首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ClpB/Hsp104 chaperone solubilizes and reactivates protein aggregates in cooperation with DnaK/Hsp70 and its cofactors. The ClpB/Hsp104 protomer has two AAA+ modules, AAA-1 and AAA-2, and forms a homohexamer. In the hexamer, these modules form a two-tiered ring in which each tier consists of homotypic AAA+ modules. By ATP binding and its hydrolysis at these AAA+ modules, ClpB/Hsp104 exerts the mechanical power required for protein disaggregation. Although ATPase cycle of this chaperone has been studied by several groups, an integrated understanding of this cycle has not been obtained because of the complexity of the mechanism and differences between species. To improve our understanding of the ATPase cycle, we prepared many ordered heterohexamers of ClpB from Thermus thermophilus, in which two subunits having different mutations were cross-linked to each other and arranged alternately and measured their nucleotide binding, ATP hydrolysis, and disaggregation abilities. The results indicated that the ATPase cycle of ClpB proceeded as follows: (i) the 12 AAA+ modules randomly bound ATP, (ii) the binding of four or more ATP to one AAA+ ring was sensed by a conserved Arg residue and converted another AAA+ ring into the ATPase-active form, and (iii) ATP hydrolysis occurred cooperatively in each ring. We also found that cooperative ATP hydrolysis in at least one ring was needed for the disaggregation activity of ClpB.  相似文献   

2.
Strub C  Schlieker C  Bukau B  Mogk A 《FEBS letters》2003,553(1-2):125-130
The Hsp100 protein ClpB is a member of the AAA+ protein family that mediates the solubilization of aggregated proteins in cooperation with the DnaK chaperone system. Unstructured polypeptides such as casein or poly-L-lysine have been shown to stimulate the ATPase activity of ClpB and thus may both act as substrates. Here we compared the effects of alpha-casein and poly-L-lysine on the ATPase and chaperone activities of ClpB. alpha-Casein stimulated ATP hydrolysis by both AAA domains of ClpB and inhibited the ClpB-dependent solubilization of aggregated proteins if present in excess. In contrast, poly-L-lysine stimulated exclusively the ATPase activity of the second AAA domain and increased the disaggregation activity of ClpB. Thus poly-L-lysine does not act as substrate, but rather represents an effector molecule, which enhances the chaperone activity of ClpB.  相似文献   

3.
The AAA+ protein ClpB mediates the solubilization of protein aggregates in cooperation with the DnaK chaperone system (KJE). The order of action of ClpB and KJE on aggregated proteins is unknown. We describe a ClpB variant with mutational alterations in the Walker B motif of both AAA domains (E279A/E678A), which binds but does not hydrolyze ATP. This variant associates in vitro and in vivo in a stable manner with protein substrates, demonstrating direct interaction of ClpB with protein aggregates for the first time. Substrate interaction is strictly dependent on ATP binding to both AAA domains of ClpB. The unique substrate binding properties of the double Walker B variant allowed to dissect the order of ClpB and DnaK action during disaggregation reactions. ClpB-E279A/E678A outcompetes the DnaK system for binding to the model substrate TrfA and inhibits the dissociation of small protein aggregates by DnaK only, indicating that ClpB acts prior to DnaK on protein substrates.  相似文献   

4.
The bacterial AAA+ protein ClpB and its eukaryotic homologue Hsp104 ensure thermotolerance of their respective organisms by reactivating aggregated proteins in cooperation with the Hsp70/Hsp40 chaperone system. Like many members of the AAA+ superfamily, the ClpB protomers form ringlike homohexameric complexes. The mechanical energy necessary to disentangle protein aggregates is provided by ATP hydrolysis at the two nucleotide-binding domains of each monomer. Previous studies on ClpB and Hsp104 show a complex interplay of domains and subunits resulting in homotypic and heterotypic cooperativity. Using mutations in the Walker A and Walker B nucleotide-binding motifs in combination with mixing experiments we investigated the degree of inter-subunit coupling with respect to different aspects of the ClpB working cycle. We find that subunits are tightly coupled with regard to ATPase and chaperone activity, but no coupling can be observed for ADP binding. Comparison of the data with statistical calculations suggests that for double Walker mutants, approximately two in six subunits are sufficient to abolish chaperone and ATPase activity completely. In further experiments, we determined the dynamics of subunit reshuffling. Our results show that ClpB forms a very dynamic complex, reshuffling subunits on a timescale comparable to steady-state ATP hydrolysis. We propose that this could be a protection mechanism to prevent very stable aggregates from becoming suicide inhibitors for ClpB.  相似文献   

