首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The synthesis and release of leukotriene B4 (LTB4) from canine polymorphonuclear leukocytes (PMNs) was characterized in terms of incubation time, temperature and effects of calcium ionophore A23187 concentrations. Maximal LTB4 concentrations were determined when canine PMNs were incubated with 10 microM A23187. Increasing LTB4 concentrations were determined through 10 min incubation. The maximal LTB4 concentrations (310 +/- 30 pg LTB4/2.5 x 10(5) cells) determined at 10 min did not change through a 55 min incubation period. Greater LTB4 concentrations were synthesized by canine PMNs at 37 degrees C (268 +/- 12 pg LTB4/2.5 x 10(5) cells) than at 25 degrees C (206 +/- 11 pg LTB4/2.5 x 10(5) cells) or 5 degrees C (59 +/- 3 pg LTB4/2.5 x 10(5) cells). The synthesis of LTB4 in canine PMNs was inhibited by incubation of the cells with either of two known lipoxygenase inhibitors, BWA4C or BW755C. BWA4C inhibited LTB4 synthesis with an approximate IC50 = 0.1 microM, whereas BW755C inhibited LTB4 synthesis with an approximate IC50 = 10 microM. These results indicate canine PMNs have the capability to synthesize large quantities of LTB4 when stimulated with calcium ionophore A23187. Furthermore, the 5-lipoxygenase inhibitors BWA4C, an acetohydroxyamic acid, and BW755C, a phenyl pyrazoline, can readily inhibit LTB4 synthesis in canine PMNs.  相似文献   

3.
When chopped porcine pulmonary arteries were incubated with calcium ionophore A23187 (1) in the presence of indomethacin there was a time dependent generation of a substance which produced contractions of superfused strips of guinea-pig ileum smooth muscle (GPISM) which were indistinguishable from those induced by LTD4. This material however had a different retention time from LTD4 when subjected to HPLC and co-chromatographed with synthetic LTE4. In addition to LTE4 a substance which had properties indistinguishable from those of LTB4 when assayed on a combination of guinea-pig lung parenchymal strips (GPP) and GPISM (2) was generated from the pulmonary artery. This substance co-chromatographed with synthetic LTB4. The adventitia and intima were the richest source of LTE4, the adventitia releasing slightly more than the intima. The output of LTB4 and LTE4 was inhibited by 6,9-deepoxy-6,9-(phenylimino)-delta 6,8 prostaglandin I (U-60,257). Nordihydroguaiaretic acid (NDGA) inhibited the generation of LTE4.  相似文献   

4.
5.
Platelet-activating factor, at a concentration of 10 microM, was capable of inducing leukotriene C4 synthesis by eosinophils of healthy donors, i.e. (3.1 +/- 0.3) x 10(6) molecules leukotriene C4/cell (n = 31, mean +/- SEM, cell purity 87 +/- 2%). Reversed-phase high performance liquid chromatography analysis demonstrated the exclusive synthesis of leukotriene C4. At a concentration of 1 microM, platelet-activating factor was capable of significantly enhancing the calcium ionophore A23187, the opsonized zymosan or the arachidonic acid induced leukotriene C4 synthesis by eosinophils. These results show that PAF is capable of inducing and enhancing the leukotriene C4 formation by human eosinophils.  相似文献   

