首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of structural factors on the stability of duplexes formed by DNA minor groove binders conjugated with oligonucleotide mono- or diphosphoramidates of the general formula Oligo-MGBm (where Oligo is an oligonucleotide; m = 1 or 2; MGB is -L(Py)2R, L(Py)4R, -L(Im)4R, or -L(Py)4NH(CH2)3CO(Py)4R; Py is a 4-aminopyrrol-2-carboxylic acid residue, L is a gamma-aminobutyric acid or an epsilon-aminocaproic acid residue, R = OEt, NH(CH2)6NEt2, or NH(CH2)6N+Me3) was studied by the method of thermal denaturation. The mode of binder interaction with minor groove depends on the conjugate structure; it may be of the parallel head to head type for bisphosphoramidates and of the antiparallel head to tail type for monophosphoramidates of a hair-pin structure. The effects of the duplexes with parallel orientation (bisphosphoramidates, MGB is L(Py)4R, m = 2) and those of the hairpin structure with the antiparallel orientation (monophosphoramidates, MGB is L(Py)4(CH2)3CO(Py)4R, m = 1) on Tm values were close. The influence of the linker (L) and substituent (R) structures upon Tm was more pronounced for monophosphoramidate (MGB is L(Py)nR, m = 1) than for bisphosphoramidate (MGB is L(Py)nR, m = 2). No more than two oligopyrrolcarboxamide residues (either in parallel or antiparallel orientations) can be incorporated into the duplex minor groove. Moreover, it was shown by the example of monophosphoramidates (Oligo-L(Py)4R and Oligo-L(Py)4NH(CH2)3CO(Py)4R) that the addition of a second ligand capable of incorporation into the minor groove increased Tm of the corresponding duplex in comparison with the duplex formed by the starting monophosphoramidate. At the same time, the introduction of the ligand incapable of incorporating decreased the Tm value. The mode of interaction of the conjugated ligand with the oligonucleotide duplex is determined by its structure. For example, dipyrrolcarboxamide containing an ethoxy group at the ligand C-end stabilizes the duplex due to the stacking interaction with the terminal A*T pair, whereas tetrapyrrolcarboxamides stabilize the duplex by incorporation into the minor groove.  相似文献   

2.
Synthetic polycarboxamide minor groove binders (MGB) consisting of N‐methylpyrrole (Py), N‐methylimidazole (Im), N‐methyl‐3‐hydroxypyrrole (Hp) and β‐alanine (β) show strong and sequence‐specific interaction with the DNA minor groove in side‐by‐side antiparallel or parallel orientation. Two MGB moieties covalently linked to the same terminal phosphate of one DNA strand stabilize DNA duplexes formed by this strand with a complementary one in a sequence‐specific manner, similarly to the corresponding mono‐conjugated hairpin structures. The series of conjugates with the general formula Oligo‐(L‐MGB‐R)m was synthesized, where m = 1 or 2, L = linker, R = terminal charged or neutral group, MGB = –(Py)n–, –(Im)n– or –[(Py/Im)n–(CH2)3CONH–(Py/Im)n–] and 1 < n < 5. Using thermal denaturation, we studied effects of structural factors such as m and n, linker L length, nature and orientation of the MGB monomers, the group R and the backbone (DNA or RNA), etc. on the stability of the duplexes. Structural factors are more important for linear and hairpin monophosphoroamidates than for parallel bis‐phosphoroamidates. No more than two oligocarboxamide strands can be inserted into the duplex minor groove. Attachment of the second sequence‐specific parallel ligand [–L(Py)4R] to monophosphoroamidate conjugate CGTTTATT–L(Py)4R leads to the increase of the duplex Tm, whereas attachment of [–L(Im)4R] leads to its decrease. The mode of interaction between oligonucleotide duplex and attached ligands could be different (stacking with the terminal A:T pair of the duplex or its insertion into the minor groove) depending on the length and structure of the MGB.  相似文献   