5.
ClpB of Escherichia coli is an ATP-dependent ring-forming chaperone that mediates the resolubilization of aggregated proteins in cooperation with the DnaK chaperone system. ClpB belongs to the Hsp100/Clp subfamily of AAA+ proteins and is composed of an N-terminal domain and two AAA-domains that are separated by a "linker" region. Here we present a detailed structure-function analysis of ClpB, dissecting the individual roles of ClpB domains and conserved motifs in oligomerization, ATP hydrolysis, and chaperone activity. Our results show that ClpB oligomerization is strictly dependent on the presence of the C-terminal domain of the second AAA-domain, while ATP binding to the first AAA-domains stabilized the ClpB oligomer. Analysis of mutants of conserved residues in Walker A and B and sensor 2 motifs revealed that both AAA-domains contribute to the basal ATPase activity of ClpB and communicate in a complex manner. Chaperone activity strictly depends on ClpB oligomerization and the presence of a residual ATPase activity. The N-domain is dispensable for oligomerization and for the disaggregating activity in vitro and in vivo. In contrast the presence of the linker region, although not involved in oligomerization, is essential for ClpB chaperone activity.  相似文献   

6.
ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2). Here, we investigated the roles of these arginines (Arg322, Arg323, and Arg747) of ClpB from Thermus thermophilus in the ATPase cycle and chaperone function by alanine substitution. These mutations did not affect nucleotide binding, but did inhibit the hydrolysis of the bound ATP and slow the threading of the denatured protein through the central pore of the T. thermophilus ClpB ring, which severely impaired the chaperone functions. Previously, it was demonstrated that ATP binding to the AAA-1 module induced motion of the middle domain and stabilized the ClpB hexamer. However, the arginine mutations of the AAA-1 module destabilized the ClpB hexamer, even though ATP-induced motion of the middle domain was not affected. These results indicated that the three arginines are crucial for ATP hydrolysis and chaperone activity, but not for ATP binding. In addition, the two arginines in AAA-1 and the ATP-induced motion of the middle domain independently contribute to the stabilization of the hexamer.  相似文献   

7.
The AAA(+) chaperone ClpB mediates the reactivation of aggregated proteins in cooperation with the DnaK chaperone system. ClpB consists of two AAA domains that drive the ATP-dependent threading of substrates through a central translocation channel. Its unique middle (M) domain forms a coiled-coil structure that laterally protrudes from the ClpB ring and is essential for aggregate solubilization. Here, we demonstrate that the conserved helix 3 of the M domain is specifically required for the DnaK-dependent shuffling of aggregated proteins, but not of soluble denatured substrates, to the pore entrance of the ClpB translocation channel. Helix 3 exhibits nucleotide-driven conformational changes possibly involving a transition between folded and unfolded states. This molecular switch controls the ClpB ATPase cycle by contacting the first ATPase domain and establishes the M domain as a regulatory device that acts in the disaggregation process by coupling the threading motor of ClpB with the DnaK chaperone activity.  相似文献   

8.
ClpB is a heat-shock protein from Escherichia coli with an unknown function. We studied a possible molecular chaperone activity of ClpB in vitro. Firefly luciferase was denatured in urea and then diluted into the refolding buffer (in the presence of 5 mM ATP and 0.1 mg/ml bovine serum albumin). Spontaneous reactivation of luciferase was very weak (less than 0.02% of the native activity) because of extensive aggregation. Conventional chaperone systems (GroEL/GroES and DnaK/DnaJ/GrpE) or ClpB alone did not reactivate luciferase under those conditions. However, ClpB together with DnaK/DnaJ/GrpE greatly enhanced the luciferase activity regain (up to 57% of native activity) by suppressing luciferase aggregation. This coordinated function of ClpB and DnaK/DnaJ/GrpE required ATP hydrolysis, although the ClpB ATPase was not activated by native or denatured luciferase. When the chaperones were added to the luciferase refolding solutions after 5-25 min of refolding, ClpB and DnaK/DnaJ/GrpE recovered the luciferase activity from preformed aggregates. Thus, we have identified a novel multi-chaperone system from E. coli, which is analogous to the Hsp104/Ssa1/Ydj1 system from yeast. ClpB is the only known bacterial Hsp100 protein capable of cooperating with other heat-shock proteins in suppressing and reversing protein aggregation.  相似文献   

