The covalent Cys88-Cys88' dimer is also considerably more stable than the wild-type protein to thermal denaturation or urea denaturation. As a control, Tyr-85 was replaced with cysteine. A Cys85-Cys85' disulfide cannot form without disrupting the wild-type structure, and we find that this disulfide bond reduces the DNA binding activity and stability of the N-terminal domain.  相似文献   

6.
Uniquely among class A beta-lactamases, the RTEM-1 and RTEM-2 enzymes contain a single disulfide bond between Cys 77 and Cys 123. To study the possible role of this naturally occurring disulfide in stabilizing RTEM-1 beta-lactamase and its mutants at residue 71, this bond was removed by introducing a Cys 77----Ser mutation. Both the wild-type enzyme and the single mutant Cys 77----Ser confer the same high levels of resistance to ampicillin in vivo to Escherichia coli; at 30 degrees C the specific activity of purified Cys 77----Ser mutant is also the same as that of the wild-type enzyme. Also, neither wild-type enzyme nor the Cys 77----Ser mutant is inactivated by brief exposure to p-hydroxymercuribenzoate. However, above 40 degrees C the mutant enzyme is less stable than wild-type enzyme. After introduction of the Cys 77----Ser mutation, none of the double mutants (containing the second mutations at residue 71) confer resistance to ampicillin in vivo at 37 degrees C; proteins with Ala, Val, Leu, Ile, Met, Pro, His, Cys, and Ser at residue 71 confer low levels of resistance to ampicillin in vivo at 30 degrees C. The use of electrophoretic blots stained with antibodies against beta-lactamase to analyze the relative quantities of mutant proteins in whole-cell extracts of E. coli suggests that all 19 of the doubly mutant enzymes are proteolyzed much more readily than their singly mutant analogues (at Thr 71) that contain a disulfide bond.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The role of the two disulfide bonds (Cys4-Cys60 and Cys18-Cys29) in the activity and stability of goose-type (G-type) lysozyme was investigated using ostrich egg-white lysozyme as a model. Each of the two disulfide bonds was deleted separately or simultaneously by substituting both Cys residues with either Ser or Ala. No remarkable differences in secondary structure or catalytic activity were observed between the wild-type and mutant proteins. However, thermal and guanidine hydrochloride unfolding experiments revealed that the stabilities of mutants lacking one or both of the disulfide bonds were significantly decreased relative to those of the wild-type. The destabilization energies of mutant proteins agreed well with those predicted from entropic effects in the denatured state. The effects of deleting each disulfide bond on protein stability were found to be approximately additive, indicating that the individual disulfide bonds contribute to the stability of G-type lysozyme in an independent manner. Under reducing conditions, the thermal stability of the wild-type was decreased to a level nearly equivalent to that of a Cys-free mutant (C4S/C18S/C29S/C60S) in which all Cys residues were replaced by Ser. Moreover, the optimum temperature of the catalytic activity for the Cys-free mutant was downshifted by about 20 degrees C as compared with that of the wild-type. These results indicate that the formation of the two disulfide bonds is not essential for the correct folding into the catalytically active conformation, but is crucial for the structural stability of G-type lysozyme.  相似文献   

8.
Sites for Cys substitutions to form a disulfide bond were chosen in subtilisin E from Bacillus subtilis, a cysteine-free bacterial serine protease, based on the structure of aqualysin I of Thermus aquaticus YT-1 (a thermophilic subtilisin-type protease containing two disulfide bonds). Cys residues were introduced at positions 61 (wild-type, Gly) and 98 (Ser) in subtilisin E by site-directed mutagenesis. The Cys-61/Cys-98 mutant subtilisin appeared to form a disulfide bond spontaneously in the expression system used and showed a catalytic efficiency equivalent to that of the wild-type enzyme for hydrolysis of a synthetic peptide substrate. The thermodynamic characteristics of these enzymes were examined in terms of enzyme autolysis (t1/2) and thermal stability (Tm). The half-life of the Cys-61/Cys-98 mutant was found to be 2-3 times longer than that of the wild-type enzyme. Similar results were obtained by differential scanning calorimetry. The disulfide mutant showed a Tm of 63.0 degrees C, which was 4.5 degrees C higher than that observed for the wild-type enzyme. Under reducing conditions, however, the characteristics of the mutant enzyme were found to revert to those of the wild-type enzyme. These results strongly suggest that the introduction of a disulfide bond by site-directed mutagenesis enhanced the thermostability of subtilisin E without changing the catalytic efficiency of the enzyme.  相似文献   