3.
Synthetic polycarboxamides consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove when they form hairpin structures with side-by-side antiparallel motifs. In the present paper, new conjugates containing two ligands linked to the same terminal phosphate of DNA strand were constructed. The paper describes optimized synthesis and properties of oligonucleotide-linked polyamide strands that insert into the minor groove of a duplex in a parallel or antiparallel orientation. Strong stabilization of DNA duplexes by two attached minor groove ligands is demonstrated by the thermal denaturation method. The unmodified duplex 5'-CGTTTATTp-3'/5'-AATAAACG-3' melts at 20 degrees C. When one tetra(Py) residue was attached to the first strand of this duplex, denaturation temperature was increased to 46 degrees C; attachment of the second tetra(Py) in a parallel orientation resulted in denaturation temperature of 60 degrees C. It is even higher than in case of "classic" octapyrrole hairpin ligand (Tm = 58 degrees C). Sequence-specific character of stabilization by two conjugated ligands was demonstrated for G:C-containing oligonucleotides attached to tetracarboxamide and octacarboxamide ligands constructed from Py, Im and beta units according to established recognition rules (deltaTm = 20 degrees C). The two-strand parallel minor groove binder constructions attached to addressing oligonucleotides could be considered as site-specific ligands recognizing single- and double-stranded DNA similarly to already described hairpin MGB structures with antiparallel orientation of carboxamide units.  相似文献   

4.
The effect of structural factors on the stability of duplexes formed by DNA minor groove binders conjugated with oligonucleotide mono- or diphosphoramidates of the general formula Oligo-MGBm (where Oligo is an oligonucleotide; m = 1 or 2; MGB is -L(Py)2R, -L(Py)4R, -L(Im)4R, or -L(Py)4NH(CH2)3CO(Py)4R; Py is a 4-aminopyrrole-2-carboxylic acid residue; L is a -aminobutyric acid or an -aminocaproic acid residue, R = OEt, NH(CH2)6NEt2, or NH(CH2)6N+Me3) was studied by the method of thermal denaturation. The mode of binder interaction with the minor groove depends on the conjugate structure; it may be of the parallel head to head type for bisphosphoramidates and of the antiparallel head to tail type for monophosphoramidates of a hairpin structure. The effects of the duplexes with parallel orientation (bisphosphoramidates, MGB is L(Py)4R, m = 2) and those of the hairpin structure with the antiparallel orientation (monophosphoramidates, MGB is L(Py)4(CH2)3CO(Py)4R, m = 1) on T m values were close. The influence of the linker (L) and substituent (R) structures upon T m was more pronounced for monophosphoramidate (MGB is L(Py)nR, m = 1) than for bisphosphoramidate (MGB is L(Py)nR, m = 2). No more than two oligopyrrolecarboxamide residues (either in parallel or antiparallel orientations) can be incorporated into the duplex minor groove. Moreover, it was shown by the example of monophosphoramidates (Oligo-L(Py)4R and Oligo-L(Py)4NH(CH2)3CO(Py)4R) that the addition of a second ligand capable of incorporation into the minor groove increased T m of the corresponding duplex in comparison with the duplex formed by the starting monophosphoramidate. At the same time, the introduction of a ligand incapable of incorporating decreased the T m value. The mode of interaction of the conjugated binder with the oligonucleotide duplex is determined by its structure. For example, dipyrrolecarboxamide containing an ethoxy group at the binder C-end stabilizes the duplex due to stacking interaction with the terminal A · T pair, whereas tetrapyrrolecarboxamides stabilize the duplex by incorporation into the minor groove.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 2, 2005, pp. 159–166.Original Russian Text Copyright © 2005 by Ryabinin, Butorin, Elen, Denisov, Pyshnyi, Sinyakov.  相似文献   

