首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the removal of the type-2 copper from tree laccase (Rhus vernicifera) by treatment with EDTA at pH 5.2 in the presence of a redox buffer containing ferri- and ferrocyanide. The efficiency with which the copper is removed depends on the Fe(CN) 6(4-)/Fe(CN) 6(3-) ratio. We have varied this ratio from approx. 2:1 to about 50:1 and the best results were obtained with the highest ratio, i.e., the most cathodic solution potential. Nevertheless, the presence of Fe(CN) 6(3-) is required for the procedure to be effective. Although we cannot exclude the possibility that a mixed-valence form of laccase is the reactive species, we believe the results are better explained by a model which assumes that the removal of the type-2 copper depends upon an ordered sequence of oxidation-reduction reactions. Specifically, we propose that the copper is released as the monovalent ion from previously reduced laccase and then reoxidized in solution and sequestered with EDTA. The reoxidation step drives the reaction because recombination with the protein is inhibited when copper is in the divalent form. In testing this model, we have also shown that the type-2 copper can be removed under strictly reducing conditions when 4,4'-dicarboxy-2,2'-biquinoline (BCA) is present to complex the copper(I) ion. Although the BCA method is effective, the reaction takes longer, perhaps because of the limited solubility of BCA at the pH values of interest. Finally, we have found that the best results are obtained with either method when a cyanometalate ion such as Fe(CN) 6(3-) or Co(CN) 6(3-) is present in the medium. The exact role of this factor has yet to be established, but there is no indication that free cyanide has a role in the process. The most likely interpretation is that some type of binding interaction with the protein facilitates copper release.  相似文献   

2.
1. The type 2 copper in Rhus vernicifera laccase was completely removed without loss of other types of copper. The properties of this protein derivative and the role of type 2 copper in the catalytic action of laccase was investigated. 2. The molar extinction coefficient at 614 nm of the blue chromophore decreases from 5700 to 4700 cm-1 on removal of type 2 copper. There are no apparent absorption changes at other wavelengths in the visible or near ultraviolet region when this copper is taken away. The electron-paramagnetic-resonance (epr) parameter A parallel and the linewidth of type 1 Cu2+ decreases on removal of type 2 copper. 3. The rate of reduction of type 1 Cu2+ is not affected by removal of type 2 copper but the reduction of the two-electron acceptor is greatly impaired. These results strongly support the idea that type 1 Cu2+ is the primary site for electron transfer between substrate and enzyme and that the two-electron acceptor in the native enzyme is reduced by simultaneous electron transfer from reduced types 1 and 2 copper. 4. Reoxidation of types 1 and 3 copper and the formation of the oxygen intermediate are the same processes in native and type-2-depleted enzyme. These observations suggests that type 2 copper is not involved in the formation and rapid decay of the oxygen intermediate and that it is not necessary for the stabilization of this intermediate. 5. Two new epr signals are observed on reoxidation of reduced type-2-depleted laccase. One is temporarily formed on re-reduction of reoxidized enzyme and it is suggested that it might arise from copper, possibly type 3 copper. The other one is stable for hours and it is proposed that it might come from a modified oxygen intermediate.  相似文献   

3.
4.
Tree laccase, a multi-copper oxidase, has been studied as a copper donor in conjunction with the demetalated forms of three blue copper proteins. Copper transfer could be observed under reducing conditions in the absence of air. Only about 10% of the total copper in laccase could be transferred regardless of the amount of acceptor present in solution, hence, the laccase is heterogeneous as isolated. Potential sources of the heterogeneity are considered. After transfer, laccase could be partially resolved into copper-deficient and nearly holoprotein fractions that would not donate copper when recombined with acceptor protein. EPR results in conjunction with thiol titrations indicate that there is no net loss of type 1 copper from laccase but that there is loss of type 2 copper as well as a small amount of type 3 copper. Very little transfer is observed when type 2-depleted laccase is used as the donor. Finally, the implications that these results could have in the elucidation of possibly more physiologically relevant processes are briefly summarized.  相似文献   

5.
The interaction between hydrogen peroxide and oxidized Rhusvernicifera laccase from which the type 2 copper has been removed, was investigated. For that end, the circular dichroic spectrum of the modified enzyme has been measured in the presence of increasing concentrations of hydrogen peroxide. The characteristic band observed upon binding peroxide to native laccase is also observed for the type 2 copper depleted enzyme. However, there are several quantitative differences in the latter one. First, the intensity is lower and band width is larger. Secondly, from the titrations, it becomes apparent that the affinity for H2O2 is markedly lower than that of the native enzyme. While the affinity for the native enzyme is higher than 108 M?1, it decreases to 1·104 M?1 for the type 2 depleted enzyme.  相似文献   

