首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eutrophication contributes to the proliferation of alien invasive weed species such as water hyacinth Eichhornia crassipes. Although the South American moth Niphograpta albiguttalis was released in South Africa in 1990 as a biological control agent against water hyacinth, no post-release evaluations have yet been conducted here. The impact of N. albiguttalis on water hyacinth growth was quantified under low-, medium- and high-nutrient concentrations in a greenhouse experiment. Niphograpta albiguttalis was damaging to water hyacinth in all three nutrient treatments, but significant damage in most plant parameters was found only under high-nutrient treatments. However, E. crassipes plants grown in high-nutrient water were healthier, and presumably had higher fitness, than plants not exposed to herbivory at lower-nutrient levels. Niphograpta albiguttalis is likely to be most damaging to water hyacinth in eutrophic water systems, but the damage will not result in acceptable levels of control because of the plant's high productivity under these conditions. Niphograpta albiguttalis is a suitable agent for controlling water hyacinth infestations in eutrophic water systems, but should be used in combination with other biological control agents and included in an integrated management plan also involving herbicidal control and water quality management.  相似文献   

2.
《Aquatic Botany》2005,81(1):51-67
Mathematical models of the growth of water hyacinth are developed to provide a sound basis for assessing existing and potential control options. We show that under constant experimental conditions, water hyacinth shows logistic growth (r2 of 0.69–1.00). The effects of nutrients and temperature on model parameters are explored using data from the literature. The model is verified against growth in a natural infestation. The resulting model incorporates two of the most important factors (temperature and water nutrient level) that determine whether water hyacinth is an important environmental problem at a given site. These relationships form a robust basis for further model development, and can be readily used to evaluate how the plant will respond to changes in nutrient inputs.  相似文献   

3.
South Africa has some of the most eutrophic aquatic systems in the world, as a result of the adoption of an unnecessarily high 1 mg l−1 phosphorus (P) standard for all water treatment works in the 1970 s. The floating aquatic macrophyte, water hyacinth (Eichhornia crassipes (Mart.) Solms (Pontederiaceae)), has taken advantage of these nutrient rich systems, becoming highly invasive and damaging. Despite the implementation of a biological control programme in South Africa, water hyacinth remains the worst aquatic weed. A meta-analysis of published and unpublished laboratory studies that investigated the combined effect of P and nitrogen (N) water nutrient concentration and control agent herbivory showed that water nutrient status was more important than herbivory in water hyacinth growth. Analysis of long-term field data collected monthly from 14 sites around South Africa between 2004 and 2005 supported these findings. Therefore the first step in any water hyacinth control programme should be to reduce the nutrient status of the water body.  相似文献   

4.
1. Bottom‐up regulation is prevalent in plant–herbivore interactions and is thought to be particularly important in the case of aquatic plants and their specialist insect herbivores. 2. Recently published mesocosm studies have shown that the abundance of specialist Neochetina weevils, N. bruchi and N. eichhorniae, on water hyacinth (Eichhornia crassipes) are principally under the influence of nutrients in plant tissues. 3. We examined historical patterns of the abundance of these species of semi‐aquatic weevils in two water bodies from catchments with significantly different nutrient loads in subtropical Australia to test the validity of the published conceptual model of bottom‐up regulation. 4. Our results revealed that these weevils are indeed under bottom‐up regulation under field conditions. However, the nature of this regulation appears to be influenced by the broader catchment context of the water hyacinth‐infested water body, with plant tissue nutrients influencing weevil abundance more in the catchment with lower nutrient run‐offs. 5. Our findings reaffirm the importance of bottom‐up regulation in plant–insect interactions, add to the growing evidence of indirect effects spanning terrestrial and aquatic ecosystems, and inform management of water hyacinth using these weevils as biocontrol agents.  相似文献   

5.
We assessed the effect of two biological control agents, the mirid Eccritotarsus catarinensis (Carvalho) and the weevil Neochetina eichhorniae (Warner), singly or in combination, on the competitive ability of their host plant, water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub., grown in a screen house, in competition with another aquatic plant (Pistia stratiotes L.). Water hyacinth plant growth characteristics measured included fresh weight, leaf and petiole lengths, number of inflorescences produced, and new shoots. Without herbivory, water hyacinth was 18 times more competitive than water lettuce (across all experimental combinations of initial plant densities), as estimated from fresh weights. Both insect species, singly or in combination, reduced water hyacinth plant growth characteristics. E. catarinensis alone was less damaging than the weevil and under normal conditions, i.e., floating water hyacinth, is not expected to increase control of water hyacinth beyond that of the weevil. When combined with the weevil, half the inoculum of weevils and half the inoculum of mirids produced the same growth reduction as the full inoculum of the weevil. Under conditions where the weevils are not effective because water hyacinths are seasonally rooted in mud, the mirid, which lives entirely on leaves, should become a useful additional biological control agent. Handling Editor: John Scott.  相似文献   