5.
Synthetic polycarboxamides consisting of N‐methylpyrrole (Py), N‐methylimidazole (Im), N‐methyl‐3‐hydroxypyrrole (Hp) and β‐alanine (β) show strong and sequence‐specific interaction with the DNA minor groove when they form hairpin structures with side‐by‐side antiparallel motifs. In the present paper, new conjugates containing two ligands linked to the same terminal phosphate of DNA strand were constructed. The paper describes optimized synthesis and properties of oligonucleotide‐linked polyamide strands that insert into the minor groove of a duplex in a parallel or antiparallel orientation. Strong stabilization of DNA duplexes by two attached minor groove ligands is demonstrated by the thermal denaturation method. The unmodified duplex 5′‐CGTTTATTp‐3′/5′‐AATAAACG‐3′ melts at 20°C. When one tetra(Py) residue was attached to the first strand of this duplex, denaturation temperature was increased to 46°C; attachment of the second tetra(Py) in a parallel orientation resulted in denaturation temperature of 60°C. It is even higher than in case of “classic” octapyrrole hairpin ligand (Tm = 58°C). Sequence‐specific character of stabilization by two conjugated ligands was demonstrated for G:C‐containing oligonucleotides attached to tetracarboxamide and octacarboxamide ligands constructed from Py, Im and β units according to established recognition rules (ΔTm = 20°C). The two‐strand parallel minor groove binder constructions attached to addressing oligonucleotides could be considered as site‐specific ligands recognizing single‐ and double‐stranded DNA similarly to already described hairpin MGB structures with antiparallel orientation of carboxamide units.  相似文献   

6.
New conjugates containing two parallel or antiparallel carboxamide minor groove binders (MGB) attached to the same terminal phosphate of one oligonucleotide strand were synthesized. The conjugates interact with their target DNA stronger than the individual components. Effect of conjugated MGB on DNA duplex and triplex stability and their sequence specificity was demonstrated on the short oligonucleotide duplexes and on the triplex formed by model 16-mer oligonucleotide with HIV polypurine tract.  相似文献   

7.
Abstract

New conjugates containing two parallel or antiparallel carboxamide minor groove binders (MGB) attached to the same terminal phosphate of one oligonucleotide strand were synthesized. The conjugates interact with their target DNA stronger than the individual components. Effect of conjugated MGB on DNA duplex and triplex stability and their sequence specificity was demonstrated on the short oligonucleotide duplexes and on the triplex formed by model 16-mer oligonucleotide with HIV polypurine tract.  相似文献   

8.
Two hairpin hexa(N-methylpyrrole)carboxamide DNA minor groove binders (MGB) were linked together via their N-termini in head-to-head orientation. Complex formation between these bis-MGB conjugates and target DNA has been studied using DNase I footprinting, circular dichroism, thermal dissociation, and molecular modeling. DNase I footprint revealed binding of these conjugates to all the sites of 492 b.p. DNA fragment containing (A/T)(n)X(m)(A/T)(p) sequences, where n>3, p>3; m=1,2; X = A,T,G, or C. Binding affinity depended on the sequence context of the target. CD experiments and molecular modeling showed that oligo(N-methylpyrrole)carboxamide moieties in the complex form two short antiparallel hairpins rather than a long parallel head-to-head hairpin. Binding of bis-MGB also stabilized a target duplex thermodynamically. Sequence specificity of bis-MGB/DNA binding was validated using bis-conjugates of sequence-specific hairpin (N-methylpyrrole)/(N-methylimidazole) carboxamides. In order to increase the size of recognition sequence, the conjugates of bis-MGB with triplex-forming oligonucleotides (TFO) were synthesized and compared to TFO conjugated with single MGB hairpin unit. Bis-MGB-oligonucleotide conjugates also bind to two blocks of three and more A.T/T.A pairs similarly to bis-MGB alone, independently of the oligonucleotide moiety, but with lower affinity. However, the role of TFO in DNA recognition was demonstrated for mono-MGB-TFO conjugate where the binding was detected mainly in the area of the target sequence consisting of both MGB and TFO recognition sites. Basing on the molecular modeling, three-dimensional models of both target DNA/bis-MGB and target DNA/TFO-bis-MGB complexes were built, where bis-MGB forms two antiparallel hairpins. According to the second model, one MGB hairpin is in the minor groove of 5'-adjacent A/T sequence next to the triplex-forming region, whereas the other one occupies the minor groove of the TFO binding polypurine tract. All these data together give a key information for the construction of MGB-MGB and MGB-oligonucleotide conjugates possessing high specificity and affinity for the target double-stranded DNA.  相似文献   