6.
7.
8.
9.
A new procedure is described for preparing tree laccase that is missing the type 2 copper. The derivative has only about 5% of the activity of the native enzyme, and some, or all, of the residual activity could be due to traces of holoprotein. The type 1 copper is fully oxidized in the purified type-2-depleted protein, while the type 3 site is reduced to the extent of at least 85%. However, the type 3 coppers can be reoxidized by treatment with excess H2O2. Reconstitution is achieved by incubation with Cu(I), and the remetalated protein exhibits the activity and the spectral properties of the native enzyme. The type 2 copper is removed by dialysis against a redox buffer containing ferri- and ferrocyanide ions as well as EDTA. More than 25% of the total copper is removed from laccase during the procedure, but the type-2-depleted fraction is readily isolated by means of an ion-exchange column. The practical advantages of this procedure are described. Finally, the simplicity of the method raises hopes that the mechanism of depletion can be defined.  相似文献   

10.
The two steps of the titration of the Japanese-lacquer-tree (Rhus vernicifera) laccase with N3- [Morpurgo, Rotilio, Finazzi-Agrò & Mondovi (1974) Biochim. Biophys. Acta 336, 324-328; LuBien, Winkler, Thamann, Scott, Co, Hodgson & Solomon (1981) J. Am. Chem. Soc. 103, 7014-7016] were shown to be two distinct reactions, each involving one different portion of the native enzyme molecules. The difference consists in the oxidation state of the Type 3 Cu, which is reduced in the portion with higher affinity for N3- and oxidized in the portion with lower affinity for N3-. The difference is eliminated by treatment with oxidizing (H2O2) or reducing agents, and a single N3- adduct is then formed. The e.p.r. spectra of the H2O2-treated enzyme and of its F- derivatives support this interpretation of the results. The similarity of the spectroscopic properties of the high-affinity N3- adduct to those of the N3- adducts of half-met-haemocyanins and half-met-tyrosinase is discussed.  相似文献   

11.
J C Severns  D R McMillin 《Biochemistry》1990,29(37):8592-8597
Temperature-dependent structural changes involving the type 2 site in laccase are probed by EPR studies of a derivative of laccase in which the type 1 Cu has been replaced by Hg(II) [Morie-Bebel, M. M., Morris, M. C., Menzie, J. L., & McMillin, D. R. (1984) J. Am. Chem. Soc. 106, 3677-3678]. At the temperature extremes (123 and 299 K), single well-defined species are present, but at intermediate temperatures (between 213 and 253 K), the presence of multiple structures is indicated. For the first time, the room temperature EPR spectrum of the type 2 copper has been resolved. Azide binding and fluoride binding have also been studied as a function of temperature. The results suggest that each anion preferentially interacts with the type 3 site in fluid solution and that these adducts can be trapped by rapidly cooling the sample to 123 K. Annealing the adducts at 253 K permits rearrangement and binding at an equatorial position of the type 2 Cu. This pathway to anation at the type 2 site contrasts sharply with previous studies which required a large excess of anions, and it reveals important insight into the flexibility of the type 2/type 3 cluster in laccase.  相似文献   

12.
13.
14.
The room-temperature e.p.r. spectrum of the Japanese-lacquer-tree (Rhus vernicifera) laccase shows A parallel (the hyperfine splitting constant) and g parallel values of both the Type 1 and Type 2 Cu appreciably different from those measured at liquid-N2 temperature. The geometry of the sites, as inferred from the room-temperature e.p.r. parameters, is more consistent with their redox properties. A rough correlation is found between A parallel and g parallel values and redox potential of the blue copper in several enzymes.  相似文献   

15.
1. Redox titrations are reported of the metal centres in Japanese-lacquer-tree (Rhus vernicifera) laccase with ferrocyanide. 2. The redox potential of Type 1 Cu was found to increase with ferrocyanide concentration up to a limiting value similar to that for the Type 1 Cu in Type 2 Cu-depleted enzyme (which is independent of ferrocyanide concentration). 3. The redox potential of the two-electron acceptor (Type 3 Cu) is also independent of ferrocyanide concentration in Type 2 Cu-depleted enzyme and lower than values reported for the native enzyme. 4. The two-electron acceptor is present in the oxidized state in the Type 2 Cu-depleted enzyme, though the latter lacks the 330 nm absorption band. 5. The redox potential of Type 2 Cu also depends on ferrocyanide concentration, at least in the presence of azide. 6. The redox potentials are affected by freezing the solutions and/or addition of azide, the latter binding to Type 2 Cu with affinity dependent on the redox state of the two-electron acceptor.  相似文献   

