首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K cyclin encoded by Kaposi's sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.  相似文献   

2.
When suspended in methylcellulose, primary mouse keratinocytes cease proliferation and differentiate. Suspension also reduces the activity of the cyclin-dependent kinase cdk2, an important cell cycle regulatory enzyme. To determine how suspension modulates these events, we examined its effects on wild-type keratinocytes and keratinocytes nullizygous for the cdk2 inhibitor p21(Cip1). After suspension of cycling cells, amounts of cyclin A (a cdk2 partner), cyclin A mRNA, and cyclin A-associated activity decreased much more rapidly in the presence than in the absence of p21(Cip1). Neither suspension nor p21(Cip1) status affected the stability of cyclin A mRNA. Loss of p21(Cip1) reduced the capacity of suspended cells to growth arrest, differentiate, and accumulate p27(Kip1) (a second cdk2 inhibitor) and affected the composition of E2F DNA binding complexes. Cyclin A-cdk2 complexes in suspended p21(+/+) cells contained p21(Cip1) or p27(Kip1), whereas most of the cyclin A-cdk2 complexes in p21(-/-) cells lacked p27(Kip1). Ectopic expression of p21(Cip1) allowed p21(-/-) keratinocytes to efficiently down-regulate cyclin A and differentiate when placed in suspension. These findings show that p21(Cip1) mediates the effects of suspension on numerous processes in primary keratinocytes including cdk2 activity, cyclin A expression, cell cycle progression, and differentiation.  相似文献   

3.
4.
It has been proposed that the functions of the cyclin-dependent kinase inhibitors p21Cip1/Waf1 and p27Kip1 are limited to cell cycle control at the G1/S-phase transition and in the maintenance of cellular quiescence. To test the validity of this hypothesis, p21 was expressed in a diverse panel of cell lines, thus isolating the effects of p21 activity from the pleiotropic effects of upstream signaling pathways that normally induce p21 expression. The data show that at physiological levels of accumulation, p21, in addition to its role in negatively regulating the G1/S transition, contributes to regulation of the G2/M transition. Both G1- and G2-arrested cells were observed in all cell types, with different preponderances. Preponderant G1 arrest in response to p21 expression correlated with the presence of functional pRb. G2 arrest was more prominent in pRb-negative cells. The arrest distribution did not correlate with the p53 status, and proliferating-cell nuclear antigen (PCNA) binding activity of p21 did not appear to be involved, since p27, which lacks a PCNA binding domain, produced similar arrest Bs. In addition, DNA endoreduplication occurred in pRb-negative but not in pRb-positive cells, suggesting that functional pRb is necessary to prevent DNA replication in p21 G2-arrested cells. These results suggest that the primary target of the Cip/Kip family of inhibitors leading to efficient G1 arrest as well as to blockade of DNA replication from either G1 or G2 phase is the pRb regulatory system. Finally, the tendency of Rb-negative cells to undergo endoreduplication cycles when p21 is expressed may have negative implications in the therapy of Rb-negative cancers with genotoxic agents that activate the p53/p21 pathway.  相似文献   

5.
The cyclin-dependent kinase inhibitors, p21(Cip1) and p27(Kip1), play an important role in the regulation of progression through G(1) to S phase in mammalian cells. Here we report that confluent 3T3 cells expressed p21(Cip1) and p27(Kip1) predominantly in the nucleus, and the level of both proteins declined as the cells entered the cell cycle and progressed through G(1) in response to serum growth factors. However, when confluent cells were serum starved prior to treatment, no downregulation of p21(Cip1) or p27(Kip1) expression was observed. Notably, serum starvation did not significantly influence the capacity of the cells to progress to the S phase. It was observed that serum starvation reduced cell density. Further, when cells were plated at a range of different densities, starved of serum to render them quiescent and then subsequently treated with serum, a reduction in p21(Cip1) and p27(Kip1) expression was observed in cells plated at high density but not in those at low density. Again, the extent and timing of progression to S phase was not influenced by cell density. To establish the potential role of cell:cell contact in the observed density-dependent regulation of p21(Cip1) and p27(Kip1) expression, cells were plated onto micorarrays of adhesive islands that prevented individual cells from making any contact with other cells. Under these conditions serum growth factors induced p21(Cip1) and p27(Kip1) downregulation, and hence, there is no requirement for cell:cell contact. Together, these data indicate that there are conditions under which 3T3 cells can progress to the S phase without downregulation of p21(Cip1) and p27(Kip1). The significance of these observations and mechanisms by which density-dependent regulation of p21(Cip1) and p27(Kip1) expression may occur are discussed.  相似文献   

