首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three methods were used to study N2 fixation and effects ofwater deficit on N2 fixation: C2H2 reduction assay (ARA), 15Ndilution technique and accumulated N content. In addition, 15Ndilution was calculated both in a traditional way and in a modifiedway, which takes into consideration N and 15N content for theplants before the experiment started. The three methods wereapplied on the following Rhizobium-symbioses: Acacia albidaDel (Faidherbia albida (Del) A. Chev.) and Leucaena leucocephala(Lam) de Wit., and the Frankia-symbiosis Casuarina equisetifoliaL. The plants wereabout 4-months-old when they were harvested. Nitrogen derived from N2 fixation in control plants of Acaciaalbida was 54·2 mg as measured with ARA, while it was28·5 mg as measured with the 15N dilution technique,compared to 30·7 mg calculated as accumulated N. In comparison,L. leucocephala fixed 41·6 mg N (ARA), 53·5 mgN(15N dilution technique) and 56·3 mg N (accumulatedN). The Frankia-symbiosis had fixed 27·4 mg N as measuredby ARA, 8·1 mg N as measured by 15N dilution techniqueand 12·3 mg N as accumulated N. There were no differencesbetween the estimates based ontraditional and modified waysof calculating 15N dilution. The immediate effect of water deficit treatment on N2 fixationwas continuously measured inall species with ARA, which startedto decrease approximately 10 d after the initiation of the treatment,and declined to less than 5% of the initial level after 21–28d. The decrease in the amount of N derived from N2 fixation wasstudied in L. leucocephala during the period of treatment. Therewas a 26% decrease in amount of N derived from N2 fixation asresult of water deficit (as measured with ARA), while the decreasewas 23% when measured withboth the 15N dilution method and asaccumulated N. The three different methods for measuring N2 fixation and effectsof water deficit on N2 fixation are discussed. Key words: Acacia albida, ARA, Casuarina equisetifolia, Leucaena leucocephala, 15N dilution, N2N fixation, water deficit  相似文献   

2.
Growth and N-accumulation rates in leaves, stolons and rootsof individual white clover plants were studied in three experimentsusing two methods. In a growth chamber experiment, the relativedifferences between tissues were found to be almost constantfor a wide range of clover plant sizes. The stolon dry matter(DM) production was 56% and the root DM production 40% of theDM production in leaves. The N yield of stolons was 30% whileN yield in roots was 34% of N yield in leaves. The effect ofN application on these relations was investigated in a glasshouseexperiment. Application of N reduced the root:shoot N ratiofrom 0.50 to 0.28, whereas the stolon+root:leaf N ratio (i.e.for abovevs.below cutting-height tissues) was only reduced from0.97 to 0.80. In a field trial with two contrasting N regimes,growth and N accumulation were measured on individual cloverplants. Dinitrogen fixation was estimated by15N isotope dilutionbased on analysis of leaves-only or by including stolons. Usingleaves-only did not affect the calculation of percentage ofclover N derived from N2fixation (% Ndfa) since the15N enrichmentwas found to be uniform in all parts of the clover. A correctionfactor of 1.7 to account for N in below cutting-height tissueis suggested when N2fixation in white clover is estimated byharvesting the leaves only.Copyright 1997 Annals of Botany Company Leaves; N accumulation; N2fixation; 15N isotope dilution; pastures; roots; root/shoot ratio; stolons; Trifolium repensL.; white clover  相似文献   

