首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A laccase from Coprinus cinereus is active at alkaline pH, an essential property for some potential applications. We cloned and sequenced three laccase genes (lcc1, lcc2, and lcc3) from the ink cap basidiomycete C. cinereus. The lcc1 gene contained 7 introns, while both lcc2 and lcc3 contained 13 introns. The predicted mature proteins (Lcc1 to Lcc3) are 58 to 80% identical at the amino acid level. The predicted Lcc1 contains a 23-amino-acid C-terminal extension rich in arginine and lysine, suggesting that C-terminal processing may occur during its biosynthesis. We expressed the Lcc1 protein in Aspergillus oryzae and purified it. The Lcc1 protein as expressed in A. oryzae has an apparent molecular mass of 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and absorption maxima at 278 and 614 nm. Based on the N-terminal protein sequence of the laccase, a 4-residue propeptide was processed during the maturation of the enzyme. The dioxygen specificity of the laccase showed an apparent Km of 21 ± 2 μM and a catalytic constant of 200 ± 10 min−1 for O2 with 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) as the reducing substrate at pH 5.5. Lcc1 from A. oryzae may be useful in industrial applications. This is the first report of a basidiomycete laccase whose biosynthesis involves both N-terminal and C-terminal processing.  相似文献   

3.
血红密孔菌(Pycnoporussanguineus)漆酶基因的克隆与序列分析   总被引:2,自引:0,他引:2  
为克隆血红密孔菌 (Pycnoporussanguineus)漆酶基因 ,根据真菌漆酶氨基酸序列保守区设计了 1对简并引物 .以血红密孔菌基因组DNA为模板 ,PCR扩增出长 12 2 7bp的漆酶基因片段 .以此序列为基础 ,通过 5′及 3′RACE技术克隆出漆酶全长cDNA序列 ,序列长为 190 2bp ,其 5′端和 3′端非编码区长分别为 5 1bp和 2 97bp ,开放阅读框长 15 5 4bp ,编码 5 18个氨基酸的蛋白 .该蛋白具有 4个铜离子结合区域 ,预测其相对分子量为 5 6 313 2 ,等电点为 5 5 9,其氨基酸序列与Pycnoporuscinnabarinus漆酶 (lcc3 2 )的同源性最高 ,为 96 % .以该cDNA编码区的两端序列为引物 ,PCR扩增得到漆酶的长度为 2 15 4bp的全长DNA序列 ,序列中包括 10个内含子序列 ,长为 5 2~ 70bp  相似文献   

4.
An efficient transformation and expression system was developed for the industrially relevant basidiomycete Pycnoporus cinnabarinus. This was used to transform a laccase-deficient monokaryotic strain with the homologous lac1 laccase gene placed under the regulation of its own promoter or that of the SC3 hydrophobin gene or the glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of Schizophyllum commune. SC3-driven expression resulted in a maximal laccase activity of 107 nkat ml−1 in liquid shaken cultures. This value was about 1.4 and 1.6 times higher in the cases of the GPD and lac1 promoters, respectively. lac1-driven expression strongly increased when 25 g of ethanol liter−1 was added to the medium. Accordingly, laccase activity increased to 1,223 nkat ml−1. These findings agree with the fact that ethanol induces laccase gene expression in some fungi. Remarkably, lac1 mRNA accumulation and laccase activity also strongly increased in the presence of 25 g of ethanol liter−1 when lac1 was expressed behind the SC3 or GPD promoter. In the latter case, a maximal laccase activity of 1,393 nkat ml−1 (i.e., 360 mg liter−1) was obtained. Laccase production was further increased in transformants expressing lac1 behind its own promoter or that of GPD by growth in the presence of 40 g of ethanol liter−1. In this case, maximal activities were 3,900 and 4,660 nkat ml−1, respectively, corresponding to 1 and 1.2 g of laccase per liter and thus representing the highest laccase activities reported for recombinant fungal strains. These results suggest that P. cinnabarinus may be a host of choice for the production of other proteins as well.  相似文献   

