首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When membrane vesicles from maize (Zea mays L.) coleoptiles are extracted at high buffer strength, a pH-driven, saturable association of [14C] indole-3-acetic acid is found, similar to the in-vitro auxin-transport system previously described for Cucurbita hypocotyls. The phytotropins naphthylphthalamic acid and pyrenoylbenzoic acid increase net uptake, pressumably by inhibiting the auxin-efflux carrier.Abbreviations IAA indole-3-acetic acid - ION3 ionophore mixture of carbonylcyanide-3-chlorophenylhydrazone, nigericin and valinomycin - 1-NAA, 2-NAA 1-, 2-naphthaleneacetic acid - NPA 1-N-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid  相似文献   

2.
Uptake of [14C] alanine, arginine, glutamic acid and phenylalanine by Trypanosoma equiperdum occurred by both a mediated mechanism and diffusion. Twenty amino acids were studied as inhibitors of absorption of the above amino acids. Results suggested that at least 4 distinct transport loci are involved in amino acid transport. These 4 loci have overlapping affinities for amino acids and seem to be involved, respectively, in the absorption of (a) arginine and phenylalanine; (b) arginine; (c) alanine, phenylalanine, and glutamic acid; (d) glutamic acid. The data also showed that multiple sites for substrate binding occur on each of 2 transport systems.  相似文献   

3.
GalP is the membrane protein responsible for H+-driven uptake of D-galactose intoEscherichia coli. It is suggested to be the bacterial equivalent of the mammalian glucose transporter, GLUT1, since these proteins share sequence homology, recognise and transport similar substrates and are both inhibited by cytochalasin B and forskolin. The successful over-production of GalP to 35–55% of the total inner membrane protein ofE. coli has allowed direct physical measurements on isolated membrane preparations. The binding of the antibiotics cytochalasin B and forskolin could be monitored from changes in the inherent fluorescence of GalP, enabling derivation of a kinetic mechanism describing the interaction between the ligands and GalP. The binding of sugars to GalP produces little or no change in the inherent fluorescence of the transporter. However, the binding of transported sugars to GalP produces a large increase in the fluorescence of 8-anilino-1-naphthalene sulphonate (ANS) excited via tryptophan residues. This has allowed a binding step, in addition to two putative translocation steps, to be measured. From all these studies a basic kinetic mechanism for the transport cycle under non-energised conditions has been derived. The ease of genetical manipulation of thegalP gene inE. coli has been exploited to mutate individual amino acid residues that are predicted to play a critical role in transport activity and/or the recognition of substrates and antibiotics. Investigation of these mutant proteins using the fluorescence measurements should elucidate the role of individual residues in the transport cycle as well as refine the current model.Abbreviations GalP galactose-H+ transporter - AraE arabinose-H+ transporter - GLUT1 human erythrocyte glucose transporter requests for offprints: Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2UH, UK  相似文献   

4.
5.
Protein-mediated fatty acid uptake and intracellular fatty acid activation are key steps in fatty acid metabolism in muscle.We have examined (a) the abundance of fatty acid translocase (FAT/CD36) mRNA (a fatty acid transporter) and long-chain acyl CoA synthetase (FACS1) mRNA in metabolically heterogeneous muscles (soleus (SOL), red (RG) and white gastrocnemius (WG)), and (b) whether FAT/CD36 and FACS1 mRNAs were coordinately upregulated in red (RTA) and white tibialis muscles (WTA) that had been chronically stimulated for varying periods of time (0.25, 1, 6 and 24 h/day) for 7 days. FAT/CD36 mRNA and FACS1 mRNA abundance were scaled with (a) the oxidative capacity of muscle (SOL > RG > WG) (p < 0.05), (b) the rates of fatty acid oxidation in red and white muscles, and (c) fatty acid uptake by sarcolemmal vesicles, derived from red and white muscles. In chronically stimulated muscles (RTA and WTA), FAT/CD36 mRNA and FACS1 mRNA were up-regulated in relation to the quantity of muscle contractile activity (p < 0.05). FAT/CD36 mRNA and FACS1 mRNA up-regulation was highly correlated (r = 0.98). The coordinated expression of FAT/CD36 and FACS is likely a functional adaptive response to facilitate a greater rate of fatty acid activation in response to a greater rate of fatty acid transport, either among different types of muscles or in muscles in which capacity for fatty acid metabolism has been enhanced.  相似文献   

