首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Engagement of the T-cell antigen receptor (TCR) results in the proximal activation of the Src family tyrosine kinase Lck. The activation of Lck leads to the downstream activation of the Ras/Raf/MEK/ERK signaling pathway (where ERK is extracellular signal-related kinase). Under conditions of weak, but not strong, stimulation through the TCR, a version of Lck that contains a single point mutation in the SH3 (Src homology 3) domain (W97ALck) fails to support the activation of ERK, despite initiating signaling through the TCR, as demonstrated by the robust activation of ZAP-70, PLC-γ, and Ras. We determined that the signaling lesion in W97ALck-expressing cells lies at the level of Raf-1 activation and is dependent on the presence of tyrosines 340/341 in the Raf-1 sequence. These data demonstrate a second function for Lck in TCR-mediated signaling to ERK. Additionally, we found that a significant fraction of Lck is localized to the Golgi apparatus and that, compared with wild-type Lck, W97ALck displays aberrant Golgi membrane localization. Our results support a model where under conditions of weak stimulation through the TCR, in addition to activated Ras, Golgi apparatus-localized Lck is needed for the full activation of Raf-1.  相似文献   

2.
Palmitoylation of cysteines 3 and 5 is necessary for targeting Lck to lipid rafts and is needed for Lck function in T cell receptor (TCR) signaling. Point mutations of cysteines 3 and 5 result in a form of Lck that fails to associate with the plasma membrane, which limits the usefulness of this genetic approach to address the role of palmitoylation in the distribution of Lck within the plasma membrane. To circumvent this problem, we sought to identify a palmitic acid analogue that would enable plasma membrane association of Lck, but not facilitate its localization within lipid rafts. Here we examined the effects of the heteroatom-substituted analogue of palmitic acid, 13-oxypalmitic acid (13-OP), on Lck subcellular localization and function. 13-OP is similar in chain length to palmitic acid, but possesses reduced hydrophobicity. We found that treatment of cells with 13-OP inhibited incorporation of omega-[(125)I]iodopalmitate into Lck. 13-OP inhibited localization of Lck to lipid rafts without altering its membrane localization. Consistent with the dissociation of Lck from rafts, treatment with 13-OP abolished Lck association with the GPI-anchored protein, CD48, but not the transmembrane glycoprotein CD4. Jurkat T cells treated with 13-OP showed marked reduction in tyrosine phosphorylation and activation of mitogen-activated protein kinase upon TCR stimulation. In conclusion, the less hydrophobic analogue of palmitate, 13-OP, alters the normal acylation of Lck that provides Lck with the necessary hydrophobicity and tight packing order required for inclusion in lipid rafts.  相似文献   

3.
In T lymphocytes, lipid rafts are preferred sites for signal transduction initiation and amplification. Many cell membrane receptors, such as the TCR, coreceptors, and accessory molecules associate within these microdomains upon cell activation. However, it is still unclear in most cases whether these receptors interact with rafts through lipid-based amino acid modifications or whether raft insertion is driven by protein-protein interactions. In murine T cells, a significant fraction of CD2 associates with membrane lipid rafts. We have addressed the mechanisms that control the localization of rat CD2 at the plasma membrane, and its redistribution within lipid rafts induced upon activation. Following incubation of rat CD2-expressing cells with radioactive-labeled palmitic acid, or using CD2 mutants with Cys226 and Cys228 replaced by alanine residues, we found no evidence that rat CD2 was subjected to lipid modifications that could favor the translocation to lipid rafts, discarding palmitoylation as the principal mechanism for raft addressing. In contrast, using Jurkat cells expressing different CD2 and Lck mutants, we show that the association of CD2 with the rafts fully correlates with CD2 capacity to bind to Lck. As CD2 physically interacts with both Lck and Fyn, preferentially inside lipid rafts, and reflecting the increase of CD2 in lipid rafts following activation, CD2 can mediate the interaction between the two kinases and the consequent boost in kinase activity in lipid rafts.  相似文献   