6.
Four ectomycorrhizal fungi were tested for their ability to grow (i.e., mycelial mat radial extension and fungal biomass) on nutrient media either supplemented with ammonium-nitrogen or nitrate-nitrogen or in the absence of an inorganic nitrogen source.Pisolithus tinctorius, Cenococcum geophilum andThelephora terrestris exhibited greater growth on ammonium-nitrogen.Suillus granulatus grew better on the nitrate-nitrogen nutrient medium. Regardless of inorganic nitrogen form preference (i.e., ammonium-nitrogen or nitrate-nitrogen), all 4 species showed some growth on each of the 3 nutrient media. Growth rate maxima varied by fungal species as well as by inorganic nitrogen source. Maximum growth rate forT. terrestris exceeded rates exhibited by the other 3 fungi by 2–5 times.  相似文献   

7.
《Aquatic Botany》2007,86(2):179-186
Many water hyacinth infestations in South Africa are the symptom of eutrophication, and as a result, biological control of this weed is variable. This study examined the effects of herbivory by the mirid, Eccritotarsus catarinensis, on water hyacinth grown at high, medium and low nitrogen (N) and phosphorus (P) nutrient concentrations. Water nutrient concentration appears to be the overriding factor affecting plant growth parameters of water hyacinth plants—at high nutrient concentrations, leaf and daughter plant production were more than double than at low nutrient concentrations, while stem length was twice as great at high nutrient concentrations compared to low concentrations. Chlorophyll content was also twice as high at high nutrient concentrations than low concentrations. Conversely, flower production at high nutrient concentrations was less than half that at low concentrations. Herbivory by E. catarinensis did not have as great an effect on water hyacinth vigour as nutrient concentration did, although it significantly reduced the production of daughter plants by 23 ± 9%, the length of the second petiole by 13 ± 5%, and chlorophyll content of water hyacinth leaves by 15 ± 6%. In terms of insect numbers, mirids performed better on plants grown under medium nutrient conditions (99 ± 28 S.E.), compared to high nutrient concentrations (52 ± 27 S.E.), and low nutrient concentrations (25 ± 30 S.E.). Thus, these results suggest that the fastest and most significant reduction in water hyacinth proliferation would be reached by lowering the water nutrient concentrations, and herbivory by E. catarinensis alone is not sufficient to reduce all aspects of water hyacinth vigour, especially at very high nutrient concentrations.  相似文献   

8.
Genes enhancing nutrient utilization efficiency are needed for crop improvement. Here, we report the isolation of a gene conferring low-sulfur tolerance from water hyacinth (Eichhornia crassipes) using a functional gene-mining method. In doing this, an entry cDNA library was constructed from the roots of nutrient-starved water hyacinth using recombination cloning and subsequently shuttled into the plant transformation- and expression-ready vector. The plant transformation- and expression-ready library was transferred into Arabidopsis and a seed library of 50,000 independent transgenic lines was generated. Three transgenic lines with enhanced low-sulfur tolerance were isolated from the seed library. One of the transgenic lines, shl143-1, with improved tolerance to sulfate deficiency and an improved root system was further analyzed. It was found that a water hyacinth jacalin-related lectin gene (EcJRL-1) was overexpressed in shl143-1. Recapitulation analysis confirmed that the overexpression of the EcJRL-1 cDNA caused the phenotype. Therefore, this study demonstrates that a jacalin-related lectin is involved in root elongation under sulfur-deficient conditions.  相似文献   

9.
The possibility that the stunted growth of the water hyacinth in Bahr el Ghazal river in Sudan is influenced by nutrient elements is considered. Greenhouse experiments were carried out to determine the effects of deficiency and mineral nutrient additions on the growth of this plant. The water hyacinth was found to grow at a wide range of nutrient levels. Maximum growth was recorded at 21 mg l–1 N, 62 mg l–1 P, and 0.60 mg l–1 Fe.  相似文献   

10.
Rates of weight loss and release of nutrients during different phases of decomposition in young water hyacinth leaves were determined under laboratory conditions. The leaves decomposed solely by physical leaching during the initial 4-day phase and later by microbial processes. The largest part of weight loss and nutrient release by physical leaching took place within the first 4 h of incubation and thereafter the decomposition rate declined. Microbial processes decayed leaves at a significantly higher rate than that by physical leaching. The overall decay rate constants were related inversely and the release of nutrients directly to the levels of leaf additions in the lake water. The dissolved inorganic and organic nutrients were released chiefly by abiotic processes during the initial as well as later phases of decay. The release was significantly higher during the initial phase in comparison with that during the later phase. Microbes utilized only a small amount of nutrients that were released during decomposition of water hyacinth leaves. The % release of various elements from the decaying leaves was in the order of K > P > C > Na > N.  相似文献   