6.
Fatty acids have been involved in the proliferation and differentiation of numerous cells, as mediated via peroxisome proliferator-activated receptors (PPARs) or lipid metabolites (prostaglandins, diacylglycerol). In the present study, we have investigated the effect of arachidonic acid (AA), docosahexaenoic acid (DHA) and its precursor eicosapentaenoic acid (EPA) on the differentiation of a rat uterine stromal cell line, UIII. As markers of decidualization, we have investigated morphological changes, monitored by inverted light and scanning electron microscopy. The induction of 3 proteins, desmin, hsp-25 and prolactin, which are all considered to be markers of decidualization, were analyzed by immunocytochemistry or Western blotting. Addition of AA (30 microM) to the medium of cultured cells for 48h induced cell spreading and flattening. Cells became enlarged (x 2.5) and some of them were binucleated. Using scanning electron microscopy, we confirmed these morphological changes and showed that the enlargement of the cells was followed by numerous extracellular processes, leading to an increase in cell surface area and intercellular communications. Immunocytochemistry showed that this treatment also induced the expression of desmin, which seems to direct morphological changes, beginning as a perinuclear ring and extending to the cell membrane. The time course of desmin expression was studied by Western blotting. No desmin expression was present before 4h of AA treatment. Desmin induction was maximum at 24h of treatment and plateaued thereafter. DHA and EPA (30 microM), added to the medium, failed to induce any change. However, in cells previously differentiated with AA and expressing desmin, treatment with DHA or EPA (30microM) reversed partially the action of AA, EPA being the most effective. AA also induced hsp-25, though all cells did not express this protein. A prolactin (PRL)-like factor was induced by AA, as recognized by an antibody against pituitary rPRL, and migrated as the standard. Moreover, a fragment of 16 kDa was also revealed by this antibody, suggesting that the PRL-like factor cleaved, was similar to PRL and that the PRL-like factor could be identical to PRL. In conclusion, these results show that AA is able to specifically induce the decidualization of uterine stromal cells in vitro.  相似文献   

7.
Leukotriene B4 (LTB4) is a potent mediator of pro-inflammatory responses including neutrophil degranulation. Leukotriene B4 dimethylamide has been synthesized and shown to inhibit neutrophil degranulation induced by LTB4. The inhibition required time to develop (~60 secs), and had a KD of circa 2 × 10?7M, and occurred at concentrations where LTB4 dimethylamide had negligible agonist activity.  相似文献   

8.
The dynamics of prostaglandin (PG) E2 synthesis by mouse peritoneal macrophages during the delivery of the basic substrate, arachidonic acid (AA), from different sources to the enzyme system of the cells was investigated. The dynamics of PGE2 synthesis in these cells was studied both after addition of exogenous AA and after stimulating the liberation of AA from intracellular pools with the calcium ionophore A23187. The kinetics of PGE2 synthesis when AA was supplied from intracellular and extracellular sources were absolutely different. PGE2 metabolism and the inactivation of the key enzyme of PG synthesis (PGH-synthase) during the reaction may be the regulating factors in the kinetics of PGE2 synthesis in the cells. For the different sources of AA in the cells, the rate constants of PGE2 consumption (k2) and PGH-synthase inactivation in the course of the reaction (kin) were calculated. The experimentally determined value of the apparent rate constant kin was identical to the theoretically calculated kin value for the case when AA was provided from an intracellular source. An observed deceleration in the PGE2 synthesis kinetics from exogenous AA is characterized by a 10-fold drop in the apparent kin and k2 values. The possibility of prostanoid synthesis regulation at the level of the traditional, constitutive isoenzyme PGH-synthase-1 is discussed.  相似文献   

9.
Stimulation of purified human eosinophils with 50 microM arachidonic acid leads to the production of leukotriene C4, 15-hydroxy-eicosatetraenoic acid and 15-series leukotrienes. The ratio of the amounts of leukotriene C4 and 15-lipoxygenase products was found to be strongly dependent on the arachidonic acid concentration, being relatively large at low arachidonic acid concentrations and very small at high arachidonic acid concentrations. In the presence of 1 microM platelet-activating factor a significant elevation of leukotriene C4 formation is observed, whereas the formation of 15-lipoxygenase products remains unaltered. As arachidonic acid was found to be capable of inducing a fast, transient rise in the cytosolic free Ca2+ concentration, this explains at least partly its ability to induce the Ca2+-dependent formation of leukotriene C4.  相似文献   