3.
Surface waters in forested watersheds in the Adirondack Mountains and northern New York State are susceptible to nitrogen (N) saturation. Atmospheric deposition of N to watersheds in this region has been measured but the extent of internal N inputs from symbiotic N2 fixation in alder-dominated wetlands is not known. We estimated N2 fixation by speckled alder in these wetlands by the 15N natural abundance method and by acetylene reduction using a flow-through system. Foliar N derived from fixation (%Ndfa) was estimated for five wetlands. The '15N of speckled alder foliage from four of the five sites did not differ significantly (PА.05) from that of nodulated speckled alders grown in N-free water culture (-1.2ǂ.1‰). Estimates from the 15N natural abundance method indicated that alders at these sites derive 85-100% of their foliar N from N2 fixation. At one of the sites, we also measured biomass and N content and estimated that the alder foliage contained 43 kg N ha-1 of fixed N in 1997. This estimate was based on a foliar N content of 55.4lj kg N ha-1 (mean-SE), 86dž%Ndfa, and an assumption that 10% of foliar N was derived from reserves in woody tissues. At this site, we further estimated via acetylene reduction that 37ᆞ kg N ha-1 was fixed by speckled alders in 1998. This estimate used the theoretical 4:1 C2H2 reduction to N2 fixation ratio and assumed no night-time fixation late in the season. Nitrogen inputs in wet and dry deposition at this site are approximately 8 kg N ha-1 year-1. We conclude that speckled alder in wetlands of northern New York State relies heavily on N2 fixation to meet N demands, and symbiotic N2 fixation in speckled alders adds substantial amounts of N to alder-dominated wetlands in the Adirondack Mountains. These additions may be important for watershed N budgets, where alder-dominated wetlands occupy a large proportion of watershed area.  相似文献   

4.
Nodul{macron}ted alfalfa plants were grown hydroponically. Inorder to quantify N2 fixation and remobilization of N reservesduring regrowth the plants were pulse-chase-labelled with 15N.Starch and ethanol-soluble sugar contents were analysed to examinechanges associated with those of N compounds. Shoot removalcaused a severe decline in N2 fixation and starch reserves within6 d after cutting. The tap root was the major storage site formetabolizable carbohydrate compounds used for regrowth; initiallyits starch content decreased and after 14 d started to recoverreaching 50% of the initial value on day 24. Recovery of N2fixation followed the same pattern as shoot regrowth. Afteran initial decline during the first 10 d following shoot removal,the N2 fixation, leaf area and shoot dry weight increased sorapidly that their levels on day 24 exceeded initial values.Distribution of 15N within the plant clearly showed that a significantamount of endogenous nitrogen in the roots was used by regrowingshoots. The greatest use of N reserves (about 80% of N incrementin the regrowing shoot) occurred during the first 10 d and thencompensated for the low N2 fixation. The distribution of N derivedeither from fixation or from reserves of source organs (taproots and lateral roots) clearly showed that shoots are thestronger sink for nitrogen during regrowth. In non-defoliatedplants, the tap roots and stems were weak sinks for N from reserves.By contrast, relative distribution within the plant of N assimilatedin nodules was unaffected by defoliation treatment. Key words: Medicago sativa L., N2 fixation, N remobilization, N2 partitioning, regrowth  相似文献   

5.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown as simulated swards for 71 d in flowing nutrientsolutions with roots at 11 C and shoots at 20/15 C, day/night,under natural illumination. Root temperatures were then changedto 3, 5, 7, 11, 13, 17 or 25 C and the total N2, fixation over21 d was measured in the absence of a supply mineral N. Alltreatments were subsequently supplied with 10 mmol m–2NO2 in the flowing solutions for 14 d, and the relativeuptake of N by N2, fixation and NO3 uptake was compared.Net uptake of K+ was measured on a daily basis. Root temperature had little effect on root d. wt over the 35-dexperimental period, but shoot d. wt increased by a factor of3.5 between 3 and 25 C, with the sharpest increase occurringat 7–11 C. Shoot: root d. wt ratios increased from 25to 68 with increasing temperature at 7–25 C. N2-fixationper plant (in the absence of NO2 ) increased with roottemperature at 3–13C, but showed little change above13 C. The ratios of N2 fixation: NO2 uptake over 14d (mol N: mol N) were 0.47–0.77 at 3–7 C, 092–154at 11–17 C, and 046 at 25 C, reflecting the dominanceof NO3 uptake over N2 fixation at extremes of high andlow root temperature. The total uptake of N varied only slightlyat 11–25 –C (095–110 mmol N plant–1),the decline in N2 fixation as root temperature increased above11 C was compensated for by the increase in NO 3 uptake.The % N in shoot dry matter declined with decreasing root temperature,from 32% at 13 C to 15% at 3 C. In contrast, concentrationsof N expressed on a shoot water content basis showed a modestdecrease with increasing temperature, from 345 mol m–3at 3 C to 290 mol m–3 at 25 C. Trifolium repens L, white clover, root temperature, N2 fixation, potassium uptake, nitrate uptake, flowing solution culture  相似文献   