4.
By mutagenesis, we demonstrated that the palmitoylation of the membrane-proximal Cys(396) and Cys(399)of CD4, and the association of CD4 with Lck contribute to the enrichment of CD4 in lipid rafts. Ab cross-linking of CD4 induces an extensive membrane patching on the T cell surface, which is related to lipid raft aggregation. The lipid raft localization of CD4 is critical for CD4 to induce the aggregation of lipid rafts. The localization of CD4 in lipid rafts also correlates to the ability of CD4 to enhance receptor tyrosine phosphorylation. Thus, our data suggest that CD4-induced aggregation of lipid rafts may play an additional role in CD4 signaling besides its adhesion to MHC molecules and association with Lck.  相似文献   

5.
In T lymphocytes, the Src-family protein tyrosine kinase p56lck (Lck) is mostly associated with the cytoplasmic face of the plasma membrane. To determine how this distribution is achieved, we analyzed the location of Lck in lymphoid and in transfected nonlymphoid cells by immunofluorescence. We found that in T cells Lck was targeted correctly, independently of the cell surface proteins CD4 and CD8 with which it interacts. Similarly, in transfected NIH-3T3 fibroblasts, Lck was localized at the plasma membrane, indicating that T cell–specific proteins are not required for targeting. Some variation in subcellular distribution was observed when Lck was expressed in HeLa and MDCK cells. In these cells, Lck associated with both the plasma membrane and the Golgi apparatus, while subsequent expression of CD4 resulted in the loss of Golgi-associated staining. Together, these data indicate that Lck contains intrinsic signals for targeting to the plasma membrane. Furthermore, delivery to this site may be achieved via association with exocytic transport vesicles.

A mutant Lck molecule in which the palmitoylation site at cysteine 5 was changed to lysine (LC2) localized to the plasma membrane and the Golgi region in NIH3T3 cells. However, the localization of a mutant in which the palmitoylation site at cysteine 3 was changed to serine (LC1) was indistinguishable from wild-type Lck. Chimeras composed of only the unique domain of Lck linked to either c-Src or the green fluorescent protein similarly localized to the plasma membrane of NIH-3T3 cells. Thus, the targeting of Lck appears to be determined primarily by its unique domain and may be influenced by the use of different palmitoylation sites.

  相似文献   

6.
Lipid rafts are critical to the assembly of the T-cell receptor (TCR) signaling machinery. It is not known whether lipid raft properties differ in CD4+ and CD8+ T cells and whether there are age-related differences that may account in part for immune senescence. Data presented here showed that time-dependent interleukin-2 (IL-2) production was different between CD4+ and CD8+ T cells. The defect in IL-2 production by CD4+ T cells was not due to lower levels of expression of the TCR or CD28. There was a direct correlation between the activation of p56(Lck) and LAT and their association/recruitment with the lipid raft fractions of CD4+ and CD8+ T cells. p56Lck, LAT and Akt/PKB were weakly phosphorylated in lipid rafts of stimulated CD4+ T cells of elderly as compared to young donors. Lipid rafts undergo changes in their lipid composition (ganglioside M1, cholesterol) in CD4+ and CD8+ T cells of elderly individuals. This study emphasizes the differential role of lipid rafts in CD4+ and CD8+ T-cell activation in aging and suggests that the differential localization of CD28 may explain disparities in response to stimulation in human aging.  相似文献   

7.
8.
Like many enveloped viruses, human respiratory syncytial virus (RSV) assembles at and buds from lipid rafts. Translocation of the envelope proteins to these membrane subdomains is essential for production of infectious virus, but the targeting mechanism is poorly understood and it is not known if other virus proteins are required. Here we demonstrate that F protein of RSV intrinsically targets to lipid rafts without a requirement for any other virus protein, including the SH and G envelope proteins. Recombinant virus deficient in SH and G but retaining F protein expression was used to demonstrate that F protein still localized in rafts in both A549 and HEp-2 cells. Expression of a recombinant F gene by use of plasmid vectors demonstrated that F contains its own targeting domain and localized to rafts in the absence of other virus proteins. The domain responsible for translocation was then mapped. Unlike most other virus envelope proteins, F is unusual since the target signal is not contained within the cytoplasmic domain nor did it involve fatty acid modified residues. Furthermore, exchange of the transmembrane domain with that of the vesicular stomatitis virus G protein, a nonraft protein, did not alter F protein raft localization. Taken together, these data suggest that domains present in the extracellular portion of the protein are responsible for lipid raft targeting of the RSV F protein.  相似文献   