10.
Radiolabeled leukotriene (LT) B4 was incubated with isolated rat hepatocytes in order to assess the metabolism of this chemotactic leukotriene by the liver. At least eight radioactive metabolites were observed, three of which were previously identified as 20-hydroxy-, 20-carboxy-, and 18-carboxy-19,20-dinor-LTB4. A less lipophilic major metabolite (designated HIV) was purified by two reverse phase high performance liquid chromatography separations and was found to exhibit maximal UV absorbance at 269 nm with shoulders at 260 and 280 indicating the presence of a conjugated triene chromophore. Negative ion electron capture gas chromatography/mass spectrometry analysis of the pentafluorobenzyl ester, trimethylsilyl ether derivative of HIV, and positive ion electron ionization mass spectra of the methyl ester trimethylsilyl derivative were consistent with a structure of this metabolite being 16-carboxy-14,15-dihydro-17,18,19,20-tetranor-LTB3. The appearance of this metabolite supports the concept of further beta-oxidation of LTB4 to the carbon 16 which requires the action of 2,4-dienoyl-CoA reductase to remove the 14,15-double bond located two carbon atoms removed from the CoA thioester moiety. One minor metabolite was analyzed by negative ion continuous flow fast atom bombardment mass spectrometry which revealed an ion at m/z 444 which by high resolution mass spectrometry was shown to contain both nitrogen and sulfur. Tandem mass spectrometry suggested the presence of SO3- as well as other fragments corresponding to the amino acid taurine. Incubation of isolated rat hepatocytes with [14C]taurine as well as [3H]LTB4 revealed the incorporation of both radioactive isotopes into this metabolite. The data supported the identification of this metabolite as tauro-18-carboxy-19,20-dinor-LTB4. Amino acid conjugation of leukotrienes has not been previously reported and suggests that such intermediates might participate in enterohepatic circulation of LTB4 metabolites in the intact animal and thus serve as an alternative metabolic route for LTB4 elimination.  相似文献   

11.
Incubation of cell sonicates from monoclonal B cells with arachidonic acid led to the formation of leukotriene (LT) B4 and 5-hydroxy-eicosatetraenoic acid (5-HETE). In contrast, stimulation of intact B cells with the calcium ionophore A23187 +/- arachidonic acid did not, under similar conditions, lead to formation of LTB4. The identification of these products was based on reverse phase- and straight phase-HPLC analysis, UV-spectroscopy and gas chromatography-mass spectrometry. Cell sonicates of highly enriched human tonsillar B lymphocytes also converted arachidonic acid to LTB4 and 5-HETE. Activation of these cells with B cell mitogen and cytokines for three days led to an upregulation of 5-lipoxygenase activity. This study provides evidence for the biosynthesis of LTB4 from arachidonic acid in B cell lines and in normal human tonsillar B lymphocytes.  相似文献   

12.
Leukotriene B4 is rapidly metabolized through omega-oxidation, preventing its detection when it is produced under certain biological conditions. To investigate leukotriene B4 production in various physiological conditions, analogs of arachidonic acid which are converted to metabolically stable analogs of leukotriene B4 would be useful. We have synthesized 20,20,20-trifluoroarachidonic acid by the cis-selective Wittig reaction of the C12-C20 fragment with phosphonium salt. 20,20,20-trifluoroarachidonic acid was transformed into 20,20,20-trifluoroleukotriene B4 when incubated with human neutrophils in the presence of the calcium ionophore A23187. The product was identified by uv absorption spectrophotometry, gas chromatography-mass spectrometry, and coelution on high-performance liquid chromatography with 20,20,20-trifluoroleukotriene B4, which was enantioselectively synthesized by the reaction of the fluorine-containing C11-C20 fragment with the C1-C10 phosphonate. The fluorinated leukotriene B4 demonstrated as much chemotactic activity on human neutrophils as natural leukotriene B4 and was metabolically stable when incubated with human neutrophils, probably by blocking omega-oxidation. Also, enzymes catalyzing the transformation of arachidonic acid (AA) into leukotriene B4 did not discriminate the fluorinated precursors from the natural, nonfluorinated AA, thus 20-F3-AA is a valid analog of AA to be used in the study of AA metabolism. When 50 microM of the fluorinated acid was incubated with neutrophils stimulated with heat-aggregated human immunoglobulin G, a significant amount of fluorinated leukotriene B4 (4.3 ng/10(6) cells/40 min, at most) was formed in a dose-dependent manner while little leukotriene B4 was detected with incubation with 50 microM arachidonic acid, probably due to omega-oxidation of the product, leukotriene B4. 20,20,20-Trifluoroarachidonic acid appears to be a useful tool for studying the capacity of leukotriene B4 synthesis in various biological systems while long-lasting 20,20,20-trifluoroleukotriene B4 would serve as an excellent analog of leukotriene B4 in pharmacological studies to understand functions of leukotrienes B4.  相似文献   