9.
A possibility of using oligonucleotide conjugates with minor groove ligands as probes for hybridization microarray chips was studied. The oligonucleotide conjugates contain a hairpin ligand (MGB) composed of two tripyrrolcarboxamide residues with an aminocaproic acid residue as a linker and bound to the oligonucleotide duplex AT tract in a site-specific manner. We used as (5'-3') probes GACAAGAp, GACAAAAp, GACAAGA-MGB, and GACAAAA-MGB. The oligonucleotides labeled with Cy3 cyanine dye, Cy3-ACTAATTTTGTC and Cy3-ACTAATCTTGTC, were used as targets. The maximal MGB effect on the fluorescence level of microarray chip spots, which caused its fourfold increase as compared with the initial unmodified duplex, was observed for the duplex containing only AT pairs in the ligand binding site. The presence of A-C and G-T mutations in the binding site (imperfect duplexes) or a C-G pair (perfect duplex) affects the change in fluorescence level to a considerably lesser degree.  相似文献   

10.
A possibility of using oligonucleotide conjugates with minor groove ligands as probes for hybridization microarray chips was studied. The oligonucleotide conjugates contain a hairpin ligand (MGB) composed of two tripyrrolcarboxamide residues with an aminocaproic acid residue as a linker and bound to the oligonucleotide duplex AT tract in a site-specific manner. We used as (5′-3′)-probes: GACAAGAp, GACAAAAp, GACAAGA-MGB, and GACAAAA-MGB. The oligonucleotides labeled with the Cy3 cyanine dye, Cy3-ACTAATTTTGTC and Cy3-ACTAATCTTGTC, were used as targets. The maximal MGB effect on the fluorescence level of microarray chip spots, which caused its fourfold increase as compared with the initial unmodified duplex, was observed for the duplex containing only AT pairs in the ligand binding site. The presence of AC and GT mutations in the binding site (imperfect duplexes) or a CG pair (perfect duplex) affect the change in fluorescence level to a considerably lesser degree.  相似文献   

11.
Bis-conjugates of hairpin N-methylpyrrole/N-methylimidazole oligocarboxamide minor groove binders (MGB) possessing enhanced affinity and sequence-specificity for dsDNA were synthesized. Two hairpin MGBs were connected by their N-termini via an aminodiacetate linker. The binding of bis-MGB conjugates to the target DNA was studied by gel mobility retardation, footprinting, and circular dichroism; their affinity and binding mode in the DNA minor groove were determined. In order to functionalize the bis-MGB conjugates, DNA-cleaving agents such as phenanthroline or bipyridine were attached. Effective site-specific cleavage of target DNA in the presence of Cu(2+) ions was observed.  相似文献   

12.
Synthetic ligands comprising three aromatic amino acids, pyrrole (Py), imidazole (Im), and hydroxypyrrole (Hp), specifically recognize predetermined sequences as side-by-side pairs in the minor groove of DNA. To expand the repertoire of aromatic rings that may be utilized for minor groove recognition, three five-membered heterocyclic rings, 3-pyrazolecarboxylic acid (3-Pz), 4-pyrazolecarboxylic acid (4-Pz), and furan-2-carboxylic acid (Fr), were examined at the N-terminus of eight-ring hairpin polyamide ligands. The DNA binding properties of 3-Pz, 4-Pz, and Fr each paired with Py were studied by quantitative DNase I footprinting titrations on a 283 bp DNA restriction fragment containing four 6-bp binding sites 5'-ATNCCTAA-3' (N = G, C, A, or T; 6-bp polyamide binding site is underlined). The pair 3-Pz/Py has increased binding affinity and sequence specificity for G.C bp compared with Im/Py.  相似文献   