11.
不同营养水平对外来物种凤眼莲生长特征及其竞争力的影响   总被引:10,自引:0,他引:10  
入侵种凤眼莲(Eichhorniacrassipes)在中国的泛滥不仅与其强大的适应力和繁殖能力有关,还与水体的富营养化有很大的关系。作者通过盆栽实验比较了三个营养水平的模拟富营养条件下凤眼莲的生长特征和对当地种黄花水龙(Ludwigiapeploidesssp.stipulacea)和黑藻(Hydrillaverticillata)两个不同生长型的影响。结果表明:富营养条件增强了凤眼莲的生长繁殖能力,使其平均每母株克隆分株数、平均株高以及总生物量极大的增加。凤眼莲的生长优势导致了其竞争优势,对黄花水龙和黑藻都发生了明显的竞争效应。迅速繁殖的凤眼莲覆盖大量水面,通过排挤作用抑制了黄花水龙的生长(低营养水平除外);黑藻因光照缺乏,导致正常光合作用受阻,生物量急剧下降。凤眼莲对黑藻的竞争效应较黄花水龙更强。富营养化的水体为凤眼莲的成功入侵提供了优越条件,因此解决当前水体的富营养化状况能有效控制凤眼莲入侵,同时也有利于本地生物多样性的保护。  相似文献   

12.
Yonghong Xie  Hongyan Qin  Dan Yu 《Hydrobiologia》2004,529(1-3):105-112
The responses of decomposition to N and P supply were investigated in three leaf types of water hyacinth (Eichhornia crassipes (Mart.) Solms): dead green leaves collected from Donghu Lake; green, and brown leaves collected from outdoor tanks. The ratios of C:N, C:P, lignin:N and lignin:P were lowest in the green leaves collected from Donghu Lake, and highest in the brown leaves collected from outdoor tanks. Decomposition constant (k) of water hyacinth varied greatly, ranged from 0.006 to 0.099 d–1. Leaf litters decayed most quickly within the initial two weeks during the experimental period, but decomposition rate decreased significantly in the following days. Decomposition and nutrient (N and P) release were fastest in the green leaves collected from Donghu Lake, intermediate in the green leaves collected from outdoor tanks, slowest in the brown leaves collected from outdoor tanks. Statistical analyses revealed that the effects of P-availability on decomposition rate and N, P release rate of the three litter types were significant, whereas the impacts of N-availability was insignificant (p > 0.05) except for the brown leaves collected from outdoor tanks. These results suggest that decomposition rate and nutrient content dynamics of water hyacinth differ with their growth habitats, and could partly be regulated by nutrient availability, especially by P-availability, in the environments.  相似文献   

13.
ABSTRACT

The impact of the planthopper Megamelus scutellaris, a biocontrol agent of water hyacinth in South Africa, was assessed using chlorophyll fluorometry in a greenhouse study under two different eutrophic nutrient treatments and agent densities (high and low). The results indicated that plants grown in low nutrients with high densities of M. scutellaris showed the greatest reduction in the fluorescence parameters Fv/Fm and PIabs. The successful use of chlorophyll fluorometry for the detection of subtle insect damage to water hyacinth leaves could have future application in post-release studies to measure the impact of M. scutellaris in the field.  相似文献   

14.
In the present study, corn meal agar was found as the best medium for growth of Drechslera spicifera, a pathogen of water hyacinth. Small water hyacinth plants exhibited a smaller number of lesions/leaf when inoculated with D. spicifera compared with inoculated medium and large plants. However, percentage total diseased area/leaf was almost the same among the different plant sizes. The pathogen did not interfere with the vegetative plant growth, since, both infected and healthy water hyacinth plants of the same age showed similar percentages of new leaf growth. Leaf diffusates of water hyacinth plants significantly reduced conidiospore germination in D. spicifera.  相似文献   