6.
Fucoxanthin, a natural carotenoid, has been reported to have antitumorigenic activity in mouse colon, skin and duodenum models. The present study was designed to evaluate the molecular mechanisms of fucoxanthin against colon cancer using the human colon adenocarcinoma cell lines. Fucoxanthin reduced the viability of WiDr cells in a dose-dependent manner accompanied by the induction of cell cycle arrest during the G0/G1 phase at 25 microM and apoptosis at 50 microM. Fucoxanthin at 25 microM inhibited the phosphorylation of the retinoblastoma protein (pRb) at Ser780 and Ser807/811 24 h after treatment without changes in the protein levels of the D-types of cyclin and cyclin-dependent kinase (cdk) 4, whose complexes are responsible for the phosphorylation of pRb at these sites. A cdk inhibitory protein, p21WAF1/Cip1 increased 24 h after the treatment with 25 microM of fucoxanthin, but not p27Kip1. In addition, the mRNA of p21WAF1/Cip1 also increased in a dose-dependent manner. According to the experiments using the isogenic human colon adenocarcinoma cell lines, fucoxanthin failed to induce G0/G1 arrest in the p21-deficient HCT116 cells, but not in HCT116 wild-type cells. All of these findings showed that fucoxanthin inhibited proliferation of colon cancer cells. The inhibitory mechanism is due to the cell cycle arrest during the G0/G1 phase mediated through the up-regulation of p21WAF1/Cip1, which may be related to the antitumorigenic activity.  相似文献   

7.
The cyclin-dependent kinase (Cdk) inhibitors p21(Cip1) and p27(Kip1) have been proposed to exert redundant functions in cell cycle progression and differentiation programs, although nonoverlapping functions have also been described. To gain further insights into the relevant mechanisms and to detect possible functional differences between both proteins, we conditionally expressed p21(Cip1) and p27(Kip1) in K562, a multipotent human leukemia cell line. Temporal ectopic expression of either p21(Cip1) or p27(Kip1) arrested proliferation, inhibited Cdk2 and Cdk4 activities, and suppressed retinoblastoma phosphorylation. However, whereas p21(Cip1) arrested cells in both G(1) and G(2) cell cycle phases, p27(Kip1) blocked the G(1)/S-phase transition. Furthermore, although both p21(Cip1) and p27(Kip1) associated with Cdk6, only p27(Kip1) significantly inhibited its activity. Most importantly, each protein promoted differentiation along a distinct pathway; p21(Cip1) triggered megakaryocytic maturation, whereas p27(Kip1) resulted in the expression of erythroid markers. Consistently, p21(Cip1) and p27(Kip1) were rapid and transiently up-regulated when K562 cells are differentiated into megakaryocytic and erythroid lineages, respectively. These findings demonstrate distinct functions of p21(Cip1) and p27(Kip1) in cell cycle regulation and differentiation and indicate that these two highly related proteins possess unique biological activities and are not functionally interchangeable.  相似文献   