5.
6.
A laccase (Lcc1) from the white-rot fungus Meripilus giganteus was purified with superior yields of 34% and 90% by conventional chromatography or by foam separation, respectively. Size exclusion chromatography (SEC) and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) yielded a molecular mass of 55 kDa. The enzyme possessed an isoelectric point of 3.1 and was able to oxidize the common laccase substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at a pH of 2.0, whereas the enzyme was still able to oxidize ABTS and 2,6-dimethoxyphenol (DMP) at pH 6.0. Lcc1 exhibited low K m values of 8 μM (ABTS) and 80 μM (DMP) and remarkable catalytic efficiency towards the non-phenolic substrate ABTS of 37,437 k cat/k m (s−1 mM−1). The laccase showed a high stability towards high concentrations of various metal ions, EDTA and surfactants indicating a considerable biotechnological potential. Furthermore, Lcc1 exhibited an increased activity as well as a striking boost of stability in the presence of surfactants. Degenerated primers were deduced from peptide fragments. The complete coding sequence of lcc1 was determined to 1,551 bp and confirmed via amplification of the 2,214 bp genomic sequence which included 12 introns. The deduced 516 amino acid (aa) sequence of the lcc1 gene shared 82% identity and 90% similarity with a laccase from Rigidoporus microporus. The sequence data may aid theoretical studies and enzyme engineering efforts to create laccases with an improved stability towards metal ions and bipolar compounds.  相似文献   

7.
AIMS: Laccase production by the monokaryotic strain Pycnoporus cinnabarinus ss3 was studied using ethanol as inducer in the culture medium. METHODS AND RESULTS: The effect of ethanol was tested at 10, 20, 30, 35 and 45 g l-1 and compared with that of ferulic acid, known until now as the most efficient inducer for laccase expression by P. cinnabarinus ss3. In the presence of 35 g l-1 ethanol, laccase activity (266 600 U l-1) and productivity (19 000 U l-1 day-1) were nine and fivefold higher compared with ferulic acid-induced cultures, and 155- and 65-fold higher compared with non-induced cultures, respectively. In vivo, ethanol added to the culture medium of P. cinnabarinus ss3 favoured a continuous and high expression of laccase gene. Under these conditions, P. cinnabarinus ss3 produced preferentially the isoenzyme LAC I. Ethanol added in vitro to the purified P. cinnabarinus ss3 laccase typically inhibited the enzymatic activity. CONCLUSIONS: In spite of an initial inhibitory effect on mycelial growth, ethanol was shown to be a very strong inducer for laccase expression by P. cinnabarinus ss3 allowing an average yield of 1-1.5 g l-1 laccase. SIGNIFICANCE AND IMPACT OF THE STUDY: This study identified P. cinnabarinus ss3 as an outstanding producer of laccase in the presence of ethanol as inducer. Ethanol is an inexpensive agricultural by-product and the process is simple to scale-up for industrial production.  相似文献   

8.
The induction of laccase isoforms in Trametes versicolor HEMIM-9 by aqueous extracts (AE) from softwood and hardwood was studied. Samples of sawdust of Pinus sp., Cedrela sp., and Quercus sp. were boiled in water to obtain AE. Different volumes of each AE were added to fungal cultures to determine the amount of AE needed for the induction experiments. Laccase activity was assayed every 24 h for 15 days. The addition of each AE (50 to 150 μl) to the fungal cultures increased laccase production compared to the control (0.42 ± 0.01 U ml?1). The highest laccase activities detected were 1.92 ± 0.15 U ml?1 (pine), 1.87 ± 0.26 U ml?1 (cedar), and 1.56 ± 0.34 U ml?1 (oak); laccase productivities were also significantly increased. Larger volumes of any AE inhibited mycelial growth. Electrophoretic analysis revealed two laccase bands (lcc1 and lcc2) for all the treatments. However, when lcc2 was analyzed by isoelectric focusing, inducer-dependent isoform patterns composed of three (pine AE), four (oak AE), and six laccase bands (cedar AE) were observed. Thus, AE from softwood and hardwood had induction effects in T. versicolor HEMIM-9, as indicated by the increase in laccase activity and different isoform patterns. All of the enzymatic extracts were able to decolorize the dye Orange II. Dye decolorization was mainly influenced by pH. The optimum pH for decolorization was pH 5 (85 %), followed by pH 7 (50 %) and pH 3 (15 %). No significant differences in the dye decolorizing capacity were detected between the control and the differentially induced laccase extracts (oak, pine and cedar). This could be due to the catalytic activities of isoforms with pI 5.4 and 5.8, which were detected under all induction conditions.  相似文献   