16.
The 1H NMR spectra of the fully oxidized Rhus vernicifera laccase and of its 1:1 and 2:1 azide adducts are reported for the first time. These spectra, which are the first so far reported for a multi copper oxidase, contain a number of broad hyperfine-shifted resonances in the high frequency region of the spectrum, which are attributed to the metal binding residues of the mononuclear T1 center. The differences between the patterns of the hyperfine resonances of the free enzyme and its azide derivatives suggest that the alterations in the structural properties of the T3 site induced by the binding of the first azide molecule induce a limited alteration of the spin density distribution over the T1 copper ligands. Overall, these data demonstrate that 1H NMR can be fruitfully applied to characterize the electronic properties of the metal sites of blue oxidases at room temperature.  相似文献   

17.
1. Spectroscopic and functional properties of Japanese-lacquer-tree (Rhus vernicifera) laccase were re-investigated, with special emphasis on the relationships between the different types of copper centres (Types 1, 2, and 3). 2. On removal of the Type 2 Cu(II), a decrease of absorbance occurred in the wavelength region above 650 nm (delta epsilon 750 = 300 M-1 . cm-1) and around 330 nm (delta episom 330 up to 2200 M-1 . cm-1). 3. Reductive titrations with ascorbic acid or ferrocyanide showed that the electron-accepting capacity of the partial apoprotein is one electron-equivalent lower than that of the native protein, i.e. the protein two-electron acceptor is present in the oxidized state in spite of absorbance loss at 330 nm. 4. The 330 nm chromophore apparently depends on the presence of both the Type 2 and the Type 3 copper in the oxidized state. 5. This finding may have implications in the relative location of Type 2 and 3 copper centres and on the redox behaviour of laccase.  相似文献   

18.
The steady-state kinetics of laccasse (monophenol, dihydroxyphenylalanine: oxygen oxidoreductase, EC 1.14.18.1) from the lacquer tree Rhus vernicifera is investigated using the respirograph method to produce Lineweaver-Burk plots of oxygen consumption rate against oxygen concentration. A ping-pong mechanisms is established. The kinetic constants obtained according to the model is in close agreement with the corresponding values obtained from earlier studies on the transient reactions between the reduced enzyme and oxygen (Andréasson, L.E., Br?ndén, R. and Reinhammar, B. (1976) Biochim. Biophys. Acta 438, 370--379) and between the oxidized enzyme and reducing substrates (Andréasson, L.E. and Reinhammar, B. (1976) Biochim. Biophys. Acta 445, 579--597).  相似文献   

19.
The reaction of oxidized Rhusvernicifera laccase and H2O2 leads specifically to the formation of a stable, high affinity complex. It is characterized by an absorption band at 325 nm and is most probably formed with the type 3 site. Oxidative titrations of laccase show a different pathway from the reductive ones. This is also expressed in different Nernst coefficients observed for each half of the redox cycle (2 for reduction, 1 for oxidation). Oxidation of the type 3 site by H2O2 proceeds in a bimolecular reaction, whereas type 1 is oxidized in an indirect pathway.  相似文献   

20.
The reactions of Rhus vernicifera (monophenol,dihydroxyphenylalanine: oxygen oxidoreductase, EC 1.14.18.1) with the reducing substrates hydroquinone and ascorbic acid have been investigated with the stopped-flow technique. Rhus laccase appears to be present in two molecular forms with a pH-sensitive equilibrium constant regulating the relative concentrations of each species. A model for the reaction of Rhus laccase with reducing substrates has been formulated. The model is similar to one formulated earlier for the anaerobic reduction of laccase from Polyporus versicolor (Andréasson, L.-E., Malstr?m, B.G., Str?mberg, C. and V?nng?rd, T. (1973) Eur. J. Biochem. 34, 434-439) and accounts for the reduction also of this enzyme. The essentials of the model are as follows: Electrons are taken up from reductants one at a time. The type 1 Cu2+ has a central role in mediating the transfer of at least one of the electrons needed for the reduction of the co-operative two-electron acceptor. Intramolecular reactions determine the concentrations of two molecular forms of the enzyme and influence the rate of reduction of the two-electron acceptor. The model, which has been used for successful simulations of the anaerobic reduction of Rhus laccase, is capable of explaining the reduction of laccases also in the presence of the inhibitor F-. In addition, the model gives an explanation of the behaviour of the laccases when reducing substrates and O2 are simultaneously present and is consistent with earlier observations of the post-steady-state reduction of the type 1 Cu2+ and the two-electron accetor (Holwerda, R.A. and Gray, H.B. (1974) J. Am. Chem. Soc. 96, 6008-6022).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号