9.
Intracellular protein interaction domains are essential for eukaryotic signaling. In T cells, the CD2BP2 adaptor binds two membrane-proximal proline-rich motifs in the CD2 cytoplasmic tail via its GYF domain, thereby regulating interleukin-2 production. Here we present the structure of the GYF domain in complex with a CD2 tail peptide. Unlike SH3 domains, which use two surface pockets to accommodate proline residues of ligands, the GYF domain employs phylogenetically conserved hydrophobic residues to create a single interaction surface. NMR analysis shows that the Fyn but not the Lck tyrosine kinase SH3 domain competes with CD2BP2 GYF-domain binding to the same CD2 proline-rich sequence in vitro. To test the in vivo significance of this competition, we used co-immunoprecipitation experiments and found that CD2BP2 is the ligand of the membrane-proximal proline-rich tandem repeat of CD2 in detergent-soluble membrane compartments, but is replaced by Fyn SH3 after CD2 is translocated into lipid rafts upon CD2 ectodomain clustering. This unveils the mechanism of a switch of CD2 function due to an extracellular mitogenic signal.  相似文献   

10.
The Lck tyrosine kinase molecule plays an essential role in T cell activation and T cell development. Using the expression cloning technique, we have isolated a gene that encodes a molecule, LckBP1, able to associate with murine Lck. Analysis of full-length LckBP1 cDNA indicates at least four potentially important segments: a four tandem 37 amino acid repeat motif with a potential helix-turn-helix DNA binding motif; a proline-rich region; a proline-glutamate repeat; and an SH3 domain. These four regions are very similar to the human haematopoietic-specific protein 1 (HS1). Deletion mutant analysis of LckBP1 revealed two proline-rich regions that permit association with Lck SH3. One region contains prolines conserved among HS1 and cortactin, and the other region contains a potential MAP kinase recognition site. In vivo association between Lck and LckBP1 was confirmed by immunoprecipitation of lysates from a pre-T cell line and adult thymocytes using antibodies specific for Lck and LckBP1. LckBP1 is tyrosine phosphorylated after T-cell receptor stimulation. The SH3 domain and the potential helix-turn-helix motif in LckBP1 suggest that this molecule may associate with various molecules and function as a DNA binding molecule. The data also suggest that LckBP1 mediates intracellular signalling through Lck in T cells.  相似文献   

11.
Lck is a member of the Src family kinases expressed predominantly in T cells, and plays a pivotal role in TCR-mediated signal transduction. Myristoylation of glysine 2 in the N-terminal Src homology 4 (SH4) domain of Lck is essential for membrane localization and function. In this study, we examined a site within the SH4 domain of Lck regulating myristoylation, membrane localization, and function of Lck. A Lck mutant in which serine 6 (Ser6) was substituted by an alanine was almost completely cytosolic in COS-7 cells, and this change of localization was associated with a drastic inhibition of myristoylation in this mutant. To assess the role of Ser6 of Lck in T cell function, we established stable transfectants expressing various Lck mutants using Lck-negative JCaM1 cells. The Lck mutant of Ser6 to alanine, most of which did not target to the plasma membrane, was not able to reconstitute TCR-mediated signaling events in JCaM1 cells, as analyzed by tyrosine phosphorylation of intracellular proteins and CD69 expression. These results demonstrate that Ser6 is a critical factor for Lck myristoylation, membrane localization, and function in T cells, presumably because the residue is important for N-myristoyl transferase recognition.  相似文献   

12.
In resting T cells, Csk is constitutively localized in lipid rafts by virtue of interaction with a phosphorylated adaptor protein, Csk-binding protein (Cbp)/phosphoprotein associated with glycolipid-enriched microdomains, and sets an activation threshold in TCR signaling. In this study, we examined a kinase responsible for Cbp phosphorylation in T cell membrane rafts. By analyzing T cells from Fyn-/- mice, we clearly demonstrated that Fyn, but not Lck, has its kinase activity in membrane rafts, and plays a critical role in Cbp phosphorylation, Cbp-Csk interaction, and Csk kinase activity. Naive CD44(low)CD62 ligand(high) T cells were substantially reduced in Fyn-/- mice, presumably due to the inhibition of Cbp phosphorylation. Thus, Fyn mediates Cbp-Csk interaction and recruits Csk to rafts by phosphorylating Cbp. Csk recruited to rafts would then be activated and inhibit the kinase activity of Lck to keep resting T cells in a quiescent state. Our results elucidate a negative regulatory role for Fyn in proximal TCR signaling in lipid rafts.  相似文献   