9.
A laccase from Coprinus cinereus is active at alkaline pH, an essential property for some potential applications. We cloned and sequenced three laccase genes (lcc1, lcc2, and lcc3) from the ink cap basidiomycete C. cinereus. The lcc1 gene contained 7 introns, while both lcc2 and lcc3 contained 13 introns. The predicted mature proteins (Lcc1 to Lcc3) are 58 to 80% identical at the amino acid level. The predicted Lcc1 contains a 23-amino-acid C-terminal extension rich in arginine and lysine, suggesting that C-terminal processing may occur during its biosynthesis. We expressed the Lcc1 protein in Aspergillus oryzae and purified it. The Lcc1 protein as expressed in A. oryzae has an apparent molecular mass of 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and absorption maxima at 278 and 614 nm. Based on the N-terminal protein sequence of the laccase, a 4-residue propeptide was processed during the maturation of the enzyme. The dioxygen specificity of the laccase showed an apparent K(m) of 21 +/- 2 microM and a catalytic constant of 200 +/- 10 min(-1) for O(2) with 2, 2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) as the reducing substrate at pH 5.5. Lcc1 from A. oryzae may be useful in industrial applications. This is the first report of a basidiomycete laccase whose biosynthesis involves both N-terminal and C-terminal processing.  相似文献   

10.
《Mycoscience》2019,60(4):246-249
Lentinula edodes secretes laccase (Lcc: EC 1.10.3.2), an industrially useful enzyme. In this study, we introduced and expressed the L. edodes Lcc gene, lcc1, driven by L. edodes glyceraldehyde-3-phosphate dehydrogenase gene promoter into L. edodes. The resulting transformants showed 2-fold Lcc activity than that of the host strain, and expression of the recombinant lcc1 was confirmed by RT-PCR.  相似文献   

11.
When glucose is the carbon source, the white rot fungus Pycnoporus cinnabarinus produces a characteristic red pigment, cinnabarinic acid, which is formed by laccase-catalyzed oxidation of the precursor 3-hydroxyanthranilic acid. When P. cinnabarinus was grown on media containing cellobiose or cellulose as the carbon source, the amount of cinnabarinic acid that accumulated was reduced or, in the case of cellulose, no cinnabarinic acid accumulated. Cellobiose-dependent quinone reducing enzymes, the cellobiose dehydrogenases (CDHs), inhibited the redox interaction between laccase and 3-hydroxyanthranilic acid. Two distinct proteins were purified from cellulose-grown cultures of P. cinnabarinus; these proteins were designated CDH I and CDH II. CDH I and CDH II were both monomeric proteins and had apparent molecular weights of about 81,000 and 101,000, respectively, as determined by both gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The pI values were approximately 5.9 for CDH I and 3.8 for CDH II. Both CDHs used several known CDH substrates as electron acceptors and specifically adsorbed to cellulose. Only CDH II could reduce cytochrome c. The optimum pH values for CDH I and CDH II were 5.5 and 4.5, respectively. In in vitro experiments, both enzymes inhibited laccase-mediated formation of cinnabarinic acid. Oxidation intermediates of 3-hydroxyanthranilic acid served as endogenous electron acceptors for the two CDHs from P. cinnabarinus. These results demonstrated that in the presence of a suitable cellulose-derived electron donor, CDHs can regenerate fungal metabolites oxidized by laccase, and they also supported the hypothesis that CDHs act as links between cellulolytic and ligninolytic pathways.  相似文献   

12.
Two laccases have been purified to apparent electrophoretic homogeneity from the extracellular medium of a 2,5-xylidine-induced culture of the white rot basidiomycete Trametes villosa (Polyporus pinsitus or Coriolus pinsitus). These proteins are dimeric, consisting of two subunits of 63 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and have typical blue laccase spectral properties. Under nondenaturing conditions, the two purified laccases have different pIs; purified laccase forms 1 and 3 have pIs of 3.5 and 6 to 6.5, respectively. A third purified laccase form 2 has the same N terminus as that of laccase form 3, but its pI is in the range of 5 to 6. The laccases have optimal activity at pH 5 to 5.5 and pH < or = 2.7 with syringaldazine and ABTS [2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)] as substrates, respectively. The genes lcc1 and lcc2 coding for the two purified laccases (forms 1 and 3) have been cloned, and their nucleotide sequences have been determined. The genes for lcc1 and lcc2 have 8 and 10 introns, respectively. The predicted proteins are 79% identical at the amino acid level. From Northern (RNA) blots containing total RNA from both induced and uninduced cultures, expression of lcc1 is highly induced, while the expression of lcc2 appears to be constitutive. Lcc1 has been expressed in Aspergillus oryzae, and the purified recombinant protein has the same pI, spectral properties, stability, and pH profiles as the purified native protein.  相似文献   