8.
The cyclin-dependent kinase inhibitors interact with cyclin-cdk complexes to arrest mitogen-stimulated transit through the cell cycle, but these proteins have recently been shown to have positive regulatory effects on cyclin-cdk complex activity as well. Most of the previous work in this area has focussed on the finding that overexpressed p21(Waf1/Cip1) causes growth arrest. However, mice lacking p21(Waf1/Cip1) showed normal development with no aberrancy in their cell cycles, and antisense p21(Waf1/Cip1) has only been shown to prevent cell cycle arrest, leading to the conclusion that the cyclin kinase inhibitors may not be required for cell cycle progression. We found that transfection of several lines of vascular smooth muscle cells with antisense oligodeoxynucleotide specific to p21(Waf1/Cip1) correlates with decreased cyclin D1/cdk 4, but not cyclin E/cdk 2, association, yet, unexpectedly, results in dose-dependent inhibition of platelet-derived growth factor-BB-stimulated DNA synthesis and cell proliferation. Our finding that p21(Waf1/Cip1) exhibits permissive effects on growth factor-induced vascular smooth muscle cell cycle progression, such that its presence is required for growth factor-induced proliferation, is the first such report and opens up a fertile area of research relevant to diseases involving vascular cell proliferation.  相似文献   

9.
p27(Kip1) is an inducer of intestinal epithelial cell differentiation   总被引:2,自引:0,他引:2  
Constant renewal of the intestinal epitheliumis a highly coordinated process that has been subject to intenseinvestigation, but its regulatory mechanisms are still essentiallyunknown. In this study, we have demonstrated that forced expression ofthe cyclin-dependent kinase inhibitors (CKIs) p27Kip1 andp21Cip1/WAF1 in human intestinal epithelial cells led toexpression of differentiation markers at both the mRNA and proteinlevels. Cell differentiation was temporally dissociated from inhibitionof retinoblastoma protein phosphorylation and growth arrest, alreadyestablished 1 day after infection with recombinant adenoviruses.p27Kip1 proved significantly more efficient thanp21Cip1/WAF1 in induction of cell differentiation. Incontrast, forced expression of p16INK4a resulted in growtharrest without induction of differentiation markers. These resultsimplicate both p27Kip1 and p21Cip1/WAF1 in thedifferentiation-timing process, but p21Cip1/WAF1 may actindirectly by increasing p27Kip1 levels. These results alsosuggest that induction of intestinal epithelial cell differentiation byCKIs is not related to their effects on the cell cycle and may involveinteractions with cellular components other than cyclins andcyclin-dependent kinases.

  相似文献   

10.
Activation of the somatostatin receptor sst2 inhibits cell proliferation by a mechanism involving the stimulation of the protein-tyrosine phosphatase SHP-1. The cell cycle regulatory events leading to sst2-mediated growth arrest are not known. Here, we report that treatment of Chinese hamster ovary cells expressing sst2 with the somatostatin analogue, RC-160, led to G1 cell cycle arrest and inhibition of insulin-induced S-phase entry through induction of the cyclin-dependent kinase inhibitor p27(Kip1). Consequently, a decrease of p27(Kip1)-cdk2 association, an inhibition of insulin-induced cyclin E-cdk2 kinase activity, and an accumulation of hypophosphorylated retinoblastoma gene product (Rb) were observed. However, RC-160 had no effect on the p21(Waf1/Cip1). When sst2 was coexpressed with a catalytically inactive mutant SHP-1 in Chinese hamster ovary cells, mutant SHP-1 induced entry into cell cycle and down-regulation of p27(Kip1) and prevented modulation by insulin and RC-160 of p27(Kip1) expression, p27(Kip1)-cdk2 association, cyclin E-cdk2 kinase activity, and the phosphorylation state of Rb. In mouse pancreatic acini, RC-160 reverted down-regulation of p27(Kip1) induced by a mitogen, and this effect did not occur in acini from viable motheaten (mev/mev) mice expressing a mutant SHP-1 with markedly deficient enzymes. These findings provide the first evidence that sst2 induces cell cycle arrest through the up-regulation of p27(Kip1) and demonstrate that SHP-1 is required for maintaining high inhibitory levels of p27(Kip1) and is a critical target of the insulin, and somatostatin signaling cascade, leading to the modulation of p27(Kip1).  相似文献   