6.
7.
When microsomes from hypocotyls of Cucurbita pepo L. or coleoptiles of Zea mays L. were centrifuged on dextran-sucrose gradients a heterogeneity of auxin-accumulating vesicles was observed. Vesicles from the top part of the gradient showed saturable, specific accumulation of indole-3-acetic acid with only a small stimulation by phytotropins, and with very few binding sites for 1-N-naphthylphthalamic acid. In the vesicles from the lower part of the gradient, net accumulation of indole-3-acetic acid could be strongly increased by addition of phytotropins; binding of 1-N-naphthylphthalamic acid was high in this region. After two-phase partitioning, both kinds of vesicles were found in the upper-phase membrane fraction considered to be purified plasma membrane. The hypothesis is discussed that vesicles can be separated from the apical and basal parts of the cell's plasmalemma.Abbreviations CCO cytochrome-c oxidase - CCR KCN-insensitive NADH-dependent cytochrome-c reductase - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - IDPase inosine 5-diphosphatase - ION3 ionophore mixture of carbonylcyanide-3-chlorophenylhydrazone, nigericin and valinomycin - 1-NAA 1-naphthaleneacetic acid - NPA 1-N-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - UDPG uridine diphosphoglucose  相似文献   

8.
The molecular characteristics of thiamin (T) transport were studied in the small intestinal and renal brush border membrane vesicles of rats, using [3H]T at high specific activity. The effects of various chemical modifiers (amino acid blockers) on T uptake were examined and their specificity assessed. Treatment with the carboxylic specific blockers 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, (1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide hydrochloride and N-ethyl-5-phenylisoaxolium-3′-sulfonate (Woodward’s Reagent K) and with the sulfhydryl specific blocker p-chloromercuribenzene sulfonate inhibited T transport in both types of vesicles. Phenylglyoxal, but not ninhydrin, both reagents for arginine residues, and diethylpyrocarbonate, a reagent for histidine residues, specifically decreased T transport only in renal and small intestinal vesicles respectively. Similarly 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacted, but not N-acetylimidazole, both of which are reagents for tyrosine residues. However, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole inhibition was aspecific. Acetylsalicylic acid, a reagent for lysine and serine residues, decreased T transport, but the lysine effect was aspecific. Acetylsalicylic acid serine blockage also eliminated T/H+ exchange in small intestinal vesicles. Taken together, these results suggest that for T transport carboxylic and sulfhydryl groups and serine residues are essential in both renal and small intestinal brush border membrane vesicles. In addition, arginine and histidine residues are also essential respectively for renal and small intestinal transporters. Serine was essential for the T/H+ antiport mechanism.  相似文献   

9.
When [1-14C]indol-3yl-acetic acid ([1-14C]IAA) was applied to the upper surface of a mature foliage leaf of garden pea (Pisum sativum L. cv. Alderman), 14C effluxed basipetally but not acropetally from 30-mm-long internode segments excised 4 h after the application of [1-14C]IAA. This basipetal efflux was strongly inhibited by the inclusion of 3.10–6 mol· dm3 N-1-naphthylphthalamic acid (NPA) in the efflux buffer. In contrast, when [14C] sucrose was applied to the leaf, the efflux of label from stem segments excised subsequently was neither polar nor sensitive to NPA. The [1-14C]IAA was initially exported from mature leaves in the phloem — transport was rapid and apolar; label was recovered from aphids feeding on the stem; and label was recovered in exudates collected from severed petioles in 20 mM ethylenediaminetetraacetic acid. No 14C was detected in aphids feeding on the stems of plants to which [1-14C]IAA had been applied apically, even though the internode on which they were feeding transported considerable quantities of label. Localised applications of NPA to the stem strongly inhibited the basipetal transport of apically applied [1-14C]IAA, but did not affect transport of [1-14C]IAA in the phloem. These results demonstrate for the first time that IAA exported from leaves in the phloem can be transferred into the extravascular polar auxin transport pathway but that reciprocal transfer probably does not occur. In intact plants, transfer of foliar-applied [1-14C]IAA from the phloem to the polar auxin transport pathway was confined to immature tissues at the shoot apex. In plants in which all tissues above the fed leaf were removed before labelling, a limited transfer of IAA occurred in more mature regions of the stem.Abbreviations IAA indol-3yl-acetic acid - EDTA ethylenediaminetetraacetic acid - NPA N-1-naphthylphthalamic acid We are grateful to the Nuffield Foundation for supporting this research under the NUF-URB95 scheme and for the provision of a bursary to A.J.C. We thank Professor Dennis A. Baker for constructive comments on a draft of this paper and Mrs. Rosemary Bell for her able technical assistance.  相似文献   