13.
Monokaryotic Pycnoporus cinnabarinus strains were obtained from the dikaryotic strain I-938. One of these, designated MK18, consistently produced high laccase activity. In cultures of MK18 and I-938 where ferulic acid was added as laccase inducer, laccase activity was enhanced about 2.5-fold reaching 3400 U/l for the MK18 strain. Laccase was purified to homogeneity and under the selected growth conditions, only one isoform of the enzyme was produced. The N-terminal sequence was similar to the amino terminal sequence of laccase II from Trametes versicolor. The enzyme was stable at 60 C for more than 1 h.  相似文献   

14.
Coprinopsis cinerea laccase gene lcc1 was expressed in this basidiomycete under naturally non-inductive conditions using various homologous and heterologous promoters. Laccase expression was achieved in solid and liquid media with promoter sequences from the C. cinerea tub1 gene, the Agaricus bisporus gpdII gene, the Lentinus edodes priA gene and the Schizophyllum commune Sc3 gene. As measured by enzyme activity in liquid cultures, a 277-bp gpdII promoter fragment, followed by a 423-bp priA fragment, was most efficient. A shorter priA sequence of 372 bp was inactive. tub1 promoter fragments were reasonably active, whereas the S. commune Sc3 promoter sequence was less active, in comparison. Irrespective of the promoter used, addition of copper to the medium increased enzymatic activities for highly active transformants by 10- to 50-fold and for less active transformants for 2- to 7-fold. The highest enzymatic activities (3 U/ml) were reached with the gpdII promoter in the presence of 0.1 mM CuSO4.  相似文献   

15.
16.
Several fungal laccases have been compared for the oxidation of a nonphenolic lignin dimer, 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propan-1,3-diol (I), and a phenolic lignin model compound, phenol red, in the presence of the redox mediators 1-hydroxybenzotriazole (1-HBT) or violuric acid. The oxidation rates of dimer I by the laccases were in the following order: Trametes villosa laccase (TvL) > Pycnoporus cinnabarinus laccase (PcL) > Botrytis cinerea laccase (BcL) > Myceliophthora thermophila laccase (MtL) in the presence of either 1-HBT or violuric acid. The order is the same if the laccases are used at the same molar concentration or added to the same activity (with ABTS [2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)] as a substrate). During the oxidation of dimer I, both 1-HBT and violuric acid were to some extent consumed. Their consumption rates also follow the above order of laccases, i.e., TvL > PcL > BcL > MtL. Violuric acid allowed TvL and PcL to oxidize dimer I much faster than 1-HBT, while BcL and violuric acid oxidized dimer I more slowly than BcL and 1-HBT. The oxidation rate of dimer I is dependent upon both kcat and the stability of the laccase. Both 1-HBT and violuric acid inactivated the laccases, violuric acid to a greater extent than 1-HBT. The presence of dimer I or phenol red in the reaction mixture slowed down this inactivation. The inactivation is mainly due to the reaction of the redox mediator free radical with the laccases. We did not find any relationship between the carbohydrate content of the laccases and their inactivation. When the redox potential of the laccases is in the range of 750 to 800 mV, i.e., above that of the redox mediator, it does not affect kcat and the oxidation rate of dimer I.  相似文献   

17.
Fungus-growing termites efficiently decompose plant litter through their symbiotic relationship with basidiomycete fungi of the genus Termitomyces. Here, we investigated phenol-oxidizing enzymes in symbiotic fungi and fungus combs (a substrate used to cultivate symbiotic fungi) from termites belonging to the genera Macrotermes, Odontotermes, and Microtermes in Thailand, because these enzymes are potentially involved in the degradation of phenolic compounds during fungus comb aging. Laccase activity was detected in all the fungus combs examined as well as in the culture supernatants of isolated symbiotic fungi. Conversely, no peroxidase activity was detected in any of the fungus combs or the symbiotic fungal cultures. The laccase cDNA fragments were amplified directly from RNA extracted from fungus combs of five termite species and a fungal isolate using degenerate primers targeting conserved copper binding domains of basidiomycete laccases, resulting in a total of 13 putative laccase cDNA sequences being identified. The full-length sequences of the laccase cDNA and the corresponding gene, lcc1-2, were identified from the fungus comb of Macrotermes gilvus and a Termitomyces strain isolated from the same fungus comb, respectively. Partial purification of laccase from the fungus comb showed that the lcc1-2 gene product was a dominant laccase in the fungus comb. These findings indicate that the symbiotic fungus secretes laccase to the fungus comb. In addition to laccase, we report novel genes that showed a significant similarity with fungal laccases, but the gene product lacked laccase activity. Interestingly, these genes were highly expressed in symbiotic fungi of all the termite hosts examined.  相似文献   