11.
12.
Neutrophil elastase (NE), a serine protease present in high concentrations in the airways of cystic fibrosis patients, injures the airway epithelium. We examined the epithelial response to NE-mediated proteolytic injury. We have previously reported that NE treatment of airway epithelial cells causes a marked decrease in epithelial DNA synthesis and proliferation. We hypothesized that NE inhibits DNA synthesis by arresting cell cycle progression. Progression through the cell cycle is positively regulated by cyclin complexes and negatively regulated by cyclin-dependent kinase inhibitors (CKI). To test whether NE arrests cell cycle progression, we treated normal human bronchial epithelial (NHBE) cells with NE (50 nM) or control vehicle for 24 h and assessed the effect of treatment on the cell cycle by flow cytometry. NE treatment resulted in G(1) arrest. Arrest in G(1) phase may be the result of CKI inhibition of the cyclin E complex; therefore, we evaluated whether NE upregulated CKI expression and/or affected the interaction of CKIs with the cyclin E complex. Following NE or control vehicle treatment, expression of p27(Kip1), a member of the Cip/Kip family, was evaluated. NE increased p27(Kip1) gene and protein expression. NE increased the coimmunoprecipitation of p27(Kip1) with cyclin E complex, suggesting that p27(Kip1) inhibited cyclin E complex activity. Our results demonstrate that p27 is regulated by NE and is critical for NE-induced cell cycle arrest.  相似文献   

13.
14.
Pentagalloylglucose, which is found in many medicinal plants, can arrest the cell cycle at G(1) phase through down-regulation of cyclin-dependent kinases 2 and 4 and up-regulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(Cip1/WAF1) in human breast cancer cells. Pentagalloylglucose also induces apoptosis in human leukemic cells. However, the mechanisms by which pentagalloylglucose induces these effects is unclear. We now show that pentagalloylglucose inhibits the activities of purified 20 and 26 S proteasomes in vitro, the 26 S proteasome in Jurkat T cell lysates, and chymotrypsin-like activity of the 26 S proteasome in intact Jurkat T cells. The turnover of p27(Kip1) and p21(Cip1/WAF1), which is necessary for cell cycle progression mediated by proteasome degradation, was disrupted by treatment of human Jurkat T cells with pentagalloylglucose. This was shown by cycloheximide treatment and in vivo pulse-chase labeling experiments, and this effect correlated with the arrest of proliferation of Jurkat T cells at G(1). Inhibition of the proteasome by pentagalloylglucose and by the proteasome inhibitor MG132 caused accumulation of ubiquitin-tagged proteins in Jurkat T cells. The addition of pentagalloylglucose to Jurkat T cells enhanced the stability of the proteasome substrate Bax and increased cytochrome c release and apoptosis. Our findings suggest a mechanism for the effect of pentagalloylglucose on the cell cycle in human leukemic cells: that pentagalloylglucose down-regulates proteasome-mediated pathways because it is a proteasome inhibitor.  相似文献   

15.
Induction of G(1) arrest by TGF-beta correlates with the regulation of p21(Cip1) and p27(Kip1), members of the Cip/Kip family of cyclin-dependent kinase inhibitors (cki). However, no definitive evidence exists that these proteins play a causal role in TGF-beta(1)-induced growth arrest in lymphocytes. In this report we show the suppression of cell cycle progression by TGF-beta is diminished in T cells from mice deficient for both p21(Cip1) and p27(Kip1) (double-knockout (DKO)) only when activated under conditions of optimal costimulation. Although there is an IL-2-dependent enhanced proliferation of CD8(+) T cells from DKO mice, TGF-beta is able to maximally suppress the proliferation of DKO T cells when activated under conditions of low costimulatory strength. We also show that the induction of p15(Ink4b) in T cells stimulated in the presence of TGF-beta is not essential, as TGF-beta also efficiently suppressed proliferation of T cells from p15(Ink4b-/-) mice. Finally, although these cki are dispensable for the suppression of T cell proliferation by TGF-beta, we now describe a Smad3-dependent down-regulation of cdk4, suggesting a potential mechanism underlying to resistance of Smad3(-/-) T cells to the induction of growth arrest by TGF-beta. In summary, the growth suppressive effects of TGF-beta in naive T cells are a function of the strength of costimulation, and alterations in the expression of cki modify the sensitivity to TGF-beta by lowering thresholds for a maximal mitogenic response.  相似文献   

