首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The predominant lipids in membranes obtained from apple buds were galacto- and phospholipids. The major galactolipid components in apple bud were monogalactosyl diglyceride (MGDG) and digalactosyl diglyceride (DGDG). Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were the major phospholipids in the apple buds. -Linolenic acid (C 18:3) was the major fatty acid in MGDG, DGDG, and PC. Phosphatidylglycerol (PG) is the only lipid to contain significant amounts of palmitic acid (C 16:0) in the dormant buds. An increase in the galacto- and phospholipids and the ratio of the unsaturated fatty acids to the corresponding saturated fatty acids of the buds occurred as a result of induction by 1-(3,5-dichlorophenyl)-3-nitroguanidine or 1-(-ethylbenzyl)-3-nitroguanidine during bud break. The identities of fatty acids in apple buds were confirmed by gas chromatography-mass spectrometry.  相似文献   

2.
The effects of N-phenyl-N'-l,2,3,-thidiazol-5-ylurea (thidiazuron; Dropp; SN 49537) on fatty acids of membrane lipids and sterol content in apple ( Malus domestica Borkh cv. Golden Delicious) buds associated with bud break and bud development were determined. The predominant fatty acids in the membrane lipids of apple buds were palmitic acid (C16:0), linoleic acid (C18:2) and linolenic acid (C18:3). β -Sitosterol and sitosteryl ester were the predominant sterols. An accumulation of unsaturated polar membrane fatty acids started after thidiazuron treatment. A decrease in the percentage of the sitosterol was accompanied by an increase in campesterol and stigmasterol at the beginning of rapid growth. An increase in the ratio of campesterol and stigmasterol to sitosterol and a decrease in the ratio of free sterols to membrane lipids upon breaking of dormancy also occurred in apple buds induced by thidiazuron.  相似文献   

3.
The breaking of dormancy in apple buds (Malus domestica Borkh cv. York Imperial) by thidiazuron (N-phenyl-N′-1,2,3,-thidiazol-5-ylurea) was investigated in relation to catalase, peroxidase, and polyphenol oxidase activities and their isoenzyme patterns. The activity and number of isoenzymic components of catalase increased progressively during bud break, then decreased after buds started to grow. Peroxidase activity was highest during dormancy and declined during bud swell, increased at bud break, and decreased after bud expansion. Several isoperoxidases were observed in gel electrophoresis. Similar patterns were found at different growth stages of apple buds except for one peroxidase isoenzyme, P3, which disappeared 12 days after thidiazuron treatment. There was an inverse relationship between the activities of polyphenol oxidase and peroxidase during the development of apple buds. Apple buds have a very similar polyphenol oxidase isoenzyme pattern throughout bud development. However, the appearance and disappearance of minor isoenzymes were also observed. Phloridzin, rutin, p-coumaric, epicatechin, naringin, chlorogenic acid, and catechol were found in apple buds. Among them, phloridzin, rutin, and p-coumaric were the dominant phenolic compounds. Dormant buds contained a high amount of phenolic substances which decreased after bud break (4 days after thidiazuron treatment) then increased until the start of bud expansion. Phenolic compounds are found to be potent modifiers of catalase, peroxidase, and polyphenol oxidase activity, as both inhibitors and stimulators in apple buds.  相似文献   

4.
The breaking of dormancy in apple buds (Malus domestica Borkh cv. York Imperial) by thidiazuron (N-phenyl-N-1,2,3,-thidiazol-5-ylurea) was investigated in relation to catalase, peroxidase, and polyphenol oxidase activities and their isoenzyme patterns. The activity and number of isoenzymic components of catalase increased progressively during bud break, then decreased after buds started to grow. Peroxidase activity was highest during dormancy and declined during bud swell, increased at bud break, and decreased after bud expansion. Several isoperoxidases were observed in gel electrophoresis. Similar patterns were found at different growth stages of apple buds except for one peroxidase isoenzyme, P3, which disappeared 12 days after thidiazuron treatment. There was an inverse relationship between the activities of polyphenol oxidase and peroxidase during the development of apple buds. Apple buds have a very similar polyphenol oxidase isoenzyme pattern throughout bud development. However, the appearance and disappearance of minor isoenzymes were also observed. Phloridzin, rutin, p-coumaric, epicatechin, naringin, chlorogenic acid, and catechol were found in apple buds. Among them, phloridzin, rutin, and p-coumaric were the dominant phenolic compounds. Dormant buds contained a high amount of phenolic substances which decreased after bud break (4 days after thidiazuron treatment) then increased until the start of bud expansion. Phenolic compounds are found to be potent modifiers of catalase, peroxidase, and polyphenol oxidase activity, as both inhibitors and stimulators in apple buds.  相似文献   

