首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP-stimulated uptake of S-(2,4-dinitrophenyl)glutathione with a high activity of 0.35 nmol/min per mg protein is found in a rat liver plasma membrane vesicle preparation enriched in sinusoidal marker enzymes. Transport takes place into an osmotically active space. Vanadate and S-(azidophenacyl)glutathione inhibit transport, whereas Ca2+, EGTA and ouabain are without effect.  相似文献   

2.
Using rat liver canalicular plasma membrane vesicles, it has been verified that the transport of p-nitrophenyl glucuronide (NPG) across membranes is an ATP-dependent process; the apparent Km for NPG was 20 microM. S-(2,4-dinitrophenyl)-glutathione (DNP-SG) inhibited NPG uptake dose-dependently, and NPG or testosterone glucuronide did ATP-dependent DNP-SG uptake similarly. These results suggest that transport of glucuronide is mediated by an ATP-dependent glutathione S-conjugate carrier.  相似文献   

3.
Plasma membrane vesicles were prepared from guinea pig peritoneal exudate neutrophils, using nitrogen cavitation to rupture the plasma membrane and differential centrifugation to separate the vesicles. The vesicles were enriched 13.2-fold in (Na+, K+)-ATPase activity and had a cholesterol:protein ratio of 0.15, characteristic of plasma membranes. Contamination of the vesicle preparation with DNA or marker enzyme activities for intracellular organelles was very low. Studies designed to determine vesicle sidedness and integrity indicated that 33% were sealed, inside-out; 41% were sealed, right side-out, and 26% were leaky. The vesicles accumulated 45Ca2+ in a linear fashion for 45 min. The uptake was dependent on the presence of oxalate and MgATP in the incubating medium. Uptake showed a Ka for free Ca2+ of 164 nM and a Vmax of 17.2 nmol/mg . min (based on total protein). GTP, ITP, CTP, UTP, ADP, or AMP supported uptake at rates less than or equal to 11% of ATP. Ca2+ uptake was maximal at pH 7-7.5. Calcium stimulated the hydrolysis of ATP by the vesicles with a Ka for free Ca2+ of 440 nM and Vmax of 17.5 nmol/mg . min (based on total protein). When the Ca2+ uptake rate was based upon those vesicles expected to transport Ca2+ (33% sealed, inside-out vesicles) and Ca2+-stimulated ATPase activity was based upon those vesicles expected to express that activity (26% leaky + 33% sealed, inside-out vesicles), the molar stoichiometry of Ca2+ transported:ATP hydrolyzed was 2.12 +/- 0.12. Calmodulin did not increase either Vmax or Ka for free Ca2+ of the uptake system in the vesicles, even when they were treated previously with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The high affinity of this system for Ca2+, specificity for ATP, physiological pH optimum, and stoichiometry of Ca2+ transported:ATP hydrolyzed suggest that it represents an important mechanism by which neutrophils maintain low levels of cytoplasmic free Ca2+.  相似文献   

4.
A Cl-stimulated ATPase activity, which is sensitive to both thiocyanate and vanadate, has been localized to the plasma membrane of Aplysia enterocytes. Utilizing plasma membrane vesicles from Aplysia enterocytes, ATP stimulated Cl uptake to approximately 2.5-times that of control in a Na+, K+ and HCO3-free medium. This ATP-dependent Cl uptake was sensitive to both thiocyanate and vanadate. These results are consistent with the hypothesis that the active Cl absorptive process in Aplysia intestine could be a Cl-stimulated ATPase found in the enterocyte plasma membrane.  相似文献   

5.
Summary The characteristics of uridine transport were studied in basolateral plasma membrane vesicles isolated from rat liver. Uridine was not metabolized under transport measurement conditions and was taken up into an osmotically active space with no significant binding of uridine to the membrane vesicles. Uridine uptake was sodium dependent, showing no significant stimulation by other monovalent cations. Kinetic analysis of the sodium-dependent component showed a single system with Michaelis-Menten kinetics. Parameter values were K M 8.9 m and V max 0.57 pmol/mg prot/sec. Uridine transport proved to be electrogenic, since, firstly, the Hill plot of the kinetic data suggested a 1 uridine: 1 Na+ stoichiometry, secondly, valinomycin enhanced basal uridine uptake rates and, thirdly, the permeant nature of the Na+ counterions determined uridine transport rates (SCN > NO 3 > Cl > SO 4 2– ). Other purines and pyrimidines cis-inhibited and trans-stimulated uridine uptake.This work has been partially supported by grant PM90-0162 from D.G.I.C.Y.T. (Ministerio de Educación y Ciencia, Spain). B.R.-M. is a research fellow supported by the Nestlé Nutrition Research Grant Programme.  相似文献   