13.
Addition of glutathione S-transferase inhibitors, ethyacrynic acid (ET), caffeic acid (CA), and ferulic acid (FA) to human neutrophils led to inhibition of leukotriene C4 (LTC4) synthesis induced by calcium ionophore A23187. ET is the most specific of these inhibitors for it had little effect on LTB4, PGE2 and 5-HETE synthesis. The inhibition of LTC4 was irreversible and time dependent. ET also had little effect on 3H-AA release from A23187-stimulated neutrophils.  相似文献   

14.
Catecholamines (adrenaline, dopamine, isoprenaline, noradrenaline) and caffeic acid (catecholic compound without adrenergic receptor activity) decreased leukotriene (LT)B4 synthesis in A23187-stimulated human whole blood. Salbutamol, a non-catecholic beta 2-adrenergic agonist, did not influence LTB4 synthesis. Catecholamines stimulated thromboxane (TX)B2 synthesis with a concomitant inhibition of LTB4 synthesis; caffeic acid and salbutamol did not stimulate TXB2 synthesis. These results, obtained in A23187-stimulated whole blood, which also takes into account the complex interaction between different cell types, are similar to our previous results with polymorphonuclear leukocytes. Catecholamines show an opposite effect on lipoxygenase and cyclooxygenase pathways, which may give rise to a marked change in LT/TX ratio in physiological or pathological conditions where sufficient concentrations of catecholamines are present.  相似文献   

15.
Micromolar concentrations of arachidonic acid cause in Ca2+ loaded heart mitochondria matrix swelling and Ca2+ release. These effects appear to be unrelated to the classical membrane permeability transition (MPT), as they are CsA insensitive, membrane potential independent and can also be activated by Sr2+. Atractyloside potentiated and ATP inhibited the arachidonic acid induced swelling. These observations suggest that the ATP/ADP translocator (ANT) may be involved in the AA induced, CsA insensitive membrane permeability increase. Under the same experimental conditions used for heart mitochondria, arachidonic acid induced the classical CsA sensitive, ADP inhibitable MPT in liver mitochondria.  相似文献   

16.
This study examined the hemodynamic effects of leukotriene B4 (LTB4) in chronically instrumented awake sheep, and the role of cyclooxygenase products in the sheep's response to LTB4. LTB4 (25 micrograms) was given as a bolus into the pulmonary artery. Six sheep were studied with LTB4, both before and after pretreatment with meclofenamate (5 mg/kg load, 3 mg/kg/hr maintenance infusion). LTB4 alone caused a rapid rise in pulmonary arterial pressure from 15 +/- 1 to 42 +/- 11 cm H2O. LTB4 had no effect on pulmonary arterial pressure following pretreatment with meclofenamate. LTB4 alone caused an increase in serum thromboxane B2 (TxB2) from 130 +/- 35 to 320 +/- 17 pg/ml 3 minutes after dosing but did not increase TxB2 following pre-treatment with meclofenamate. LTB4 caused a slight decrease in mean systemic arterial pressure and a transient fall in circulating white blood cells, both of which were unaffected by meclofenamate pre-treatment. The vasoactive effects of LTB4 in the pulmonary circulation appear to be mediated indirectly through the production of cyclooxygenase metabolites of arachidonic acid.  相似文献   

17.
Heat shock has a profound influence on the metabolism and behavior of eukaryotic cells. We have examined the effects of heat shock on the release from cells of arachidonic acid and its bioactive eicosanoid metabolites, the prostaglandins and leukotrienes. Heat shock (42-45 degrees) increased the rate of arachidonic acid release from human, rat, murine, and hamster cells. Arachidonate accumulation appeared to be due, at least partially, to stimulation of a phospholipase A2 activity by heat shock and was accompanied by the accumulation of lysophosphatidyl-inositol and lysophosphatidylcholine in membranes. Induction of arachidonate release by heat did not appear to be mediated by an increase in cell Ca++. Stimulation of arachidonate release by heat shock in hamster fibroblasts was quantitatively similar to the receptor-mediated effects of alpha thrombin and bradykinin. The effects of heat shock and alpha thrombin on arachidonate release were inhibited by glucocorticoids. Increased arachidonate release in heat-shocked cells was accompanied by the accelerated accumulation of cyclooxygenase products prostaglandin E2 and prostaglandin F2 alpha and by 5-lipoxygenase metabolite leukotriene B4. Elevated concentrations of arachidonic acid and metabolites may be involved in the cytotoxic effects of hyperthermia, in homeostatic responses to heat shock, and in vascular and inflammatory reactions to stress.  相似文献   