10.
The transport of L-proline, L-lysine and L-glutamate in rat red blood cells has been studied. L-proline and L-lysine uptake were Na+-independent. When the concentration dependence was studied both showed a non-saturable uptake assimilable to a difussion-like process, with high Kd values (0.718 and 0.191 min–1 for L-proline and L-lysine respectively). Rat red blood cells showed high impermeability to L-glutamate. No sodium dependence was observed and the Kd value was low (0.067 min–1). Our results show firstly, that rat red blood cells do not have amino acid transport systems for anionic and cationic amino acids and secondly that erythrocytes show no sodium-dependent L-proline transport, and that these cells are very permeable to this amino acid.Abbreviations MeAIB methyl aminoisobutyric acid  相似文献   

11.
Summary Amino acids enter rabbit jejunal brush border membrane vesicles via three major transport systems: (1) simple passive diffusion; (2) Na-independent carriers; and (3) Na-dependent carriers. The passive permeability sequence of amino acids is very similar to that observed in other studies involving natural and artificial membranes. Based on uptake kinetics and cross-inhibition profiles, at least two Na-independent and three Na-dependent carrier-mediated pathways exist. One Na-independent pathway, similar to the classical L system, favors neutral amino acids, while the other pathway favors dibasic amino acids such as lysine. One Na-dependent pathway primarily serves neutrall-amino acids including 2-amino-2-norbornanecarboxylic acid hemihydrate (BCH), but not -alanine or -methylaminoisobutyric acid (MeAIB). Another Na-dependent route favors phenylalanine and methionine, while the third pathway is selective for imino acids and MeAIB. Li is unable to substitute for Na in these systems. Cross-inhibition profiles indicated that none of the Na-dependent systems conform to classical A or ACS paradigms. Other notable features of jejunal brush border vesicles include (1) no -alanine carrier, and (2) no major proline/glycine interactions.  相似文献   

12.
Transport processes across the plasma membrane of leaf vascular tissue are essential for transport and distribution of assimilates. In potato, leaves are the predominant sites for nitrate reduction and amino acid biosynthesis. From there, assimilated amino acids are exported through the phloem to supply tubers with organic nitrogen. To study the role of amino acid transporters in long-distance transport and allocation of organic nitrogen in potato plants, a gene encoding a functional, leaf-expressed amino acid permease StAAP1 was isolated. Similar to the sucrose transporter SUT1, StAAP1 expression was induced during the sink-to-source transition, indicating a role in phloem loading. To test the role of StAAP1, expression was inhibited by an antisense approach. Transgenic plants with reduced StAAP1 expression were phenotypically indistinguishable from wild type, as were photosynthetic capacity and tuber yield. However, tubers from antisense StAAP1 plants showed up to 50% reduction in free amino acid contents. In comparison, starch content was not affected or tended to increase relative to wild type. The reduction in all amino acids except aspartate in the antisense plants is consistent with the properties of amino acid permeases (AAPs) found in heterologous systems. The results demonstrate an important role for StAAP1 in long-distance transport of amino acids and highlight the importance of plasma membrane transport for nutrient distribution in plants.  相似文献   

13.
Aims:  The main objective of this study was to identify amino acid residues in the AGT1‐encoded α‐glucoside transporter (Agt1p) that are critical for efficient transport of maltotriose in the yeast Saccharomyces cerevisiae. Methods and Results:  The sequences of two AGT1‐encoded α‐glucoside transporters with different efficiencies of maltotriose transport in two Saccharomyces strains (WH310 and WH314) were compared. The sequence variations and discrepancies between these two proteins (Agt1pWH310 and Agt1pWH314) were investigated for potential effects on the functionality and maltotriose transport efficiency of these two AGT1‐encoded α‐glucoside transporters. A 23‐amino‐acid C‐terminal truncation proved not to be critical for maltotriose affinity. The identification of three amino acid differences, which potentially could have been instrumental in the transportation of maltotriose, were further investigated. Single mutations were created to restore the point mutations I505T, V549A and T557S one by one. The single site mutant V549A showed a decrease in maltotriose transport ability, and the I505T and T557S mutants showed complete reduction in maltotriose transport. Conclusions:  The amino acids Thr505 and Ser557, which are respectively located in the transmembrane (TM) segment TM11 and on the intracellular segment after TM12 of the AGT1‐encoded α‐glucoside transporters, are critical for efficient transport of maltotriose in S. cerevisiae. Significance and Impact of the Study:  Improved fermentation of starch and its dextrin products, such as maltotriose and maltose, would benefit the brewing and whisky industries. This study could facilitate the development of engineered maltotriose transporters adapted to starch‐efficient fermentation systems, and offers prospects for the development of yeast strains with improved maltose and maltotriose uptake capabilities that, in turn, could increase the overall fermentation efficiencies in the beer and whisky industries.  相似文献   