6.
Three plasma membrane subfractions have been isolated and characterized from rat liver cells. The high affinity Ca2+-stimulated ATPase is highly enriched in the bile canalicular subfraction. Taking into account cross-contamination by the blood sinusoidal and lateral membranes it is suggested that the high-affinity Ca2+-ATPase is located exclusively in this fraction. The high-affinity Ca2+-ATPase is coupled to Ca2+ transport, is calmodulin-insensitive, sensitive to vanadate under appropriate experimental conditions and is strongly inhibited by La3+. In the presence of Ca2+ and ATP the ATPase forms a phosphorylated intermediate of molecular mass about 200 kDa.  相似文献   

7.
The liver is the major organ which eliminates leukotriene C4 (LTC4) and other cysteinyl leukotrienes from the blood circulation into bile. Transport of LTC4 was studied using inside-out vesicles enriched in canalicular and sinusoidal membranes from rat liver. The incubation of canalicular membrane vesicles with [3H]LTC4 in the presence of ATP resulted in an uptake of LTC4 into vesicles. The initial rate of ATP-stimulated LTC4 uptake was about 40-fold higher in canalicular than in sinusoidal membrane vesicles. When liver plasma membrane vesicles were incubated in the absence of ATP, an apparent transient uptake of LTC4 was observed which was temperature-dependent and not affected by the osmolarity. This indicates that LTC4 was bound to proteins on the surface of plasma membrane vesicles. Two proteins with relative molecular weights of 17,000 and 25,000 were detected by direct photoaffinity labeling as major LTC4-binding proteins. One protein (Mr 25,000) was ascribed to subunit 1 (Ya) of glutathione S-transferase which was associated with the membrane. LTD4, LTE4, N-acetyl-LTE4, and omega-carboxy-N-acetyl-LTE4 were also transported into liver plasma membrane vesicles in an ATP-dependent manner with initial rates relative to LTC4 (1.0) of 0.46, 0.11, 0.35, and 0.22, respectively. Mutual competition between the cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione for uptake indicated that they are transported by a common carrier. Apparent Km values of the transport system for LTC4, LTD4, and N-acetyl-LTE4 were 0.25, 1.5, and 5.2 microM, respectively. The ATP-dependent transport of LTC4 into vesicles was not inhibited by doxorubicin, daunorubicin, or verapamil, or by the monoclonal antibody C219, suggesting that the transport system differs from P-glycoprotein. Liver plasma membrane vesicles prepared from mutant rats deficient in the hepatobiliary excretion of cysteinyl leukotrienes lacked the ATP-dependent transport of cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione. These results demonstrate that the ATP-dependent carrier system is responsible for the transport of cysteinyl leukotrienes and glutathione S-conjugates from the hepatocytes into bile.  相似文献   

8.
Summary Thel-alanine-dependent transport of sodium ions across the plasma membrane of rat-liver parenchymal cells was studied using isolated plasma membrane vesicles. Sodium uptake is stimulated specifically by thel-isomer of alanine and other amino acids, whose transport is sodium-dependent in rat-liver plasma membrane vesicles. Thel-alanine-dependent sodium flux across the membrane is inhibited by an excess of Li+ ions, but not by K+ or choline ions. Sodium transport is sensitive to-SH reagents and ionophores, and is an electrogenic process: a membrane potential (negative inside) can enhancel-alanine-dependent sodium accumulation. The data presented provide further evidence for a sodium-alanine cotransport mechanism.  相似文献   

9.
Srivastava SK  Hu X  Xia H  Pal A  Guo J  Orchard JL  Singh SV 《FEBS letters》1999,445(2-3):291-294
The present study reports gender related differences in ATP-dependent transport of dinitrophenyl-glutathione (GSH) conjugate (DNP-SG), a model GSH xenobiotic conjugate, across murine canalicular liver plasma membrane (cLPM). ATP-dependent transport of DNP-SG across female A/J mouse cLPM was mediated by two components, a high-affinity and a low-affinity component, with corresponding Km of 18 microM (Vmax 0.02 nmol/min.mg) and 500 microM (Vmax 0.23 nmol/min.mg), respectively. On the other hand, only one component for the ATP-dependent transport of DNP-SG was observed in male mouse cLPM (K(m) 130 microM; Vmax 0.18 nmol/min.mg). Moreover, the rate of ATP-dependent transport of DNP-SG was markedly higher in the cLPM fraction of male mouse compared with that of the female. Presence of two transport components in female mouse cLPM, but only one system in the cLPM fraction of male mouse, was confirmed by measuring DNP-SG mediated stimulation of ATP hydrolysis (DNP-SG ATPase activity). To the best of our knowledge, the present study is the first report on gender related differences in ATP-dependent murine canalicular transport of GSH conjugates.  相似文献   