9.
10.
Mutant analogues of recombinant human immune interferon (IFN-gamma) with higher stability and biological activity were prepared. Depending on the analogue, protein structure modification might involve introduction of an intramonomer disulfide bond (through replacements of Glu7Cys and Ser69Cys), C-terminal shortening by 10 amino acid residues, as well as Gln133Leu substitution in truncated variant. Isolation, purification, and renaturation of the IFN-gamma analogues expressed in Escherichia coli as inclusion bodies were performed according to the scheme developed earlier for wild-type protein. The main idea of this scheme is to remove cellular impurities before recombinant protein renaturation. Folding kinetics of IFN-gamma was studied by reversed-phase HPLC. IFN-gamma and mutant proteins were characterized by their thermal stability and biological activity. Introduction of the intramolecular disulfide bond together with C-terminal shortening and replacement of C-terminal residue was shown to result in increasing the thermal stability by 19 degrees C and four times enhancement of biological activity compared with intact IFN-gamma molecule.  相似文献   

11.
CorA is a primary Mg2+ transporter for Bacteria and Archaea. The C-terminal domain of approximately 80 amino acids forms three transmembrane (TM) segments, which suggests that CorA is a homo-oligomer. A Cys residue was added to the cytoplasmic C terminus (C317) of Salmonella enterica serovar Typhimurium CorA with or without mutation of the single periplasmic Cys191 to Ser; each mutant retained function. Oxidation of the Cys191Ser Cys317 CorA gave a dimer. Oxidation of Cys317 CorA showed a dimer plus an additional band, apparently cross-linked via both Cys317 and C191. To determine oligomer order, intact cells or purified membranes were treated with formaldehyde or carbon disulfide. Higher-molecular-mass bands formed, consistent with the presence of a tetramer. Cross-linking of the Bacillus subtilis CorA expressed in Salmonella serovar Typhimurium similarly indicated a tetramer. CorA periplasmic soluble domains from both Salmonella serovar Typhimurium and the archaeon Methanococcus jannaschii were purified and shown to retain structure. Formaldehyde treatment showed formation of a tetramer. Finally, previous mutagenesis of the CorA membrane domain identified six intramembrane residues forming an apparent pore that interacts with Mg2+ during transport. Each was mutated to Cys. In mutants carrying a single intramembrane Cys residue, spontaneous disulfide bond formation that was enhanced by oxidation with Cu(II)-1,10-phenanthroline was observed between monomers, indicating that these Mg2+-interacting residues within the membrane are very close to their cognate residue on another monomer. Thus, CorA appears to be a homotetramer with a TM segment of one monomer physically close to the same TM segment of another monomer.  相似文献   

12.
Cys126 is a completely conserved residue in triosephosphate isomerase that is proximal to the active site but has been ascribed no specific role in catalysis. A previous study of the C126S and C126A mutants of yeast TIM reported substantial catalytic activity for the mutant enzymes, leading to the suggestion that this residue is implicated in folding and stability [Gonzalez-Mondragon E et al. (2004) Biochemistry 43, 3255-3263]. We re-examined the role of Cys126 with the Plasmodium falciparum enzyme as a model. Five mutants, C126S, C126A, C126V, C126M, and C126T, were characterized. Crystal structures of the 3-phosphoglycolate-bound C126S mutant and the unliganded forms of the C126S and C126A mutants were determined at a resolution of 1.7-2.1 ?. Kinetic studies revealed an approximately five-fold drop in k(cat) for the C126S and C126A mutants, whereas an approximately 10-fold drop was observed for the other three mutants. At ambient temperature, the wild-type enzyme and all five mutants showed no concentration dependence of activity. At higher temperatures (> 40 °C), the mutants showed a significant concentration dependence, with a dramatic loss in activity below 15 μM. The mutants also had diminished thermal stability at low concentration, as monitored by far-UV CD. These results suggest that Cys126 contributes to the stability of the dimer interface through a network of interactions involving His95, Glu97, and Arg98, which form direct contacts across the dimer interface.  相似文献   