13.
The Csk tyrosine kinase negatively regulates the Src family kinases Lck and Fyn in T cells. Engagement of the T-cell antigen receptor results in a removal of Csk from the lipid raft-associated transmembrane protein PAG/Cbp. Instead, Csk becomes associated with an approximately 72-kDa tyrosine-phosphorylated protein, which we identify here as G3BP, a phosphoprotein reported to bind the SH3 domain of Ras GTPase-activating protein. G3BP reduced the ability of Csk to phosphorylate Lck at Y505 by decreasing the amount of Csk in lipid rafts. As a consequence, G3BP augmented T-cell activation as measured by interleukin-2 gene activation. Conversely, elimination of endogenous G3BP by RNA interference increased Lck Y505 phosphorylation and reduced TCR signaling. In antigen-specific T cells, endogenous G3BP moved into a intracellular location adjacent to the immune synapse, but deeper inside the cell, upon antigen recognition. Csk colocalization with G3BP occurred in this "parasynaptic" location. We conclude that G3BP is a new player in T-cell-antigen receptor signaling and acts to reduce the amount of Csk in the immune synapse.  相似文献   

14.
In adipose and muscle, insulin stimulates glucose uptake and glycogen synthase activity. Phosphatidylinositol 3-kinase (PI3K) activation is necessary but not sufficient for these metabolic actions of insulin. The insulin-stimulated translocation of phospho-c-Cbl to lipid rafts, via its association with CAP, comprises a second pathway regulating GLUT4 translocation. In 3T3-L1 adipocytes, overexpression of a dominant negative CAP mutant (CAP Delta SH3) completely blocked the insulin-stimulated glucose transport and glycogen synthesis but only partially inhibited glycogen synthase activation. In contrast, CAP Delta SH3 expression did not affect glycogen synthase activation by insulin in the absence of extracellular glucose. Moreover, CAP Delta SH3 has no effect on the PI3K-dependent activation of protein phosphatase-1 or phosphorylation of glycogen synthase kinase-3. These results indicate blockade of the c-Cbl/CAP pathway directly inhibits insulin-stimulated glucose uptake, which results in secondary inhibition of glycogen synthase activation and glycogen synthesis.  相似文献   

15.
Cross-linking of 4-1BB, a member of the TNFR family, increased tyrosine phosphorylation of TCR-signaling molecules such as CD3epsilon, CD3zeta, Lck, the linker for activation of T cells, and SH2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76). In addition, incubation of activated CD8+ T cells with p815 cells expressing 4-1BBL led to redistribution of the lipid raft domains and Lck, protein kinase C-theta;, SLP-76, and phospholipase C-gamma1 (PLC-gamma1) on the T cell membranes to the areas of contact with the p815 cells and recruitment of 4-1BB, TNFR-associated factor 2, and phospho-tyrosine proteins to the raft domains. 4-1BB ligation also caused translocation of TNFR-associated factor 2, protein kinase C-theta;, PLC-gamma1, and SLP-76 to detergent-insoluble compartments in the CD8+ T cells, and cross-linking of 4-1BB increased intracellular Ca2+ levels apparently by activating PLC-gamma1. The redistribution of lipid rafts and Lck, as well as translocation of PLC-gamma1, and degradation of IkappaB-alpha in response to 4-1BB were inhibited by disrupting the formation of lipid rafts with methyl-beta-cyclodextrin. These findings demonstrate that 4-1BB is a T cell costimulatory receptor that activates TCR-signaling pathways in CD8+ T cells.  相似文献   

16.
SH2 domain containing inositol polyphosphate 5-phosphatase (SHIP2) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) into phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)). SHIP2 knock-out mice demonstrated that SHIP2 acts as a negative regulator of insulin cascade in vivo. Our two-hybrid study showed that SHIP2 interacts with c-Cbl associated protein (CAP) and c-Cbl, implicated in the insulin signaling. As some proteins implicated in insulin signaling, like insulin receptor, CAP, c-Cbl or TC10, were reported to localize in lipid rafts, we addressed the same question for SHIP2. SHIP2 was detected in the non-raft fraction in CHO-IR, C2C12 myotubes and 3T3-L1 adipocytes except when it is overexpressed in CHO-IR, where we detected SHIP2 in the raft fraction.  相似文献   