10.
The driving forces for L-glutamate transport were determined in purified canalicular (cLPM) and basolateral (i.e. sinusoidal and lateral; blLPM) rat liver plasma membrane vesicles. Initial rates of L-glutamate uptake in cLPM vesicles were stimulated by a Na+ gradient (Na+o greater than Na+i), but not by a K+ gradient. Stimulation of L-glutamate uptake was specific for Na+, temperature sensitive, and independent of nonspecific binding. Sodium-dependent L-glutamate uptake into cLPM vesicles exhibited saturation kinetics with an apparent Km of 24 microM, and a Vmax of 21 pmol/mg X min at an extravesicular sodium concentration of 100 mM. Specific anionic amino acids inhibited L-[3H]glutamate uptake and accelerated the exchange diffusion of L-[3H]glutamate. An outwardly directed K+ gradient (K+i greater than K+o) further increased the Na+ gradient (Na+o greater than Na+i)-dependent uptake of L-glutamate in cLPM vesicles, resulting in a transient accumulation of L-glutamate above equilibrium values (overshoot). The K+ effect had an absolute requirement for Na+. In contrast, in blLPM the initial rates of L-glutamate uptake were only minimally stimulated by a Na+ gradient, an effect that could be accounted for by contamination of the blLPM vesicles with cLPM vesicles. These results indicate that hepatic Na+ gradient-dependent transport of L-glutamate occurs at the canalicular domain of the plasma membrane, whereas transport of L-glutamate across sinusoidal membranes results mainly from passive diffusion. These findings provide an explanation for the apparent discrepancy between the ability of various in vitro liver preparations to transport glutamate and suggest that a canalicular glutamate transport system may serve to reabsorb this amino acid from bile.  相似文献   

11.
The driving forces for taurocholate transport were determined in highly purified canalicular (cLPM) and basolateral rat liver plasma membrane (LPM) vesicles. Alanine transport was also examined for comparison. Inwardly directed Na+ but not K+ gradients transiently stimulated [3H]taurocholate (1 microM) and [3H]alanine (0.2 mM) uptake into basolateral LPM 3-4- fold above their respective equilibrium values (overshoots). Na+ also stimulated [3H]taurocholate countertransport and tracer exchange in basolateral LPM whereas valinomycin-induced inside negative K+ diffusion potentials stimulated alanine uptake but had no effect on taurocholate uptake. In contrast, in the "right-side out" oriented cLPM vesicles, [3H]taurocholate countertransport and tracer exchange were not dependent on Na+. Efflux of [3H]taurocholate from cLPM was also independent of Na+ and could be trans-stimulated by extra-vesicular taurocholate. Furthermore, an inside negative valinomycin-mediated K+ diffusion potential inhibited taurocholate uptake into and stimulated taurocholate efflux from the cLPM vesicles. These studies provide direct evidence for a "carrier mediated" and potential-sensitive conductive pathway for the canalicular excretion of taurocholate. In addition, they confirm the presence of a possibly electroneutral Na+-taurocholate cotransport system in basolateral membranes of the hepatocyte.  相似文献   

12.
In right-side out rat hepatic canalicular membrane vesicles glutathione disulfide (GSSG) inhibited the efflux of taurocholate approx. 70% in the presence or approx. 55% in the absence of a valinomycin-mediated K+ diffusion potential; maximal inhibition occurred at 5 mM GSSG. The inhibition by GSSG was abolished by dithioerythritol. Neither dithioerythritol alone nor GSH inhibited taurocholate efflux. S-(2,4-Dinitrophenyl)glutathione and N-ethylmaleimide showed intermediate inhibitory effects.  相似文献   

13.
ATP-dependent Cl- uptake by plasma membrane vesicles from the rat brain   总被引:1,自引:0,他引:1  
Uptake of Cl- by plasma membrane vesicles from the rat brain was stimulated by ATP at 37 degrees C, but not by beta, gamma-methylene ATP or at 0 degrees C. The addition of Triton X-100 or sucrose to the incubation medium diminished the ATP-stimulated Cl- uptake, suggesting that Cl- was transported across the membranes into the intravesicular space. This ATP-stimulated Cl- uptake was not affected by 1 mM ouabain. 1 microM oligomycin, 0.1 mM gamma-aminobutyric acid or 0.1 mM picrotoxin. Thus, non-mitochondrial ATP-driven Cl- transport through a system other than Na, K-ATPase or Cl- channels occurs in neuronal plasma membrane vesicles.  相似文献   