13.
The production of class A beta-lactamases is a major cause of clinical resistance to beta-lactam antibiotics. Some of class A beta-lactamases are known to have a disulfide bridge. Both narrow spectrum and extended spectrum beta-lactamases of TEM and the SHV enzymes possess a disulfide bond between Cys77 and Cys123, and the enzymes with carbapenem-hydrolyzing activity have a well-conserved disulfide bridge between Cys69 and Cys238. We produced A77C/G123C mutant of the extended-spectrum beta-lactamase Toho-1 in order to introduce a disulfide bond between the cysteine residues at positions 77 and 123. The result of 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) titrations confirmed formation of a new disulfide bridge in the mutant. The results of irreversible heat inactivation and circular dichroism (CD) melting experiments indicated that the disulfide bridge stabilized the enzyme significantly. Though kinetic analysis indicated that the catalytic properties of the mutant were quite similar to those of the wild-type enzyme, E. coli producing this mutant showed drug resistance significantly higher than E. coli producing the wild-type enzyme. We speculate that the stability of the enzymes provided by the disulfide bond may explain the wide distribution of TEM and SHV derivatives and explain how various mutations can cause broadened substrate specificity without loss of stability.  相似文献   

14.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

15.
We examined the effect of a novel disulfide bond engineered in subtilisin E from Bacillus subtilis based on the structure of a thermophilic subtilisin-type serine protease aqualysin I. Four sites (Ser163/Ser194, Lys170/Ser194, Lys170/Glu195, and Pro172/Glu195) in subtilisin E were chosen as candidates for Cys substitutions by site-directed mutagenesis. The Cys170/Cys195 mutant subtilisin formed a disulfide bond in B. subtilis, and showed a 5-10-fold increase in specific activity for an authentic peptide substrate for subtilisin, N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide, compared with the single-Cys mutants. However, the disulfide mutant had a 50% decrease in catalytic efficiency due to a smaller k(cat) and was thermolabile relative to the wild-type enzyme, whereas it was greatly stabilized relative to its reduced form. These results suggest that an electrostatic interaction between Lys170 and Glu195 is important for catalysis and stability in subtilisin E. Interestingly, the disulfide mutant was found to be more stable in polar organic solvents, such as dimethylformamide and ethanol, than the wild-type enzyme, even under reducing conditions; this is probably due to the substitution of uncharged Cys by charged surface residues (Lys170 and Glu195). Further, the amino-terminal engineered disulfide bond (Gly61Cys/Ser98Cys) and the mutation Ile31Leu were introduced to enhance the stability and catalytic activity. A prominent 3-4-fold increase in the catalytic efficiency occurred in the quintet mutant enzyme over the range of dimethylformamide concentration (up to 40%).  相似文献   

16.
With the aim of enhancing interactions involved in dimer formation, an intersubunit disulfide bridge was engineered in the superoxide dismutase enzyme of Mycobacterium tuberculosis. Ser-123 was chosen for mutation to cysteine since it resides at the dimer interface where the serine side chain interacts with the same residue in the opposite subunit. Gel electrophoresis and X-ray crystallographic studies of the expressed mutant confirmed formation of the disulfide bond under nonreducing conditions. However, the mutant protein was found to be less stable than the wild type as judged by susceptibility to denaturation in the presence of guanidine hydrochloride. Decreased stability probably results from formation of a disulfide bridge with a suboptimal torsion angle and exclusion of solvent molecules from the dimer interface.  相似文献   

17.
In vivo formation and stability of engineered disulfide bonds in subtilisin   总被引:9,自引:0,他引:9  
Computer modeling suggested that a disulfide bond could be built into Bacillus amyloliquefaciens subtilisin between positions 22 (wild-type, Thr) and 87 (Ser) or between positions 24 (Ser) and 87 (Ser). Single cysteines were introduced into this cysteine-free protease at positions 22, 24, or 87 by site-directed mutagenesis of the cloned subtilisin gene. The corresponding double-cysteine mutants were constructed, and recombinant plasmids were expressed in Bacillus subtilis. Double-cysteine mutant enzymes were secreted as efficiently as wild-type, and disulfide bonds were formed quantitatively in vivo. These disulfide bonds were introduced approximately 24 A away from the catalytic site and had no detectable effect on either the specific activities or the pH optima of the mutant enzymes. The equilibrium constants for the reduction of the mutant disulfide bonds by dithiothreitol were determined to be 82 +/- 22 and 20 +/- 5 for Cys22/Cys87 and Cys24/Cys87, respectively. Studies of autoproteolytic inactivation of wild-type subtilisin support a relationship between autolytic stability and conformational stability of the protein. The stabilities of Cys24/Cys87 and wild-type enzymes to autolysis were essentially the same; however, Cys22/Cys87 was actually less stable to autolysis. Reduction of the disulfide cross-bridge lowered the autolytic stability of both double-cysteine mutants relative to their disulfide forms. This correlates with a lowered autolytic stability for the Cys22 and Cys87 single-cysteine mutants, and the fact that an intramolecular hydrogen bond between the hydroxyl groups of Thr22 and Ser87 is likely to be disrupted in the Cys22 and Cys87 single-cysteine mutant proteins.  相似文献   