5.
Cytokinin activity induced by thidiazuron   总被引:21,自引:2,他引:21       下载免费PDF全文
The diphenylurea derivative thidiazuron induces a variety of cytokinin responses. Levels above 5 × 10−9 molar and 4 × 10−7 molar stimulate maximum soybean callus growth and radish cotyledon expansion, respectively. A wider range of dose response related effects follows thidiazuron induced tobacco plant regeneration. Analysis of soybean callus extracts strongly suggests that thidiazuron treatment creates an accumulation and/or synthesis of purine cytokinins, able to induce the growth, expansion and regeneration, mentioned above.  相似文献   

6.
《Phytochemistry》1986,25(2):311-317
The effects of N-phenyl-N′-1,2,3,-thidiazol-5-ylurea (thidiazuron; Dropp; SN49537; TDZ) on metabolic changes in apple buds during dormancy break were determined. The data showed that thidiazuron has the capacity to release lateral buds from dormancy. Decreasing degree of bud break and bud growth with thidiazuron treatment occurred in a basipetal direction, suggesting a gradient of increasingly deep rest from shoot apex to base. The breaking of dormancy by thidiazuron is correlated with increase in DNA, RNA, protein, 1-aminocyclopropane-1-carboxylic acid (ACC), 1-(malonylamino) cyclopropane-1-carboxylic acid (MACC), S-adenosylmethionine (SAM) as well as with greater polyamine formation. Polyamine and ethylene biosynthesis did not seem to be competing for SAM, their common substrate, during bud break and bud development. The release of dormancy in apple bud by thidiazuron was inhibited by cordycepine, 5-fluorouracil, 6-methylpurine and cycloheximide. Inhibition of bud break and bud growth also resulted from treatment with α-difluoromethylarginine (DFMA) and α-difluoromethylornithine (DFMO). DFMO was more inhibitory than DFMA.  相似文献   

7.
Selenium (Se), which is a central component for the biosynthesis and functionality of selenoproteins, plays an important role in the anti-oxidative response, reproduction, thyroid hormone metabolism and the protection from infection and inflammation. However, dietary Se effects have not well been established to date and the available studies often present contradictory results. To obtain a better understanding of Se intake and its influence on the metabolism of living systems, we have utilized a metabolomics approach to gain insight into the specific metabolic alterations caused by Se deficiency in mice. Serum samples were collected from two groups of C57BL/6 mice: an experimental group which was fed a Se-deficient diet and controls consuming normal chow. The samples were analyzed by 1H nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The resulting metabolite data were examined separately for both analytical methods and in a combined manner. By applying multivariate statistical analysis we were able to distinguish the two groups and detect a metabolite pattern associated with Se deficiency. We found that the concentrations of 15 metabolites significantly changed in serum samples collected from Se-deficient mice when compared to the controls. Many of the perturbed biological pathways pointed towards compensatory mechanisms during Se deficiency and were associated with amino acid metabolism. Our findings show that a metabolomics approach may be applied to identify the metabolic impact of Se and reveal the most impaired biological pathways as well as induced regulatory mechanisms during Se deficiency.  相似文献   

8.
Wheat embryos isolated from seeds at two viability levels treatedwith the hydration-dehydration technique (presoaking treatment)showed an in vivo increase of radioactive precursor incorporationinto proteins, RNA and DNA and remarkable DNA-polymerase activityin their crude extracts compared to untreated germs. (Received June 25, 1977; )  相似文献   

9.
10.
11.
The mechanisms involved in the association between membrane movements and the initiation of DNA synthesis were approached measuring the synthesis of membrane-associated substances after stimulation of resting phase cultures. The inducement of the division cycle by fresh serum, FGF and a growth factor produced during RSV infection, caused a decreased incorporation of glucosamine and SO4 into focal adhesion sites. The decreased incorporation of glucosamine occurred during the G1 period, remained at a plateau during S and increased back to initial levels when DNA synthesis declined; it was inversely related to the size of the fraction of cells that entered the division cycle.  相似文献   