6.
Chlorella cells incubated in the dark longer than 12 hr showedpronounced blue light-induced 14CO2 fixation into aspartate,glutamate, malate and fumarate (blue light effect), whereasthose kept under continuous light showed only a slight bluelight effect, if any. 2) During dark incubation of Chlorellacells, phosphoenolpyruvate carboxylase activity and the capacityfor dark 14CO2 fixation decreased significantly, whereas ribulose-1,5-diphosphatecarboxylase activity and the capacity for photosynthetic 14CO2fixation (measured under illumination of white light at a highlight intensity) did not decrease. 3) In cells preincubatedin the dark, intracellular levels of phosphoenolpyruvate and3-phosphoglycerate determined during illumination with bluelight were practically equal to levels determined during illuminationwith red light. 4) The blue light effect was not observed incells incubated widi chloramphenicol, indicating that blue light-inducedprotein synthesis is involved in the mechanism of the effect. (Received April 9, 1971; )  相似文献   

7.
Single plants of white clover (Trifolium repens L.) were grownfrom stolon cuttings rooted in sand. All plants were inoculatedwith Rhizobium trifolii, and for 14 weeks received nutrientsolution containing 0.5 mg N each week, as either ammonium ornitrate. Plants were then leniently defoliated or were leftintact and a 15N-labelled N source was applied at intervalsof 4 d to replace the unlabelled N. Lement defoliation removedfully expanded leaves only; the remaining immature leaves accountedfor 39–44% of the total. At harvests over the following21 d, leaf numbers were counted and dry matter (DM), N contentsand 15N enrichments of individual plant organs were determined. Rates of leaf emergence and expansion were accelerated in defoliatedplants; numbers of young leaves were similar in defoliated andintact plants. Total DM and N content were less in defoliatedthan intact plants and were not affected by form of N supplied.DM of young leaves, growing points and stolons and N contentof young leaves were, however, greater when ammonium ratherthan nitrate N was supplied. Rates of increase in the contentof plant total N were 8.2 ± 1.36 mg N d-1 and 10.2±1.82 mg N d-1 in defoliated and intact plants respectively.The increases were predominantly due to N2 fixation, since recoveryof 15N showed that less than 1% of the increment in plant totalN was assimilated mineral N. Nevertheless, the contributionof mineral N to plant total N was 50% more in defoliated thanin intact plants; higher amounts of mineral N were found particularlyin young leaves and growing points. Partitioning of mineralN to nodulated roots increased over time and was greater whenammonium rather than nitrate N was present. White clover, Trifolium repens L. cv. S184, lenient defoliation, N accumulation, N2 fixation  相似文献   

8.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and harvested at intervals over and88 d growht period. The swards received a nutrient solutiondaily, which was either High (220 mg l1) or Low (10 mgl–1) in nitrate N. The nitrate was labelled with the 15Nisotope. An acetylene reduction assay was carried out on eachsward just prior to harvest. Rates of acetylene reduction agreed qualitatively with the l5Nanalyses but absolute values did not match (assuming a 4:1 C2H4:N2ratio) and errors in the acetylene assay are discussed. In theLow-N swards clover relied almost entirely on symbioticallyfixed N2, fixing more than ten times as much as the High-N cloverplants. In the Low-N treatment the grass was N-deficient despiteobtaining much more nitrate per unit root dry weight than clover.In the High-N swards, however, clover took up more nitrate perunit root weight than grass. The High-N clover plants also fixedsome N2 and maintained a higher total-N content than grass throughoutthe period. There was no evidence of transfer of symbioticallyfixed N from the clover to the grass in either treatment. Trifolium repens, Lolium perenne, nitrate, nitrogen fixation, 15N, acetylene reduction  相似文献   