18.
The implication of the original alanine 63 (Ala63) and the unique cysteine 306 (Cys306) residues in the thermostability of the Streptomyces sp. SK glucose isomerase (SKGI) were investigated by site-directed mutagenesis and homology modelling. The Cys306 to Ala mutation within SKGI dramatically affected its thermal stability by decreasing the half-life from 80 to 15 min at 90°C while the Ala63 to Ser replacement shifted this half-life to 65 min. The electrophoretic analysis proves that the residue Cys306 participates in oligomerization of the SKGI. Its stabilizing role is materialized by hydrogen bonds established with arginines at positions 284 and 259, as deduced from the constructed three-dimensional model. We have also shown that the presence of an Ala63 instead of Ser63 seems to be more suitable for enzyme thermostability by maintaining hydrophobic pocket that contributes to the protection of the enzyme active site.  相似文献   

19.
Part of the dimer and B/C domain interface of the Escherichia coli mannitol permease (EII(mtl)) has been identified by the generation of disulfide bridges in a single-cysteine EII(mtl), with only the activity linked Cys(384) in the B domain, and in a double-cysteine EII(mtl) with cysteines at positions 384 and 124 in the first cytoplasmic loop of the C domain. The disulfide bridges were formed in the enzyme in inside-out membrane vesicles and in the purified enzyme by oxidation with Cu(II)-(1,10-phenanthroline)(3), and they were visualized by SDS-polyacrylamide gel electrophoresis. Discrimination between possible disulfide bridges in the dimeric double-cysteine EII(mtl) was done by partial digestion of the protein and the formation of heterodimers, in which the cysteines were located either on different subunits or on one subunit. The disulfide bridges that were identified are an intersubunit Cys(384)-Cys(384), an intersubunit Cys(124)-Cys(124), an intersubunit Cys(384)-Cys(124), and an intrasubunit Cys(384)-Cys(124). The disulfide bridges between the B and C domain were observed with purified enzyme and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Mannitol did not influence the formation of the disulfide between Cys(384) and Cys(124). The close proximity of the two cysteines 124 was further confirmed with a separate C domain by oxidation with Cu(II)-(1,10-phenanthroline)(3) or by reactions with dimaleimides of different length. The data in combination with other work show that the first cytoplasmic loop around residue 124 is located at the dimer interface and involved in the interaction between the B and C domain.  相似文献   

20.
Proteins from thermophilic microorganisms are stabilized by various mechanisms to preserve their native folded states at higher temperatures. A thermostable glucose-6-phosphate dehydrogenase (tG6PDH) from the hyperthermophilic bacterium Aquifex aeolicus was expressed as a recombinant protein in Escherichia coli. The A. aeolicus G6PDH is a homodimer exhibiting remarkable thermostability (t1/2=24 hr at 90°C). Based on homology modeling and upon comparison of its structure with human G6PDH, it was predicted that cysteine 184 of one subunit could form a disulfide bond with cysteine 352 of the other subunit resulting in reinforced intersubunit interactions that hold the dimer together. Site-directed mutagenesis was performed on tG6PDH to convert C184 and C352 to serines. The tG6PDH double mutant exhibited a dramatic decrease in the half-life from 24 hr to 3 hr at 90°C. The same decrease in half-life was also found when either C184 or C352 was mutated to serine. The result indicates that C184 and C352 may play a crucial role in strengthening the dimer interface through disulfide bond formation, thereby contributing to the thermal stability of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号