9.
E. coli Hsp100 ClpB was recently identified as a critical part in a multi-chaperone system to play important roles in protein folding, protein transport and degradation in cell physiology. ClpB contains two nucleotide-binding domains (NBD1 and NBD2) within their primary sequences. NBD1 and NBD2 of ClpB can be classified as members of the large ATPase family known as ATPases associated with various cellular activities (AAA). To investigate how ClpB performs its ATPase activities for its chaperone activity, we have determined the crystal structure of ClpB nucleotide-binding domain 1 (NBD1) by MAD method to 1.80 A resolution. The NBD1 monomer structure contains one domain that comprises 11 alpha-helices and six beta-strands. When compared with the typical AAA structures, the crystal structure of ClpB NBD1 reveals a novel AAA topology with six-stranded beta-sheet as its core. The N-terminal portion of NBD1 structure has an extra beta-strand flanked by two extra alpha-helices that are not present in other AAA structures. Moreover, the NBD1 structure does not have a C-terminal helical domain as other AAA proteins do. No nucleotide molecule is bound with ClpB NBD1 in the crystal structure probably due to lack of the C-terminal helix domain in the structure. Isothermal titration calorimetry (ITC) studies of ClpB NBD1 and other ClpB deletion mutations showed that either ClpB NBD1 or NBD2 alone does not bind to nucleotides. However, ClpB NBD2 combined with ClpB C-terminal fragment can interact with one ADP or ATP molecule. ITC data also indicated that full-length ClpB could bind two ADP molecules or one ATP analogue ATPgammaS molecule. Further ATPase activity studies of ClpB and ClpB deletion mutants showed that only wild-type ClpB have ATPase activity. None of ClpB NBD1 domain, NBD2 domain and NBD2 with C-terminal fragment has detectable ATPase activities. On the basis of our structural and mutagenesis data, we proposed a "see-saw" model to illustrate the mechanisms by which ClpB performs its ATPase activities for chaperone functions.  相似文献   

10.
ClpB is a molecular chaperone from the AAA+ superfamily of ATPases, which reactivates aggregated proteins in cooperation with the DnaK chaperone system. ClpB is essential for infectivity and in-host survival of a number of pathogenic microorganisms, but systematic studies on ClpB from pathogens have not been reported yet. We purified and characterized one of the two ClpB isoforms from the malaria parasite Plasmodium falciparum, PfClpB1. PfClpB1 is targeted to the apicoplast, an essential plastid organelle that is a promising anti-malaria drug target. PfClpB1 contains all characteristic AAA+ sequence motifs, but the middle domain of PfClpB1 includes a 52-residue long non-conserved insert. Like in most AAA+ ATPases, ATP induces self-association of PfClpB1 into hexamers. PfClpB1 catalyzes the hydrolysis of ATP and its ATPase activity is activated in the presence of casein and poly-lysine. Similar to Escherichia coli ClpB, PfClpB1 reactivates aggregated firefly luciferase, but the PfClpB1-mediated aggregate reactivation is inhibited in the presence of E. coli DnaK, DnaJ, and GrpE. The lack of effective cooperation between PfClpB1 and the bacterial DnaK system may arise from the Plasmodium-specific sequence of the ClpB middle domain. Our results indicate that the chaperone activity of PfClpB1 may support survival of Plasmodium falciparum by maintaining the folding status and activity of apicoplast proteins.  相似文献   