9.
Quantification of N2 fixation by pigeonpea (Cajanus cajan (L.)Millsp.) in the field has proved difficult using techniquessuch as 15N isotope dilution, acetylene reduction and N difference.We report experiments to develop the ureide assay of N2 fixationbased on extraction and analysis of xylem exudate. Plants ofpigeonpea cv. Quantum, inoculated with effective Rhizobium spp.CB756, were grown in a temperature-controlled glasshouse inlarge pots filled with a sand: vermiculite mixture, in waterculture and in a slightly acidic, red-brown earth in replicatedfield plots. Xylem exudate was collected as bleeding sap fromboth nodulated and unnodulated roots, and from detached nodules.Exudate was extracted also from detached shoots and stems ofpigeonpea using a mild vacuum (60–70 kN m–2). Largedifferences in the composition of N solutes exported from rootsof N2-dependent and nitrate-dependent plants suggested thatshifts in plant dependence on N2 fixation may be reflected byconcomitant changes in N solutes. Thus, nodulated plants weresupplied throughout growth with either N-free nutrients or nutrientssupplemented with 1, 2, 5, 5, 10, or 20 mol m–3 15. Plants were harvested at regular intervals fordry matter and vacuum-extracted exudate. The relative abundanceof ureides ([ureide-N/ureide-N + nitrate-N + -amino-N] ? 100)in the exudate was highly correlated with the proportion ofplant N (calculated using a 15N isotope dilution technique)derived from N2 fixation. Two distinct phases of plant growthwere recognized and standard curves were prepared for each.The relationship between proportional dependence of plants onN2 and xylem relative ureides was unaffected by mineral-N source,i.e. nitrate or ammonium. This result is discussed in relationto interpretation of material from field-grown plants. The effectsof plant genotype, strain of rhizobia, section of stem extracted,removal of leaves, time delay between shoot detachment and extraction,and diurnal characteristics were examined in order to identifypotential sources of error and to optimize sampling procedures. Key words: Ureides, allantoin, allantoic acid, N2 fixation, pigeonpea, Cajanus cajan  相似文献   

10.
In vivo net CO2 exchange characteristics of attached Brassicapods were studied during the entire period of their growth anddevelopment after anthesis. 14CO2 was fed both from the externalatmosphere and internally through the pod cavity, and the anatomyof the pod-wall was examined microscopically. Stomata were observedin the outer epidermal layer of the pod wall. Net in vivo CO2fixation by the pods was observed throughout the period of theirdevelopment and was maximum on day 42 after anthesis (DAA).Compared to the internal feeding experiments, 14CO2 fixationfrom the external environment was very high. Apparent translocationof fixed carbon from the pod wall to seeds was rapid. Pod photosynthesiscontributed substantially to seed growth. pods, Brassica campestris L, CO2 fixation, stomata  相似文献   

11.
In vivo net CO2 exchange characteristics of attached Brassicapods were studied during the entire period of their growth anddevelopment after anthesis. 14CO2 was fed both from the externalatmosphere and internally through the pod cavity, and the anatomyof the pod-wall was examined microscopically. Stomata were observedin the outer epidermal layer of the pod wall. Net in vivo CO2fixation by the pods was observed throughout the period of theirdevelopment and was maximum on day 42 after anthesis (DAA).Compared to the internal feeding experiments, 14CO2 fixationfrom the external environment was very high. Apparent translocationof fixed carbon from the pod wall to seeds was rapid. Pod photosynthesiscontributed substantially to seed growth. pods, Brassica campestris L., CO2 fixation, stomata  相似文献   