17.
The structure of phospholipase Cgamma1 (PLC-gamma1) contains two SH2 domains and one SH3 domain. While the function of the SH2 domains in PLC-gamma1 are well described, to date no growth factor-dependent function for the SH3 domain has been presented. To assess SH3 domain function in the context of the full-length PLC-gamma1, this domain was deleted and the mutant was stably expressed in Plcg1 null mouse embryonic fibroblasts. Following EGF treatment of cells, the PLC-gamma1DeltaSH3 mutant displayed the same increased level of tyrosine phosphorylation and association with EGF receptor as wild-type PLC-gamma1. Also, the SH3 mutant demonstrated membrane translocation and mediated the mobilization of intracellular Ca(2+) in response to EGF. c-Cbl is shown to associate with tyrosine phosphorylated PLC-gamma1 in an EGF-dependent manner, but no association was detected with the PLC-gamma1DeltaSH3 mutant. Interestingly, PDGF, which also tyrosine phosphorylates PLC-gamma1, failed to induce c-Cbl association with PLC-gamma1 and also provoked no c-Cbl tyrosine phosphorylation. This suggests that c-Cbl tyrosine phosphorylation is necessary for its interaction with PLC-gamma1. Evidence of a direct association of c-Cbl with PLC-gamma1 was provided by pull-down and overlay experiments, using glutathione S-transferase fusion proteins that contain the SH3 domain of PLC-gamma1. The data, therefore, show an EGF-inducible direct association of PLC-gamma1 with c-Cbl in vivo that is mediated by the SH3 domain of PLC-gamma1.  相似文献   

18.
In T lymphocytes, the Src family kinase Lck associates lipid rafts and accumulates at the immunological synapse (IS) during T cell stimulation by APCs. Using CD4- or CD28-deficient murine T cells, it was suggested that recruitment of Lck to the IS depends on CD4, whereas CD28 sustains Lck activation. However, in human resting T cells, CD28 is responsible for promoting recruitment of lipid rafts to the IS by an unknown mechanism. Thus, we performed a series of experiments to determine 1) whether Lck is recruited to the IS through lipid rafts; and 2) whether Lck recruitment to the IS of human resting T cells depends on CD4 or on CD28 engagement. We found that CD28, but not CD4, stimulation induced recruitment of Lck into detergent-resistant domains as well as its accumulation at the IS. We also found that Lck recruitment to the IS depends on the CD28 COOH-terminal PxxPP motif. Thus, the CD28-3A mutant, generated by substituting the prolines in positions 208, 211, and 212 with alanines, failed to induce Lck and lipid raft accumulation at the synapse. These results indicate that CD28 signaling orchestrates both Lck and lipid raft recruitment to the IS to amplify T cell activation.  相似文献   

19.
Nerve growth factor (NGF) acts through its receptor, TrkA, to elicit the neuronal differentiation of PC12 cells through the action of extracellular signal-regulated kinase 1 (ERK1) and ERK2. Upon NGF binding, TrkA translocates and concentrates in cholesterol-rich membrane microdomains or lipid rafts, facilitating formation of receptor-associated signaling complexes, activation of downstream signaling pathways, and internalization into endosomes. We have investigated the mechanisms responsible for the localization of TrkA within lipid rafts and its ability to activate ERK1 and ERK2. We report that NGF treatment results in the translocation of activated forms of TrkA to lipid rafts, and this localization is important for efficient activation of the ERKs. TrkA is recruited and retained within lipid rafts through its association with flotillin, an intrinsic constituent of these membrane microdomains, via the adapter protein, c-Cbl associated protein (CAP). Mutant forms of CAP that lack protein interaction domains block TrkA localization to lipid rafts and attenuate ERK activation. Importantly, suppression of endogenous CAP expression inhibited NGF-stimulated neurite outgrowth from primary dorsal root ganglion neurons. These data provide a mechanism for the lipid raft localization of TrkA and establish the importance of the CAP adaptor protein for NGF activation of the ERKs and neuronal differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号