12.
Whole tree manipulation experiments were performed in the common southern African tree species, Brachystegia spiciformis to test a novel hypothesis that decreasing Total nonstructural carbohydrates (TNC) in the stem could cause bud break in Brachystegia spiciformis. The experimental treatments included fertilization, canopy defoliation, shading and stem heating to decrease stem carbohydrates. None of the treatments significantly decreased mean stem TNC. Likewise the heating, fertilization and defoliation treatments did not significantly affect the date of bud break. However, shading significantly delayed bud break. This delay in bud break could not be attributed to changes in leaf level photosynthetic traits, stem water content, leaf predawn water potential or delayed leaf fall. These results question widely accepted hypotheses about the mechanisms controlling bud break and suggest a carbohydrate homeostatic mechanism.  相似文献   

13.
The effects of some terpenoids (isopatchoulenone-rich fraction ofCyperus scariosus oil, C16-guaianolide and thymol), anauxin (IBA) and a combination of terpenoids and IBA were investigated onrooting, sprouting and accompanying biochemical changes in grapevine cuttingsvar. perlette. Treatment of cuttings for 24 h before planting insand pots caused stimulatory effects in terms of number of primary roots,lengthof longest primary root and shoot length, with a concomitant increase in totaldry weight of roots and shoots over control at 60 days after planting stage.Theactivities of peroxidase, polyphenol oxidase and the content of total phenolsdeclined in comparison with the control, hence sparing IAA resulted in enhancedcontents for the induction of adventitious roots. Different terpenoidtreatmentsalso significantly enhanced the chl a, chl b and total chl content in leaves.The levels of total soluble sugars, reducing sugars and proteins also alteredwith these terpenoids. C.S. oil and C16-guaianolide exhibited a better responsein combination with 100 g ml–1 IBA, whichsuggests its synergistic effect.  相似文献   

14.
Seed-derived rhizomes of Cymbidium sinense Willdwere able to initiate shoot buds in the presence of0.01--1 mg/l thidiazuron (TDZ). However, TDZ retardedrhizome proliferation. The regenerated shoot budswhich had been cultured on basal medium with asupplement of 0.5 mg/l 1-naphthalene acetic acid (NAA)and 1 g/l active charcoal were able to form 10 cmplantlets within four months. Plantlets weretransplanted to sphagnum moss and cultured on a mistbench for six months and then planted into soil-filledpots and maintained in the greenhouse, where they grewwell. In the 2nd year, 9.1% of the potted plants borenormal flowers. In the 3rd year, each of them produced5--6 shoots about 43 cm in height and about 20 roots;73% of the potted plants flowered normally.  相似文献   

15.
Cereal plants become more resistant to freezing when first exposed to a period of cold-acclimation. Many physiological and molecular changes have been shown to occur at low temperatures, but the role and the contribution of each to frost resistance is still poorly understood. Two cultivars of barley ( Hordeum vulgare L.), the winter barley Onice and the spring barley Gitane, were acclimated under controlled conditions under an 8-h photoperiod at 4°C (light) and 2°C (dark) for 21 days. Changes in free proline, ABA, water-soluble carbohydrates and free fatty acids were measured to assess their involvement in cold-acclimation and to explain the different frost-resistant capacities of the two cultivars. Exposure of barley plants to low temperature resulted in an equal increase in proline in both cultivars. During the first days of cold acclimation, ABA levels showed a peak in the frost-resistant cultivar, lasting about 24 h, followed by a decrease. The water soluble carbohydrates reached their highest content after 3 days of hardening, although after 14 to 21 days of acclimation the carbohydrate content was similar to that of unhardened plants. The frost-resistant Onice had a much higher free fatty acid content than the frost-sensitive Gitane. Furthermore in Onice 86% of free farty acids was represented by unsaturated molecular species. Inolenic acid alone being 71%. In contrast, in the frost-sensitive cultivar only 31% of free fatty acids was unsaturated and a large amount of 9-oxo-nonanoic acid, a product present in the linolenic acid cascade, was also detected.
The ABA content after 2 days of hardening and the free fatty acid composition were clearly different between the two cultivars and may explain, at least in part, the different frost-resistant capacities of Onice and Gitane.  相似文献   