14.
Ekrem Dündar  Daniel R. Bush 《Planta》2009,229(5):1047-1056
The Arabidopsis thaliana At2g01170 gene is annotated as a putative gamma amino butyric acid (GABA) permease based on its sequence similarity to a yeast GABA transporting gene (UGA4). A cDNA of At2g01170 was expressed in yeast and analyzed for amino acid transport activity. Both direct measurement of amino acid transport and yeast growth experiments demonstrated that the At2g01170 encoded-protein exhibits transport activity for alanine, arginine, glutamate and lysine, but not for GABA or proline. Significantly, unlike other amino acid transporters described in plants to date, At2g01170 displayed both export and import activity. Based on that observation, it was named bidirectional amino acid transporter 1 (BAT1). Sequence comparisons show BAT1 is not a member of any previously defined amino acid transporter family. It does share, however, several conserved protein domains found in a variety of prokaryotic and eukaryotic amino acid transporters, suggesting membership in an ancient family of transporters. BAT1 is a single copy gene in the Arabidopsis genome, and its mRNA is ubiquitously expressed in all organs. A transposon—GUS gene-trap insert in the BAT1 gene displays GUS localization in the vascular tissues (Dundar in Ann Appl Biol, 2009) suggesting BAT1 may function in amino acid export from the phloem into sink tissues.  相似文献   

15.
The green alga Stichococcus bacillaris Naeg. is able to take up at least eleven amino acids. All of these except glutamic and aspartic acids are transported by carrier systems that obey saturation kinetics. The acidic amino acids enter the cell by passive diffusion. Michaelis-Menten parameters (Ks and Vmax) were calculated for several amino acids. All obey simple Michaelis-Menten behavior except for 2-methylalanine and leucine which may have double carrier systems of different affinities. Interactions between pairs of amino acids suggest that there is at least one carrier system specific for basic amino acids and probably several systems specific for neutral amino acids. Further analysis of neutral amino acid interactions reveal that the uptake of several amino acids is incompletely inhibited by competitor uptake at infinite concentration. The simplest interpretation of the data is the operation of three carrier systems for neutral amino acids, one of which has higher affinity and broader specificity than the other two. The amino acid carrier systems appear to operate by an active mechanism. The metabolic poison DCCD inhibits uptake up to 99%. The capacities of the neutral amino acid carrier systems are increased when cells are grown in medium containing suboptimal concentrations of nitrogen.  相似文献   

16.
Phenylacetic acid (PAA), a naturally-occurring acidic plant growth substance, was readily taken up by pea (Pisum sativum L. cv. Alderman) stem segments from buffered external solutions by a pH-dependent, non-mediated diffusion. Net uptake from a 0.2 M solution at pH 4.5 proceeded at a constant rate for at least 60 min and, up to approx. 100 M, the rate of uptake was directly proportional to the external concentration of the compound. The net rate of uptake of PAA was not affected by the inclusion of indol-3yl-acetic acid (IAA) in the uptake medium (up to approx. 30 M) and, unlike the net uptake of IAA, was not stimulated by N-1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid. At an external concentration of 0.2 M and pH 4.5, the net rate of uptake of PAA was about twice that of IAA. It was concluded that the uptake of PAA did not involve the participation of carriers and that PAA was not a transported substrate for the carriers involved in the uptake and polar transport of IAA. Nevertheless, the inclusion of 3–100 M unlabelled PAA in the external medium greatly stimulated the uptake by pea stem segments of [1-14C]IAA (external concentration 0.2 M). It was concluded that whilst PAA was not a transported substrate for the NPA-sensitive IAA efflux carrier, it interacted with this carrier to inhibit IAA efflux from cells. Over the concentration range 3–100 M, PAA progressively reduced the stimulatory effect of NPA on IAA uptake, indicating that PAA also inhibited carrier-mediated uptake of IAA. The consequences of these observations for the regulation of polar auxin transport are discussed.Abbreviations IAA indol-3yl-acetic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - NPA N-1-naphthylphthalamic acid - PAA phenylacetic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