18.
Products of the 5-lipoxygenase pathway were analyzed after different stimuli in human polymorphonuclear leukocytes prelabeled with 3H-arachidonic acid. Upon stimulation with the Ca2+ ionophore, A23187, polymorphonuclear leukocytes generate 118.2 +/- 18 pg [3H]dihydroxyeicosatetraenoic acids (diHETEs, including 3H-leukotriene B4 and its 6-trans-stereoisomers), after exposure to serum coated zymosan (35.8 +/- 9 pg) and N-fMet-Leu-Phe (39.5 +/- 9 pg). Conversion of 3H-arachidonic acid paralleled its release after A23187 and fMet-Leu-Phe exposure leaving only 13.8 +/- 7% and 13.6 +/- 3% of the released 3H-arachidonic acid unmetabolized, respectively. In contrast, after stimulation with serum-coated zymosan only a small fraction of the released 3H-arachidonate was converted to 5-lipoxygenase products leaving 73.0 +/- 5% of the released 3H-arachidonic acid unmetabolized. In parallel, leukotriene B4 synthesis was studied in unlabeled polymorphonuclear leukocytes, resulting in 40 +/- 15 ng upon A23187 stimulation, 4 +/- 0.9 ng upon stimulation with fMet-Leu-Phe and 1.8 +/- 0.9 ng after serum-coated zymosan, showing a different ratio of leukotriene B4 to 3H-diHETE for A23187 in contrast to serum-coated zymosan and fMet-Leu-Phe. These results indicate that the coupling between the release of the precursor fatty acid and the metabolism via the 5-lipoxygenase pathway differs greatly between different stimuli.  相似文献   

19.
Isolated rat heptocytes were found to metabolize leukotriene B4 (LTB4) to a number of products which could be separated by reverse phase high performance liquid chromatography (HPLC). After incubation of LTB4 with hepatocytes for 15 min, the known omega-oxidized metabolites, 20-hydroxy- and 20-carboxy-LTB4, were identified by HPLC retention time and gas chromatography-mass spectrometry. An early fraction corresponding to 15% of the initial LTB4 was structurally characterized as a novel metabolite, 18-carboxy-19,20-dinor-LTB4, by ultraviolet spectroscopy and gas chromatography-mass spectrometry of the derivatized and derivatized, reduced metabolite. The short HPLC retention time of this metabolite was consistent with its reduced lipophilicity. An additional minor metabolite was tentatively identified as 3-hydroxy-LTB4. These two novel metabolites provide evidence for beta-oxidation as an important route of hepatic biotransformation of LTB4 and 20-hydroxy-LTB4.  相似文献   

20.
Human erythrocytes transformed leukotriene A4 into leukotriene B4. Metabolism was proportional to the erythrocyte concentration, even at subphysiological levels (0.08-4 X 10(9) erythrocytes/ml). Comparative metabolic studies excluded the possibility that leukotriene B4 originated from trace amounts of polymorphonuclear leukocytes or platelets present in the purified erythrocyte suspensions. For example, suspensions of isolated platelets (100-500 X 10(6) cells/ml) failed to convert leukotriene A4 into leukotriene B4; and conversion by suspensions of isolated polymorphonuclear neutrophils was insufficient to account for the amounts of leukotriene B4 formed by erythrocytes. Leukotriene B4 formation was maximal within 2 min and substrate concentration dependent. Enzymatic activity originated from a 56 degrees C labile nondialyzable (Mr greater than 30,000) soluble component in the 100,000 X g supernatant obtained from lysed erythrocytes. In contrast to the contemporary view, our results indicate that human erythrocytes are not metabolically inert in terms of eicosanoid biosynthesis. The role of human erythrocytes during inflammatory or pulmonary disorders deserves re-examination in this context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号