16.
17.
Statistical analysis of bud break data for grapevine (Vitis vinifera L. cvs. Riesling and Müller-Thurgau) at 13 sites along the northern boundary of commercial grapevine production in Europe revealed that, for all investigated sites, the heat summation method for bud break prediction can be improved if the starting date for the accumulation of heat units is specifically determined. Using the coefficient of variance as a criterion, a global minimum for each site can be identified, marking the optimum starting date. Furthermore, it was shown that the application of a threshold temperature for the heat summation method does not lead to an improved prediction of bud break. Using site-specific parameters, bud break of grapevine can be predicted with an accuracy of ± 2.5 days. Using average parameters, the prediction accuracy is reduced to ± 4.5 days, highlighting the sensitivity of the heat summation method to the quality and the representativeness of the driving temperature data.  相似文献   

18.
Current thinking holds that carbon autonomy of branches in trees is unlikely, particularly during bud break, when the new developing shoots require significant influx of carbon resources from more distant sources. Results from recent studies indicate that the impact of bud break on overall tree reserves might be small. In two studies the independence of flushing shoots from stored carbon reserves and the photosynthesis in developing new leaves and shoots of Populus tremuloides were explored. New developing shoots quickly became a positive carbon source and only a few days into flush, the photosynthetic system of the newly developing shoots was efficient enough to achieve positive carbon gain even at low light levels. Only 14% of the stored shoot reserves, without any mobilization from more distant reserves, were used during bud break and early shoot expansion. Without any underlying stress, shoots of deciduous trees appear to be carbon autonomous during bud break when demand on stored carbon should be the highest. The development of an efficient photosynthetic system in new shoots is critical in the recovery of carbon reserves in aspen. It minimizes the cost of bud break to the overall stored carbon reserves by optimizing the assimilation of carbon in the newly developed leaves, while eliminating the cost for mobilizing carbon reserves from more distant sources. This carbon autonomy of shoots has important implications for the whole tree carbon balance particularly to the non-photosynthetic tissues which functions solely depending on carbon export from the newly developing leaves and shoots.  相似文献   

19.
Leaves of Kalanchoe pinnata have crenate margins with each notch bearing a dormant bud competent to develop into a healthy plantlet. Leaf detachment is a common signal for inducing two contrastingly different leaf-based processes, i.e. epiphyllous bud development into plantlet and foliar senescence. To investigate differentiation of bud and its correlation, if any, with foliar senescence, thidiazuron (TDZ), having cytokinin activity and ethrel (ETH), an ethylene releasing compound, were employed. The experimental system was comprised of marginal leaf discs, each harbouring an epiphyllous bud. Most of the growth characteristics of plantlet developing from the epiphyllous bud were significantly inhibited by TDZ but promoted by ETH. The two regulators modulated senescence in a manner different for leaf discs and plantlet leaves. Thus, TDZ caused a complete retention whereas ETH a complete loss of chlorophyll in the leaf discs. In contrast, the former resulted in a complete depletion of chlorophyll from the plantlet leaves producing an albino effect, while the latter reduced it by 50% only. In combined dispensation of the two regulators, the effect of TDZ was expressed in majority of responses studied. The results presented in this investigation clearly show that the foliar processes of epiphyllous bud differentiation and senescence are interlinked as TDZ that delayed senescence inhibited epiphyllous bud differentiation and ETH that hastened senescence promoted it. A working hypothesis to interpret responsiveness of the disc-bud composite on lines of a source-sink duo, has been proposed.  相似文献   

20.
The effect of N -phenyl- N '-1,2,3,-thidiazol-5-ylurea (thidiazuron, Dropp, SN 49537) on abscisic acid (ABA) level in apple ( Malus domestica Borkh. cv. York Imperial) buds associated with bud break and bud development was determined. The data showed that increased ABA content in apple buds was associated with thidiazuron-induced bud break and bud development. ABA stimulated growth of apple buds that had emerged from dormancy by thidiazuron treatment. The ABA in apple buds was confirmed by GC-EIMS and GC-CIMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号