11.
ClpB is a hexameric chaperone that solubilizes and reactivates protein aggregates in cooperation with the Hsp70/DnaK chaperone system. Each of the identical protein monomers contains two nucleotide binding domains (NBD), whose ATPase activity must be coupled to exert on the substrate the mechanical work required for its reactivation. However, how communication between these sites occurs is at present poorly understood. We have studied herein the affinity of each of the NBDs for nucleotides in WT ClpB and protein variants in which one or both sites are mutated to selectively impair nucleotide binding or hydrolysis. Our data show that the affinity of NBD2 for nucleotides (K(d) = 3-7 μm) is significantly higher than that of NBD1. Interestingly, the affinity of NBD1 depends on nucleotide binding to NBD2. Binding of ATP, but not ADP, to NBD2 increases the affinity of NBD1 (the K(d) decreases from ≈160-300 to 50-60 μm) for the corresponding nucleotide. Moreover, filling of the NBD2 ring with ATP allows the cooperative binding of this nucleotide and substrates to the NBD1 ring. Data also suggest that a minimum of four subunits cooperate to bind and reactivate two different aggregated protein substrates.  相似文献   

12.
Members of the family of ATPases associated with various cellular activities (AAA+) typically form homohexameric ring complexes and are able to remodel their substrates, such as misfolded proteins or protein-protein complexes, in an ATP-driven process. The molecular mechanism by which ATP hydrolysis is coordinated within the multimeric complex and the energy is converted into molecular motions, however, is poorly understood. This is partly due to the fact that the oligomers formed by AAA+ proteins represent a highly complex system and analysis depends on simplification and prior knowledge. Here, we present nucleotide binding and oligomer assembly kinetics of the AAA+ protein ClpB, a molecular chaperone that is able to disaggregate protein aggregates in concert with the DnaK chaperone system. ClpB bears two AAA+ domains (NBD1 and NBD2) on one subunit and forms homohexameric ring complexes. In order to dissect individual mechanistic steps, we made use of a reconstituted system based on two individual constructs bearing either the N-terminal (NBD1) or the C-terminal AAA+ domain (NBD2). In contrast to the C-terminal construct, the N-terminal construct does not bind the fluorescent nucleotide MANT-dADP in isolation. However, sequential mixing experiments suggest that NBD1 obtains nucleotide binding competence when incorporated into an oligomeric complex. These findings support a model in which nucleotide binding to NBD1 is dependent on and regulated by trans-acting elements from neighboring subunits, either by direct interaction with the nucleotide or by stabilization of a nucleotide binding-competent state. In this way, they provide a basis for intersubunit communication within the functional ClpB complex.  相似文献   

13.
ClpB belongs to the Hsp100 family and assists de-aggregation of protein aggregates by DnaK chaperone systems. It contains two Walker consensus sequences (or P-Loops) that indicate potential nucleotide binding domains (NBD). Both domains appear to be essential for chaperoning function, since mutation of the conserved lysine residue of the GX(4)GKT consensus sequences to glutamine (K204Q and K601Q) abolishes its properties to accelerate renaturation of aggregated firefly luciferase.The underlying biochemical reason for this malfunction appears not to be a dramatically reduced ATPase activity of either P-loop per se but rather changed properties of co-operativity of ATPase activity connected to oligomerization properties to form productive oligomers. This view is corroborated by data that show that structural stability (as judged by CD spectroscopy) or ATPase activity at single turnover conditions (at low ATP concentrations) are not significantly affected by these mutations. In addition nucleotide binding properties of wild-type protein and mutants (as judged by binding studies with fluorescent nucleotide analogues and competitive displacement titrations) do not differ dramatically. However, the general pattern of formation of stable, defined oligomers formed as a function of salt concentration and nucleotides and more importantly, cooperativity of ATPase activity at high ATP concentrations is dramatically changed with the two P-loop mutants described.  相似文献   

14.
ClpB is a heat-shock protein that reactivates aggregated proteins in cooperation with the DnaK chaperone system. ClpB belongs to the family of AAA+ ATPases and forms ring-shaped oligomers: heptamers in the absence of nucleotides and hexamers in the presence of nucleotides. We investigated the thermodynamic stability of ClpB in its monomeric and oligomeric forms. ClpB contains six distinct structural domains: the N-terminal domain involved in substrate binding, two AAA+ ATP-binding modules, each consisting of two domains, and a coiled-coil domain inserted between the AAA+ modules. We produced seven variants of ClpB, each containing a single Trp located in each of the ClpB domains and measured the changes in Trp fluorescence during the equilibrium urea-induced unfolding of ClpB. We found that two structural domains: the small domain of the C-terminal AAA+ module and the coiled-coil domain were destabilized in the oligomeric form of ClpB, which indicates that only those domains change their conformation and/or interactions during formation of the ClpB rings.  相似文献   