17.
Intestinal brush border vesicles of a Mediterranean sea fish (Dicentrarchus labrax) were prepared using the Ca2+-sedimentation method. The transport of glucose, glycine and 2-aminoisobutyric acid is energized by an Na+ gradient (out > in). In addition, amino acid uptake requires Cl? in the extravesicular medium (2-aminoisobutyric acid more than glycine). This Na+- and Cl?-dependent uptake is electrogenic, since it can be stimulated by negative charges inside the vesicles. The specific Cl? requirement of glycine and 2-aminoisobutyric acid transport is markedly influenced by pH, a change from 6.5 to 8.4 reducing the role played by Cl?. In the presence of Cl?, the Km of 2-aminoisobutyric acid uptake is reduced and its Vmax is enhanced. Cl? affects also a non-saturable Na+-dependent component of this amino acid uptake. Amino acid transport is also increased by intravesicular Cl? (2-aminoisobutyric acid less than glycine). This effect is more concerned with glucose uptake, which can be then multiplied by 2.3. A concentration gradient (in > out) as well as the presence of Na+ in the incubation medium seems to enter into this requirement. This intravesicular Cl? effect is not influenced by pH between 6.5 and 8.4.  相似文献   

18.
SYNOPSIS. Uptake of 14C-labeled alanine, glutamate, lysine, methionine, proline, and phenylalanine by Trypanosoma equiperdum during 2-minute incubations occurred by diffusion and membrane-mediated processes. Amino acid metabolism was not detected by paper chromatography of trypanosome extracts. Most of 18 carbohydrates tested for ability to alter amino acid transport neither changed nor significantly inhibited transport. Glucose, however, stimulated glutamate, lysine and proline transport; fructose stimulated lysine uptake and 2-deoxy-D-glucose increased phenylalanine and methionine absorption. No evidence was found that the carbohydrates acted by binding to amino acid transport “sites.” Glucose inhibition of alanine, phenylalanine, and methionine uptake was linked to glycolysis. The rapid formation of alanine from glucose stimulated alanine release and, when glycolysis was blocked, glucose no longer inhibited alanine transport. Methionine and phenylalanine release was also stimulated by glucose. Glucose changed the ability of lysine, glutamate, and proline to inhibit each others’uptake, indicating that certain amino acids are preferentially absorbed by respiring cells. Analysis of free pool amino acid levels suggested that some amino acid transport systems in T. equiperdum are linked in such a way to glycolysis as to control the cell concentrations of these amino acids.  相似文献   

19.
We have used the technique of somatic cell hybridization to study the regulation of the neutral amino acid transport system L in Chinese hamster ovary (CHO) cells. The cell line CHO–;tsO25C1 has a temperature-sinsitive mutationin leucyl-tRNA synthetase. At the nonpermissive temperature of 39oC, CHO–tsO25C1 cells are unable to charge leucyl-tRNA and behave as though starved for leucine by increasing their system L transport activity two- to fourfold. From the temperature-sensitive cell line, we have isolated a regulatory mutant cell, CHO–C11B6, that has constitutively elevated system L transport activity. The CHO–C11B6 cell line retains the temperature-sensitive leucyl-tRNA synthetase mutation, but growth of this cell line is temperature resistant because its increased system L transport activity leads of increased intracellular leucine levels, which compensate for the defective. Hybrid cells formed by fusion of the temperature-sensitive CHO–;tsO25C1 cells the temperature-resistant CHO–C11B6 cells show temperature-sensitive growth and temperature-dependent regulation of leucine transport activity. These data suggest that the system L activity of CHO cells is regulated by a dominant-acting element that is defective or absent in the regulatory mutant CHO–C11B6 cell line.  相似文献   

20.
Synaptosomes were isolated from cerebrums of rats fed standard (20% protein) or protein-free diets for 30 days. Arrhenius plots of their (Na+/K+)ATPase activities revealed a transition temperature of 25.5°C for control rats and 23.4°C for rats on protein-free diet, indicating that the latter increases synaptosomal membrane fluidity. The only change observed in the composition of the synaptosomal membranes was a 26% decrease of sialic acid. In synaptosomes from rats on protein-free diet the uptake of tyrosine was slightly reduced while that of glutamate was not affected. However, the exit of glutamate was reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号