18.
Dehalogenation of Chlorinated Hydroxybiphenyls by Fungal Laccase   总被引:3,自引:0,他引:3       下载免费PDF全文
We have investigated the transformation of chlorinated hydroxybiphenyls by laccase produced by Pycnoporus cinnabarinus. The compounds used were transformed to sparingly water-soluble colored precipitates which were identified by gas chromatography-mass spectrometry as oligomerization products of the chlorinated hydroxybiphenyls. During oligomerization of 2-hydroxy-5-chlorobiphenyl and 3-chloro-4-hydroxybiphenyl, dechlorinated C—C-linked dimers were formed, demonstrating the dehalogenation ability of laccase. In addition to these nonhalogenated dimers, both monohalogenated and dihalogenated dimers were identified.  相似文献   

19.
C Eggert  U Temp    K E Eriksson 《Applied microbiology》1996,62(4):1151-1158
The white rot fungus Pycnoporus cinnabarinus was characterized with respect to its set of extracellular phenoloxidases. Laccase was produced as the predominant extracellular phenoloxidase in conjunction with low amounts of an unusual peroxidase. Neither lignin peroxidase nor manganese peroxidase was detected. Laccase was produced constitutively during primary metabolism. Addition of the most effective inducer, 2,5-xylidine, enhanced laccase production ninefold without altering the isoenzyme pattern of the enzyme. Laccase purified to apparent homogeneity was a single polypeptide having a molecular mass of approximately 81,000 Da, as determined by calibrated gel filtration chromatography, and a carbohydrate content of 9%. The enzyme displayed an unusual behavior on isoelectric focusing gels; the activity was split into one major band (pI, 3.7) and several minor bands of decreasing intensity which appeared at regular, closely spaced intervals toward the alkaline end of the gel. Repeated electrophoresis of the major band under identical conditions produced the same pattern, suggesting that the laccase was secreted as a single acidic isoform with a pI of about 3.7 and that the multiband pattern was an artifact produced by electrophoresis. This appeared to be confirmed by N-terminal amino acid sequencing of the purified enzyme, which yielded a single sequence for the first 21 residues. Spectroscopic analysis indicated a typical laccase active site in the P. cinnabarinus enzyme since all three typical Cu(II)-type centers were identified. Substrate specificity and inhibitor studies also indicated the enzyme to be a typical fungal laccase. The N-terminal amino acid sequence of the P. cinnabarinus laccase showed close homology to the N-terminal sequences determined for laccases from Trametes versicolor, Coriolus hirsutus, and an unidentified basidiomycete, PM1. The principal features of the P. cinnabarinus enzyme system, a single predominant laccase and a lack of lignin- or manganese-type peroxidase, make this organism an interesting model for further studies of possible alternative pathways of lignin degradation by white rot fungi.  相似文献   

20.
Laccase can be used for enzymatic detoxification of lignocellulosic hydrolysates. A Saccharomyces cerevisiae strain with enhanced resistance to phenolic inhibitors and thereby improved ability to ferment lignocellulosic hydrolysates would presumably be obtained by heterologous expression of laccase. Sequencing of the cDNA for the novel laccase gene lcc2 from the lignin-degrading basidiomycete Trametes versicolor showed that it encodes an isoenzyme of 499 amino-acid residues preceded by a 21-residue signal peptide. By comparison with Edman degradation data, it was concluded that lcc2 encodes an isoenzyme corresponding to laccase A. The gene product of lcc2 displays 71% identity with the previously characterized T. versicolor lcc1 gene product. An alignment of laccase sequences revealed that the T. versicolor isoenzymes in general are more closely related to corresponding isoenzymes from other white-rot fungi than to the other T. versicolor isoenzymes. The multiplicity of laccase is thus a conserved feature of T. versicolor and related species of white-rot fungi. When the T. versicolor lcc2 cDNA was expressed in S. cerevisiae, the production of active enzyme was strongly dependent on the temperature. After 3 days of incubation, a 16-fold higher laccase activity was found when a positive transformant was kept at 19 °C instead of 28 °C. Similar experiments with Pichia pastoris expressing the T. versicolor laccase gene lcc1 also showed that the expression level was favoured considerably by lower cultivation temperature, indicating that the observation made for the S. cerevisiae expression system is of general significance. Received: 8 December 1998 / Received revision: 9 April 1999 / Accepted: 16 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号