14.
Plasma membrane vesicles were prepared from isolated rat liver parenchymal cells. The transport of several amino acids was studied and found to be identical to that in membrane vesicles from whole liver tissue.  相似文献   

15.
《Insect Biochemistry》1978,8(4):263-265
The excretion, distribution and metabolism of S-(2,4-dinitrophenyl) glutathione was investigated in adult American cockroaches, Periplaneta americana (L.).One day after administration 50% of the injected dose was excreted as the glutathione conjugate and its mercapturic acid. Three days after treatment about 40% of the initial dose was still present in the roaches, primarily in the abdomen.The metabolites identified in the roach suggest mercapturic acid synthesis, as in higher organisms.  相似文献   

16.
As part of the enterohepatic circulation, taurocholate is taken up by hepatocytes by a Na+-gradient-dependent, carrier-mediated process. The dependence of taurocholate uptake on the presence of a Na+ gradient, outside greater than inside, has been studied in isolated rat liver plasma membranes. The uptake is specific for sodium, and a cotransport stoichiometry of 2 Na+ per taurocholate taken up was found. The presence of K+ ions inside the vesicles was also found to be essential for maximum Na+-stimulated uptake of taurocholate, although a K+ gradient is not required. Mg2+ was almost as effective as K+ in this regard. The symport of Na+ and taurocholate during uptake was shown to be electrogenic, so that K+ may act as an exchange counterion preventing the accumulation of positive charge within the vesicles.Dedicated to the memory of Prof. David E. Green, friend, mentor, and colleague.  相似文献   

17.
A method has been developed for routine high yield separation of canalicular (cLPM) from basolateral (blLPM) liver plasma membrane vesicles of rat liver. Using a combination of rate zonal floatation (TZ- 28 zonal rotor, Sorvall) and high speed centrifugation through discontinuous sucrose gradients, 9-16 mg of cLPM and 15-28 mg of blLPM protein can be isolated in 1 d. cLPM are free of the basolateral markers Na+/K+-ATPase and glucagon-stimulatable adenylate cyclase activities, but are highly enriched with respect to homogenate in the "canalicular marker" enzyme activities leucylnaphthylamidase (48-fold), gamma-glutamyl-transpeptidase (60-fold), 5'-nucleotidase (64-fold), alkaline phosphatase (71-fold), Mg++-ATPase (83-fold), and alkaline phosphodiesterase I (116-fold). In contrast, blLPM are 34-fold enriched in Na+/K+-ATPase activity, exhibit considerable glucagon-stimulatable adenylate cyclase activity, and demonstrate a 4- to 15-fold increase over homogenate in the various "canalicular markers." cLPM have a twofold higher content of sialic acids, cholesterol; and sphingomyelin compared with blLPM. At least three canalicular-(130,000, 100,000, and 58,000 mol wt) and several basolateral-specific protein bands have been detected after SDS PAGE of the two LPM subfractions. Specifically, the immunoglobin A-binding secretory component is restricted to blLPM as demonstrated by immunochemical techniques. These data indicate virtually complete separation of basolateral from canalicular LPM and demonstrate multiple functional and compositional polarity between the two surface domains of hepatocytes.  相似文献   

18.
19.
The mechanism for the cellular extrusion of organic anions across the intestinal basolateral membrane was examined using isolated membrane vesicles from rat jejunum, ileum, and colon. It was found that 17beta-estradiol 17beta-D-glucuronide (E217betaG) is taken up in an ATP-dependent manner into the basolateral membrane vesicles (BLMVs) but not into the brush-border or microsomal counterparts. The ATP-dependent uptake of E217betaG into BLMVs from jejunum and ileum was described by a single component with a Km value of 23.5 and 8.31 microM, respectively, whereas that into the BLMVs from colon was described by assuming the presence of high (Km=0.82 microM)- and low-affinity (Km=35.4 microM) components. Taurocholate, 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole glucuronide and taurolithocholate sulfate, but not leukotriene C4, were significantly taken up by the BLMVs. In addition to such substrate specificity, the inhibitor sensitivity of the ATP-dependent transport in BLMVs was similar to that of rat multidrug resistance-associated protein 3 (Mrp3), which is located on the basolateral membrane of enterocytes. Together with the fact that the rank order of the extent of the expression of Mrp3 (jejunum < ileum < colon) is in parallel with that of the extent of the transport of ligands, these results suggest that the ATP-dependent uptake of organic anions into isolated intestinal BLMVs is at least partly mediated by Mrp3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号