12.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

13.
The duckweeds Lemna gibba L. and Lemna minor L. only grew wellin undisturbed culture under axenic conditions in low lightintensity when provided with a suitable energy source such asglucose. In media containing N03-N gibbosity (a convex ventralsurface) was induced in the presence of the chelating agentethylene-diamine-di-o-hydroxyphenylacetic acid (EDDHA). In nutrientsolutions containing NO3-N as the only N source, but withoutEDDHA, L. gibba occasionally exhibited gibbosity in culturesolutions of 40 cm3 volumes. More fronds were induced to exhibitgibbosity when the volume of the culture medium was increasedfrom 40 cm3 to 200 cm3. Gibbosity was never induced in L. minor,neither was it induced in L. gibba in media containing NH4-N,even in the presence of NO3-N. There was no direct correlationbetween the occurrence of gibbosity and frond growth rate, butgibbosity occurred only when there was good frond growth. In the absence of a sugar, frond growth was enhanced by bubblingair through the culture solution in the light. Increasing theCO2 concentration in the air up to 1% enhanced growth and inducedgibbosity. Carbon dioxide did not induce gibbosity in mediacontaining NH4-N. Key words: Ammonium-N, carbon dioxide, gibbosity, Lemna, nitrate-N  相似文献   

14.
Growth-chamber studies were conducted to evaluate nitrogen assimilationby three hypernodulated soybean [Glycine max (L.) Merr.] mutants(NOD1–3, NOD2–4, NOD3–7) and the Williamsparent. Seeds were inoculated at planting and transplanted atday 7 to nutrient solution with 1 mol m–3 urea (optimizesnodule formation) or 5 mol m–3 NO3 (inhibits noduleformation). At 25 d after planting, separate plants were exposedto 15NO2 or 15NO3 for 3 to 48 h to evaluate N2 fixationand NO3 assimilation. Plant growth was less for hypernodulatedmutants than for Williams with both NO3 and urea nutrition.The major portion of symbiotically fixed 15N was rapidly assimilated(30 min) into an ethanol-soluble fraction, but by 24 h aftertreatment the ethanolinsoluble fraction in each plant part wasmost strongly labelled. Distribution patterns of 15N among organswere very similar among lines for both N growth treatments aftera 24 h 15N2 fixation period; approximate distributions were40% in nodules, 12% in roots, 14% in stems, and 34% in leaves.With urea-grown plants the totalmg 15N fixed plant–1 24h–1 was 1·18 (Williams), 1·40 (N0D1-3),107 (NOD2-4), and 0·80 (NOD3-7). The 5 mol m-3 NO3- treatmentresulted in a 95 to 97% decrease in nodule mass and 15N2 fixationby Williams, while the three mutants retained 30 to 40% of thenodule mass and 17 to 19% of the 15N2 fixation of respectiveurea-grown controls. The hypernodulated mutants, which had restrictedroot growth, absorbed less 15NO3- than Williams, irrespectiveof prior N growthcondition. The 15N from 15NO3- was primarilyretained in the soluble fraction of all plant parts through24 h. The 15N incorporation studies confirmed that nodule developmentis less sensitive to external NO3- in mutant lines than in theWilliams parent, and provide evidence that subsequent metabolismand distribution within the plant was not different among lines.These results further confirm that the hypernodulated mutantsof Williams are similar in many respects to the hyper- or supernodulatedmutants in the Bragg background, and suggest that a common mutationalevent affectingautoregulatory control of nodulation has beentargeted. Key words: Glycine max (L.) Merr., soybean, N2fixation, nitrate assimilation, nodulation mutants, 15N isotope  相似文献   