16.
p53 checkpoint-defective cells are sensitive to X rays, but not hypoxia   总被引:2,自引:0,他引:2  
X-ray-induced damage leads to cell-cycle "checkpoint" arrest by p53-dependent induction of the cyclin-dependent kinase inhibitor p21 (Waf1/Cip1/Sdi1). Human tumor cells that lack this response fail to arrest after exposure to DNA-damaging agents, undergo multiple rounds of endoreduplicative DNA synthesis, and eventually commit to an apoptotic cell death. Since low oxygen tension can also induce p53 protein accumulation, and can lead to cell-cycle arrest or apoptosis, we examined the expression of p21 in tumor cells under normoxic and hypoxic conditions. In a survey of cells, mRNA for the p21 gene was induced two- to threefold in response to hypoxia in a seemingly p53-independent manner. We therefore examined genetically matched cells that differ in their p21 and p53 status for response to ionizing radiation and hypoxia. We found that both p21-deficient and p53-deficient cells exhibit an increase in chromosome instability, an increased level of apoptosis, and a failure to arrest after exposure to ionizing radiation. However, cells that lack either p21 or p53 exhibit no increase in chromosome instability or elevated apoptosis and still arrest in response to hypoxia. Thus, the mechanism responsible for the differential response to either hypoxia or X rays presumably lies in the control of cell-cycle progression in response to stress and its dependence on p21. Since the loss of a DNA-damage-dependent checkpoint does not sensitize cells to killing by stresses that elicit a DNA-damage-independent checkpoint, targeting the function of p21 pharmacologically will not kill tumor cells in situ in the absence of a DNA damage signal.  相似文献   

17.
Taste buds are specialized epithelial cell clusters in the oral squamous cell epithelium. Although taste buds have been reported to renew rapidly, the mechanism of cell cycle control in these specialized structures remains unresolved. To clarify the cell cycle status and role of cyclin-dependent kinase inhibitors (CDKI) for cell cycle control in the taste buds, we analyzed cell proliferation activity using bromodeoxyuridine (BrdU) and Ki-67 immunostainings and the expression of the Cip/Kip family of CDKI (p21Cip1, p27Kip1, and p57Kip2) in the circumvallate papillae of mouse and hamster. BrdU-positive cells were detected in the basal layer of the oral epithelium. In the taste buds, Ki-67-positive cells were seen in the basal area, with only a very few positive cells in the taste buds. Both p21Cip1 and p27Kip1 positive cells were seen in the suprabasal layer of the non-gustatory oral epithelium. In the taste buds, stronger p27Kip1 staining was detected than in the non-gustatory epithelium. Western blotting analysis revealed that p27Kip1 was abundant in the mucosal tissues from circumvallate papillae. Thus, our study suggests that the taste bud cells except for basal cells are post-mitotic cells and that the cell cycle arrest associated with taste bud cell differentiation could be regulated predominantly by p27Kip1.  相似文献   