13.
The polyamides based on 4-amino-1-methylpyrrol-2-carboxylic acid, 4-amino-1-methylimidazole-2-carboxylic acid, and beta-alanine that stabilize oligonucleotide duplexes consisting of G x C pairs through parallel packing in the minor groove were studied. The initial duplex TTGCGCp x GCGCAA melts at 28 degrees C; the TTGCGCp[NH(CH2)3COPyIm betaImNH(CH2)3NH(CH3)2][NH(CH2)3COIm betaImPyNH(CH2)3N(CH3)2] x GCGCAA duplex (bisphosphoramidate with parallel orientation of ligands, where Py, Im, and beta are the residues of 1-methyl-4-aminopyrrol-2-carboxylic and 1-methyl-4-aminoimidazole-2-carboxylic acids and beta-alanine, respectively), at 48 degrees C; and the TTGCGCp[NH(CH2)3COIm betaImPyNH(CH2)3COIm betaImPyNH(CH2)3N(CH3)2] x GCGCAA duplex (a hairpin structure with antiparallel orientation), at 56 degrees C. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 5; see also http: // www.maik.ru.  相似文献   

14.
Pyrrole–imidazole polyamides (Py–Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py–Im polyamides.  相似文献   

15.
The ability of conjugated minor groove binding (MGB) residues to stabilize nucleic acid duplexes was investigated by synthesis of oligonucleotides bearing a tethered dihydropyrroloindole tripeptide (CDPI3). Duplexes bearing one or more of these conjugated MGBs were varied by base composition (AT- or GC-rich oligonucleotides), backbone modifications (phosphodiester DNA, 2'-O-methyl phosphodiester RNA or phosphorothioate DNA) and site of attachment of the MGB moiety (5'- or 3'-end of either duplex strand). Melting temperatures of the duplexes were determined. The conjugated CDPI3 residue enhanced the stability of virtually all duplexes studied. The extent of stabilization was backbone and sequence dependent and reached a maximum value of 40-49 degrees C for d(pT)8. d(pA)8. Duplexes with a phosphorothioate DNA backbone responded similarly on CDPI3 conjugation, although they were less stable than analogous phosphodiesters. Modest stabilization was obtained for duplexes with a 2'-O-methyl RNA backbone. The conjugated CDPI3 residue stabilized GC-rich DNA duplexes, albeit to a lesser extent than for AT-rich duplexes of the same length.  相似文献   

16.
Hairpin conjugates of achiral seco-cyclopropaneindoline-2-benzofurancarboxamide (achiral seco-CI-Bf) and three diamides (ImPy 1, PyIm 2, and PyPy 3, where Py is pyrrole, and Im is imidazole), linked by a gamma-aminobutyrate group, were synthesized. The sequence-specific covalent alkylation of the achiral CI moiety with adenine-N3 in the minor groove was ascertained by thermally induced DNA cleavage experiments. The results provide evidence that hairpin conjugates of achiral seco-CI-Bf-gamma-polyamides could be tailored to target specific DNA sequences according to a set of general rules: the achiral CI moiety selectively reacts with adenine-N3, a stacked pair of imidazole/benzofuran prefers a G/C base pair, and a pyrrole/benzofuran prefers an A/T or T/A base pair. Models for the binding of hairpin conjugates 1-3 with sequences 5'-TCA(888)G-3', 5'-CAA(857)C-3', and 5'-TTA(843)C-3' are proposed.  相似文献   