15.
Hexameric AAA+ ATPases induce conformational changes in a variety of macromolecules. AAA+ structures contain the nucleotide‐binding P‐loop with the Walker A sequence motif: GxxGxGK(T/S). A subfamily of AAA+ sequences contains Asn in the Walker A motif instead of Thr or Ser. This noncanonical subfamily includes torsinA, an ER protein linked to human dystonia and DnaC, a bacterial helicase loader. Role of the noncanonical Walker A motif in the functionality of AAA+ ATPases has not been explored yet. To determine functional effects of introduction of Asn into the Walker A sequence, we replaced the Walker‐A Thr with Asn in ClpB, a bacterial AAA+ chaperone which reactivates aggregated proteins. We found that the T‐to‐N mutation in Walker A partially inhibited the ATPase activity of ClpB, but did not affect the ClpB capability to associate into hexamers. Interestingly, the noncanonical Walker A sequence in ClpB induced preferential binding of ADP vs. ATP and uncoupled the linkage between the ATP‐bound conformation and the high‐affinity binding to protein aggregates. As a consequence, ClpB with the noncanonical Walker A sequence showed a low chaperone activity in vitro and in vivo. Our results demonstrate a novel role of the Walker‐A Thr in sensing the nucleotide's γ‐phosphate and in maintaining an allosteric linkage between the P‐loop and the aggregate binding site of ClpB. We postulate that AAA+ ATPases with the noncanonical Walker A might utilize distinct mechanisms to couple the ATPase cycle with their substrate‐remodeling activity.  相似文献   

16.
The molecular chaperone ClpB/Hsp104, a member of the AAA+ superfamily (ATPases associated with various cellular activities), rescues proteins from the aggregated state in collaboration with the DnaK/Hsp70 chaperone system. ClpB/Hsp104 forms a hexameric, ring-shaped complex that functions as a tightly regulated, ATP-powered molecular disaggregation machine. Highly conserved and essential arginine residues, often called arginine fingers, are located at the subunit interfaces of the complex, which also harbor the catalytic sites. Several AAA+ proteins, including ClpB/Hsp104, possess a pair of such trans-acting arginines in the N-terminal nucleotide binding domain (NBD1), both of which were shown to be crucial for oligomerization and ATPase activity. Here, we present a mechanistic study elucidating the role of this conserved arginine pair. First, we found that the arginines couple nucleotide binding to oligomerization of NBD1, which is essential for the activity. Next, we designed a set of covalently linked, dimeric ClpB NBD1 variants, carrying single subunits deficient in either ATP binding or hydrolysis, to study allosteric regulation and intersubunit communication. Using this well defined environment of site-specifically modified, cross-linked AAA+ domains, we found that the conserved arginine pair mediates the cooperativity of ATP binding and hydrolysis in an allosteric fashion.  相似文献   

17.
ClpB from Thermus thermophilus belongs to the Clp/Hsp100 protein family and reactivates protein aggregates in cooperation with the DnaK chaperone system. The mechanism of protein reactivation and interaction with the DnaK system remains unclear. ClpB possesses two nucleotide binding domains, which are essential for function and show a complex allosteric behavior. The role of the N-terminal domain that precedes the first nucleotide binding domain is largely unknown. We purified and characterized an N-terminal shortened ClpB variant (ClpBDeltaN; amino acids 140-854), which remained active in refolding assays with three different substrate proteins. In addition the N-terminal truncation did not significantly change the nucleotide binding affinities, the nucleotide-dependent oligomerization, and the allosteric behavior of the protein. In contrast casein binding and stimulation of the ATPase activity by kappa-casein were affected. These results suggest that the N-terminal domain is not essential for the chaperone function, does not influence the binding of nucleotides, and is not involved in the formation of intermolecular contacts. It contributes to the casein binding site of ClpB, but other substrate proteins do not necessarily interact with the N terminus. This indicates a substantial difference in the binding mode of kappa-casein that is often used as model substrate for ClpB and other possibly more suitable substrate proteins.  相似文献   