15.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

16.
The feed back control mechanism proposed to explain the inhibitionof N2 fixation by N was investigated using Vicia faba cv. Fiord.Plants were grown under controlled conditions without mineralN in coarse river sand. Asparagine was supplied to plants activelyfixing N2 by absorption through cut roots and via a wick ordirect injection into the stem just above the bottom leaf. Responsesin N2 fixation were measured by acetylene reduction (AR). Feedingplants with [14C]-labelled asparagine showed that the amidewas taken up when exogenously applied. Asparagine (10 mM) suppliedby the above procedures resulted in a 50-70% inhibition of ARby 48 h. Glutamine produced a similar effect. The cut root methodallowed higher levels of these amides to be supplied but theinhibition observed with 10 mM asparagine was only increasedslightly with higher levels of the amide. The antibiotic Securopenprevented bacterial contamination of root solutions of asparagineand glutamine and had no effect on nodule activity. It is concludedthat accumulation of asparagine of glutamine or the resultantincrease in the pool of soluble N in the plant cause a feedbackeffect on the activity of nitrogenase.Copyright 1993, 1999 AcademicPress Vicia faba, faba bean, asparagine, inhibition of N2 fixation  相似文献   

17.
Effects of chilling (5 °C) period, light and applied nitrogen(N) on germination (%), rate of germination (d to 50% of totalgermination; T50%) and seed imbibition were examined inClematisvitalba L. In the absence of chilling, light and N, germinationwas minimal (3%). When applied alone, both chilling and N increasedgermination. Chilling for 12 weeks increased germination to64%, and 2.5 mM NO-3or NH+4increased germination to 10–12%.Light did not increase germination when applied alone, but didwhen applied in combination with chilling and/or N. Half theseed germinated when light was combined with 2.5 mM NO-3or NH+4.The influence of chilling, light and/or N on germination wasgreater when combined, than when either factor was applied alone.Both oxidized (NO-3) and reduced (NH+4) forms of N increasedgermination, but non-N-containing compounds did not, suggestingthe response was due to N and not ionic or osmotic effects. Without additional N, T50%decreased from 16–20 d at zerochilling, to around 5 d at 8 and 12 weeks chilling. AlthoughT50%was not influenced by an increase in NO-3or NH+4from 0.5to 5.0 mM , it did increase with additional applied N thereafter.However, the magnitude of the N effect was small compared tothat of chilling. Like germination, seed imbibition increasedwith a longer chilling period, but in contrast imbibition decreasedslightly with increased applied NO-3or NH+4. It is argued thatincreased imbibition is not directly related to an increasein total germination, but that it may be related to the rateof germination. Possible mechanisms involved in the reductionin dormancy ofC. vitalba seed are discussed. Clematis vitalba L.; germination; dormancy; imbibition; rate of germination; chilling; light; nitrate; ammonium; nitrogen; phytochrome  相似文献   

18.
As rice can use both nitrate (NO3-) and ammonium (NH4+), we have tested the hypothesis that the shift in the pattern of cultivars grown in Jiangsu Province reflects the ability of the plants to exploit NO3- as a nitrogen (N) source. Four rice cultivars were grown in solution culture for comparison of their growth on NO3- and NH4+ nitrogen sources. All four types of rice, Xian You 63 (XY63), Yang Dao 6 (YD), Nong Keng 57 (NK) and Si You 917 (SY917), grew well and produced similar amounts of shoot biomass with 1 mmol/L NH4+ as the only N source. However, the roots of NK were significantly smaller in comparison with the other cultivars. When supplied with 1 mmol/L NO3-, YD produced the greatest biomass; while NK achieved the lowest growth among the four cultivars. Electrophysiological measurements on root rhizodermal cells showed that the NO3--elicited changes in membrane potential (ΔEm) of these four rice cultivars were significantly different when exposed to low external NO3- (<1 mmol/L); while they were very similar at high external NO3- (10 mmol/L). The root cell membrane potentials of YD and XY63 were more responsive to low external NO3- than those of NK and SY917. The ΔEm values for YD and XY63 rhizodermal cells were almost the same at both 0.1 mmol/L and 1 mmol/L NO3-; while for the NK and SY917 the values became larger as the external NO3- increased. For YD cultivar, ΔEm was measured over a range of NO3- concentrations and a Michaelis-Menten fit to the data gave a Km value of 0.17 mmol/L. Net NO3- uptake depletion kinetics were also compared and for some cultivars (YD and XY63) a single-phase uptake system with first order kinetics best fitted the data; while other cultivars (ND and SY917) showed a better fit to two uptake systems. These uptake systems had two affinity ranges: one had a similar Km in all the cultivars (0.2 mmol/L); the other much higher affinity system (0.03 mmol/L) was only present in NK and SY917. The expression pattern of twelve different NO3- transporter genes was tested using specific primers, but only OsNRT1.1 and OsNRT2.1 expression could be detected showing significant differences between the four rice cultivars. The results from both the physiological and molecular experiments do provide some support for the hypothesis that the more popular rice cultivars grown in Jiangsu Province may be better at using NO3- as an N source.  相似文献   