15.
Abstract

Surfactant is an emerging and popular pollutant in both rural and urban areas and its treatment efficacy by phytoremediation is rarely reported. Water hyacinth was utilized to clean anionic surfactant sodium dodecyl sulfate (SDS) in water and its growth and physiological activities were regulated with Chromolaena odorata L. extract. SDS was effectively removed from the water and then transferred to both root and aerial part of water hyacinth. Part of SDS was converted into low-molecular weight degradation intermediates by the hydrogen abstraction reactions in water hyacinth. The removal efficiency and the degradation of SDS were evidently strengthened accompanying with enhanced root activity and ascorbate peroxidase (APX) activity in the presence of Chromolaena odorata L. extract. Meanwhile, the growth of water hyacinth was effectively controlled, exhibiting low-growth rate (≤0.036?g.day?1). Furthermore, the root was considered as the major organ to degrade SDS, which was correlated to the remarkable increase in APX activity and a slight increase in root activity under both SDS and extract stress. In conclusion, water hyacinth managed with Chromolaena odorata L. extract should be proposed as an eco-friendly biotechnical treatment for the surfactant.  相似文献   

16.
Pioneering research efforts in the handling of municipal sewage in developing countries have involved the use of water hyacinth (Eichhornea crassipes) to purify sewage for possible re-use of the effluent water for domestic purposes. The ability of water hyacinth to remove pollution from raw sewage has been found to be impaired by sewage toxicity. Trials were therefore carried out to adapt water hyacinth to toxicity and thereby increase its ability to remove pollutants from raw sewage. The plants were adapted using an active bio-degrader consisting of Pseudomonas aeruginosa, Escherichia coli, Klebsiella ozaenae, Klebsiella edwardsiella and Baccillus subtilis. The adaptation progressed through 20, 40, 60 and 80% sewage dilution until plants capable of growth in 100% raw sewage were obtained. Plants were observed for morphological growth and at four weeks, samples were collected for tissue analysis. The plants progressively absorbed nutrients from sewage up to the fourth week, when signs of toxicity were obsereved through wilting, loss of turgidity and reduction in leaf number. However, plants that survived through a series of adaptations under various sewage dilutions exhibited luxuriant growth on raw sewage. In synergy with the active bio-degrader, the efficiency of the adapted water hyacinth to remove pollutants (nutrients) from raw sewage was enhanced by 93%.  相似文献   

17.
《Journal of bryology》2013,35(3):361-373
Abstract

A correlation can be seen between the nutrient requirements of Funaria hygrometrica and conditions in bonfire soil. Excessively high concentrations of nutrients especially ammonium-nitrogen could alone be responsible for the inhibition of growth found on young bonfire soils. For rapid healthy growth of Funaria, concentrations of calcium, potassium, nitrogen and phosphorus must all be relatively high, although nitrate-nitrogen and phosphorus seem particularly important. The effect of burning and heating on the soil nitrogen cycle and the growth of Funaria on fertilized soils would repay further investigation.  相似文献   

18.
凤眼莲无菌苗培养及其克藻效应   总被引:2,自引:0,他引:2  
次第选用固体培养基、有机培养溶液和无机培养溶液,通过改善培养条件,从凤眼莲的腋芽培养出生长正常的无菌苗。用生物检测法测试无菌苗对衣藻的克制效应。试验结果表明,在无根际微生物着生的条件下,凤眼莲种植水仍然显示了克藻作用,说明克藻物质是由凤眼莲本身分泌的,不是由根际微生物所产生的。  相似文献   

19.
Algal assays were performed on water samples taken from different sites in Lake Balaton. Selenastrum capricornutum was used in the test to determine the primarily limiting plant nutrient. The results of supplementary nutrient additions to the bottle tests were evaluated by cell counts. The tests have indicated phosphorus as growth rate limiting, and in two cases as biomass limiting plant nutrient, but periodic occurrences of nitrogen limitation cannot be excluded.  相似文献   

20.
The nutrient limitation hypothesis provides a nongenetic explanation for the evolution of life cycles that retain both haploid and diploid phases: differences in nutrient requirements and uptake allow haploids to override the potential genetic advantages provided by diploidy under certain nutrient limiting conditions. The relative fitness of an isogenic series of haploid, diploid and tetraploid yeast cells (Saccharomyces cerevisiae), which were also equivalent at the mating type locus, was measured. Fitness was measured both by growth rate against a common competitor and by intrinsic growth rate in isolated cultures, under four environmental conditions: (1) rich medium (YPD) at the preferred growth temperature (30 °C); (2) nutrient poor medium (MM) at 30 °C; (3) YPD at a nonpreferred temperature (37 °C); and (4) MM at 37 °C. In contrast to the predictions of the nutrient limitation hypothesis, haploids grew significantly faster than diploids under nutrient rich conditions, but there were no apparent differences between them when fitness was determined by relative competitive ability. In addition, temperature affected the relative growth of haploids and diploids, with haploids growing proportionately faster at higher temperatures. Tetraploids performed very poorly under all conditions compared. Cell geometric parameters were not consistent predictors of fitness under the conditions measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号