18.
Molecular chaperones are essential for the correct folding of proteins in the cell under physiological and stress conditions. Two activities have been traditionally attributed to molecular chaperones: (1) preventing aggregation of unfolded polypeptides and (2) assisting in the correct refolding of chaperone-bound denatured polypeptides. We discuss here a novel function of molecular chaperones: catalytic solubilization and refolding of stable protein aggregates. In Escherichia coli, disaggregation is carried out by a network of ATPase chaperones consisting of a DnaK core, assisted by the cochaperones DnaJ, GrpE, ClpB, and GroEL-GroES. We suggest a sequential mechanism in which (a) ClpB exposes new DnaK-binding sites on the surface of the stable protein aggregates; (b) DnaK binds the aggregate surfaces and, by doing so, melts the incorrect hydrophobic associations between aggregated polypeptides; (c) ATP hydrolysis and DnaK release allow local intramolecular refolding of native domains, leading to a gradual weakening of improper intermolecular links; (d) DnaK and GroEL complete refolding of solubilized polypeptide chains into native proteins. Thus, active disaggregation by the chaperone network can serve as a central cellular tool for the recovery of native proteins from stress-induced aggregates and actively remove disease-causing toxic aggregates, such as polyglutamine-rich proteins, amyloid plaques, and prions.  相似文献   

19.
ClpB from Escherichia coli is a member of a protein-disaggregating multi-chaperone system that also includes DnaK, DnaJ, and GrpE. The sequence of ClpB contains two ATP-binding domains that are enclosed between the amino-terminal and carboxyl-terminal regions. The N-terminal sequence region does not contain known functional sequence motifs. Here, we performed site-directed mutagenesis of four polar residues within the N-terminal domain of ClpB (Thr7, Ser84, Asp103 and Glu109). These residues are conserved in several ClpB homologs. We found that the mutations, T7A, S84A, D103A, and E109A did not significantly affect the secondary structure and thermal stability of ClpB, nor did they inhibit the self-association of ClpB, its basal ATPase activity, or the enhanced rate of the ATP hydrolysis by ClpB in the presence of poly-L-lysine. We observed, however, that three mutations, T7A, D103A, and E109A, reduced the casein-induced activation of the ClpB ATPase. The same three mutant ClpB variants also showed low chaperone activity in the luciferase reactivation assay. We found, however, that the four ClpB mutants, as well as the wild-type, bound similar amounts of inactivated luciferase. In summary, we have identified three essential amino acid residues within the N-terminal region of ClpB that participate in the coupling between a protein-binding signal and the ATP hydrolysis, and also support the chaperone activity of ClpB.  相似文献   

20.
ClpB/Hsp104 efficiently reactivates protein aggregates in cooperation with the DnaK/Hsp70 system. As a member of the AAA+ protein family (i.e. an expanded superfamily of ATPases associated with diverse cellular activities), ClpB forms a ring-shaped hexamer in an ATP-dependent manner. A protomer of ClpB consists of an N-terminal domain (NTD), an AAA+ module, a middle domain and another AAA+ module. In the crystal structures, the NTDs point to two different directions relative to other domains and are not visible in the single-particle cryo-electron microscopy reconstruction, suggesting that the NTD is highly mobile. In the present study, we generated mutants in which the NTD was anchored to other domain by disulfide cross-linking and compared several aspects of ClpB function between the reduced and oxidized mutants, using the wild-type and NTD-truncated ClpB (ClpBΔN) as references. In their oxidized form, the mutants and wild-type bind casein with a similar affinity, although the affinity of ClpBΔN for casein was significantly low. However, the extent of casein-induced stimulation of ATPase, the rate of substrate threading and the efficiency of protein disaggregation of these mutants were all lower than those of the wild-type but similar to those of ClpBΔN. These results indicate that the NTD supports the substrate binding of ClpB and that its conformational shift assists the threading and disaggregation of substrate proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号