19.
Nitrogen remobilization from roots and pseudostems during regrowthof Lolium perenne L. was studied in miniswards grown with contrastinglevels of (NH4)2SO4 in solution culture. Growth with a highN supply (5.0 mol m–3) increased theweight of leaf laminae recovered at each of five weekly clippings,and decreased the proportion of photosynthate used for rootgrowth. Clipped plants growing in a steady-state were suppliedwith 15N for 48 h and the recovery of labelled N in laminaemeasured after five weekly cuts. Recovery of labelled N in thelaminae from the second clipping onwards was derived only fromremobilization of N from roots and pseudostem. Miniswards grownwith low N (0.5 mol m–3) relied moreupon remobilization of N for lamina growth than did high N plants.Thus after 14 d 20% of lamina N was labelled in low N plantsbut only 3% was labelled in the high N treatment. Thereafter,N remobilization declined until at the final clipping after35 d, labelled N represented only 4% and 1 % of the lamina Nin the low and high N plants. When plants were not clipped beforethe labelling period, they took up more 15N if grown with highN than cut plants. Thereafter, the remobilization of N followeda similar pattern as in the cut plants. Exponential models were used to calculate the rate of N transferfrom roots and pseudostem to laminae. When grown with low N,the half-life of remobilization was 1.56 weeks. High N miniswardshad an initial rapid remobilization with a half-life of 0.66weeks, and a slower phase with a half-life of 2.98 weeks. Key words: Lolium perenne L., nitrogen supply, regrowth, remobilization, internal cycling  相似文献   

20.
Growth and symbiotic performance of soybean (Glycine max (L.)Merrill) cv. Bragg and three of its induced nodulation mutants(nod49, non-nodulating; ntsl 116, intermediate supernodulator;nts1007, extreme supernodulator) were compared throughout developmentunder different nitrogen regimes (0, 2, 5 and 10 mol nitratem–3). Nitrogen fixation was assessed using 15N-isotopedilution and xylem sap analysis for ureide content. Both techniquesconfirmed a complete lack of N2 fixation activity in nod49.Plant reliance on nitrogen fixation by the other genotypes wasdependent on the nitrate regime and the developmental stage.The ntsl007 and ntsl 116 mutants fixed more nitrogen than theparent cultivar in the presence of 10 mol m–3 nitratein the nutrient solution, but higher input of symbioticallyderived nitrogen was still insufficient to offset the amountof nitrogen removed in the harvested seed. However, the mutantsutilized less nitrate for growth than Bragg. Comparison of estimatesof N2 fixation derived from the 15N-dilution technique withthose based on relative ureide content of xylem sap indicatedthat the latter offered a simple and reliable procedure forevaluating the symbiotic performance of supernodulating plants. Key words: 15N-isotope dilution, supernodulation, ureides  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号