17.
Polyamides containing an N-terminal formamido (f) group bind to the minor groove of DNA as staggered, antiparallel dimers in a sequence-specific manner. The formamido group increases the affinity and binding site size, and it promotes the molecules to stack in a staggered fashion thereby pairing itself with either a pyrrole (Py) or an imidazole (Im). There has not been a systematic study on the DNA recognition properties of the f/Py and f/Im terminal pairings. These pairings were analyzed here in the context of f-ImPyPy, f-ImPyIm, f-PyPyPy and f-PyPyIm, which contain the central pairing modes, –ImPy– and –PyPy–. The specificity of these triamides towards symmetrical recognition sites allowed for the f/Py and f/Im terminal pairings to be directly compared by SPR, CD and ΔTM experiments. The f/Py pairing, when placed next to the –ImPy– or –PyPy– central pairings, prefers A/T and T/A base pairs to G/C base pairs, suggesting that f/Py has similar DNA recognition specificity to Py/Py. With –ImPy– central pairings, f/Im prefers C/G base pairs (>10 times) to the other Watson–Crick base pairs; therefore, f/Im behaves like the Py/Im pair. However, the f/Im pairing is not selective for the C/G base pair when placed next to the –PyPy– central pairings.  相似文献   

18.
N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides are small organic molecules that bind to DNA with sequence specificity and can be used as synthetic DNA-binding ligands. In this study, five hairpin eight-ring Py–Im polyamides 1–5 with different number of Im rings were synthesized, and their binding behaviour was investigated with surface plasmon resonance assay. It was found that association rate (ka) of the Py–Im polyamides with their target DNA decreased with the number of Im in the Py–Im polyamides. The structures of four-ring Py–Im polyamides derived from density functional theory revealed that the dihedral angle of the Py amide carbonyl is 14∼18°, whereas that of the Im is significantly smaller. As the minor groove of DNA has a helical structure, planar Py–Im polyamides need to change their conformation to fit it upon binding to the minor groove. The data explain that an increase in planarity of Py–Im polyamide induced by the incorporation of Im reduces the association rate of Py–Im polyamides. This fundamental knowledge of the binding of Py–Im polyamides to DNA will facilitate the design of hairpin Py–Im polyamides as synthetic DNA-binding modules.  相似文献   

19.
Hairpin polyamides selectively recognize predetermined DNA sequences with affinities comparable to naturally occurring proteins. Internal side-by-side pairs of unsymmetrical aromatic rings within the minor groove of DNA distinguish each of the four Watson-Crick base pairs. In contrast, N-terminal ring pairs exhibit less specificity, with the exception of Im/Py targeting G.C base pairs. In an effort to explore the sequence specificity of new ring pairs, a series of hairpin polyamides containing 3-substituted-thiophene-2-carboxamide residues at the N-terminus was synthesized. An N-terminal 3-methoxy (or 3-chloro) thiophene residue paired opposite Py displayed 6- (and 3-) fold selectivity for T.A relative to A.T base pair, while disfavoring G,C base pairs by >200-fold. Our data suggests shape selective recognition with projection of the 3-thiophene substituent (methoxy or chloro) to the floor of the minor groove.  相似文献   

20.
Hairpin polyamides are synthetic oligomers, which fold and bind to specific DNA sequences in a programmable manner. Internal side-by-side pairings of the aromatic amino acid residues 1-methyl-1H-pyrrole (Py), 1-methyl-1H-imidazole (Im), and 3-hydroxy-1-methyl-1H-pyrrole (Hp) confer the ability to distinguish between all four Watson-Crick base pairs in the minor groove of B-form DNA. In a broad search to expand the heterocycle repertoire, we found that when 3-methylthiophene (Tn), which presents a S-atom to the minor groove, is paired with Py, it exhibits a modest threefold specificity for TA>AT presumably by shape-selective recognition. In this study, we explore the scope and limitations of this lead by incorporating multiple Tn residues within a single hairpin polyamide. It was found that hairpin polyamides containing more that one Tn/Py pair exhibit lowered affinities and specificities for their match sites. It appears that little deviation is permissible from the parent five-membered ring 1-methyl-1H-pyrrole-2-carboxamide scaffold for DNA recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号