18.
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. The long-term effect of progestins on T-47D breast cancer cells is inhibition of cellular proliferation. This is accompanied by decreased G(1) cyclin-dependent kinase (CDK) activities, redistribution of the CDK inhibitor p27(Kip1) among these CDK complexes, and alterations in the elution profile of cyclin E-Cdk2 upon gel filtration chromatography, such that high-molecular-weight complexes predominate. This study aimed to determine the relative contribution of CDK inhibitors to these events. Following progestin treatment, the majority of cyclin E- and D-CDK complexes were bound to p27(Kip1) and few were bound to p21(Cip1). In vitro, recombinant His(6)-p27 could quantitatively reproduce the effects on cyclin E-Cdk2 kinase activity and the shift in molecular weight observed following progestin treatment. In contrast, cyclin D-Cdk4 was not inhibited by His(6)-p27 in vitro or p27(Kip1) in vivo. However, an increase in the expression of the Cdk4/6 inhibitor p18(INK4c) and its extensive association with Cdk4 and Cdk6 were apparent following progestin treatment. Recombinant p18(INK4c) led to the reassortment of cyclin-CDK-CDK inhibitor complexes in vitro, with consequent decrease in cyclin E-Cdk2 activity. These results suggest a concerted model of progestin action whereby p27(Kip1) and p18(INK4c) cooperate to inhibit cyclin E-Cdk2 and Cdk4. Since similar models have been developed for growth inhibition by transforming growth factor beta and during adipogenesis, interaction between the Cip/Kip and INK4 families of inhibitors may be a common theme in physiological growth arrest and differentiation.  相似文献   

19.
This study investigates molecular mechanisms underlying cell cycle arrest when cells are exposed to high levels of oxygen (hyperoxia). Hyperoxia has previously been shown to increase expression of the cell cycle regulators p53 and p21. In the current study, we found that p53-deficient human lung adenocarcinoma H1299 cells failed to induce p21 or growth arrest in G(1) when exposed to 95% oxygen. Instead, cells arrested in S and G(2). Stable expression of p53 restored induction of p21 and G(1) arrest without affecting mRNA expression of the other Cip or INK4 G(1) kinase inhibitors. To confirm the role of p21 in G(1) arrest, we created H1299 cells with tetracycline-inducible expression of enhanced green fluorescent protein (EGFP), EGFP fused to p21 (EGFp21), or EGFP fused to p27 (EGFp27), a related cell cycle inhibitor. The amino terminus of p21 and p27 bind cyclin-dependent kinases (Cdk), whereas the carboxy terminus of p21 binds the sliding clamp proliferating cell nuclear antigen (PCNA). EGFp21 or EGFp27, but not EGFP by itself, restored G(1) arrest during hyperoxia. When separately overexpressed, the amino-terminal Cdk and carboxy-terminal PCNA binding domains of p21 each prevented cells from exiting G(1) during exposure. These findings demonstrate that exposure in vitro to hyperoxia exerts G(1) arrest through p53-dependent induction of p21 that suppresses Cdk and PCNA activity. Because PCNA also participates in DNA repair, these results raise the possibility that p21 also affects repair of oxidized DNA.  相似文献   

20.
Th1 cells exposed to Ag and the G(1) blocker n-butyrate in primary cultures lose their ability to proliferate in Ag-stimulated secondary cultures. The ability of n-butyrate to induce anergy in Ag-stimulated, but not resting, Th1 cells was shown here to be blocked by cycloheximide. Subsequent experiments to delineate the nature of the protein apparently required for n-butyrate-induced Th1 cell anergy focused on the role of cyclin-dependent kinase (cdk) inhibitors p21(Cip1) and p27(Kip1). Normally, entry into S phase by Th1 cells occurs around 24 h after Ag stimulation and corresponds with relatively low levels of both p21(Cip1) and p27(Kip1). However, unlike control Th1 cells, anergic Th1 cells contained high levels of both p21(Cip1) and p27(Kip1) when examined 24 h after Ag stimulation. The increase in p21(Cip1) observed in Ag-stimulated anergic Th1 cells appeared to be initiated in primary cultures. In contrast, the increase in p27(Kip1) observed in these anergic Th1 cells appears to represent a re-expression of the protein much earlier than control cells following Ag stimulation in secondary cultures. The anergic Th1 cells contained functionally active cdk inhibitors capable of inhibiting the activity of both endogenous and exogenous cdks. Consequently, it appears that n-butyrate-induced anergy in Th1 cells correlated with the up-regulation of p21(Cip1) and perhaps the downstream failure to maintain low levels of p27(Kip1). Increased levels of both p21(Cip1) and p27(Kip1) at the end of G(1) could prevent cdk-mediated entry into S phase, and thus help maintain the proliferative unresponsiveness found in the anergic Th1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号