首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Tom Moss 《Epigenetics》2011,6(2):128-133
Mutations in the pattern of CpG methylation imprinting of the human genome have been correlated with a number of diseases including cancer. In particular, aberrant imprinting of tumor suppressor genes by gain of CpG methylation has been observed in many cancers and thus represents an important alternative pathway to gene mutation and tumor progression. Inhibitors of DNA methylation display therapeutic effects in the treatment of certain cancers and it has been assumed that these effects are due to the reversal of mutant gene imprinting. However, significant reactivation of imprinted tumor suppressor genes is rarely observed in vivo following treatment with DNA methylation inhibitors. A recent study revealed an unexpected requirement for CpG methylation in the synthesis and assembly of the ribosome, an essential function for cell growth and proliferation. As such, the data provide an unforeseen explanation of the action of DNA methylation inhibitors in restricting cancer cell growth.Key words: DNA methylation, meCpG, DNA methyltransferase-inhibition, DNMT1-/-, DNMT3b-/-, aza-deoxycytidine, gene silencing, ribosome biogenesis, cancer therapy  相似文献   

4.
5.
6.
A CpG island methylator phenotype (CIMP) is displayed by a distinct subset of colorectal cancers with a high frequency of DNA hypermethylation in a specific group of CpG islands. Recent studies have shown that an activating mutation of BRAF (BRAFV600E) is tightly associated with CIMP, raising the question of whether BRAFV600E plays a causal role in the development of CIMP or whether CIMP provides a favorable environment for the acquisition of BRAFV600E. We employed Illumina GoldenGate DNA methylation technology, which interrogates 1,505 CpG sites in 807 different genes, to further study this association. We first examined whether expression of BRAFV600E causes DNA hypermethylation by stably expressing BRAFV600E in the CIMP-negative, BRAF wild-type COLO 320DM colorectal cancer cell line. We determined 100 CIMP-associated CpG sites and examined changes in DNA methylation in eight stably transfected clones over multiple passages. We found that BRAFV600E is not sufficient to induce CIMP in our system. Secondly, considering the alternative possibility, we identified genes whose DNA hypermethylation was closely linked to BRAFV600E and CIMP in 235 primary colorectal tumors. Interestingly, genes that showed the most significant link include those that mediate various signaling pathways implicated in colorectal tumorigenesis, such as BMP3 and BMP6 (BMP signaling), EPHA3, KIT, and FLT1 (receptor tyrosine kinases) and SMO (Hedgehog signaling). Furthermore, we identified CIMP-dependent DNA hypermethylation of IGFBP7, which has been shown to mediate BRAFV600E-induced cellular senescence and apoptosis. Promoter DNA hypermethylation of IGFBP7 was associated with silencing of the gene. CIMP-specific inactivation of BRAFV600E-induced senescence and apoptosis pathways by IGFBP7 DNA hypermethylation might create a favorable context for the acquisition of BRAFV600E in CIMP+ colorectal cancer. Our data will be useful for future investigations toward understanding CIMP in colorectal cancer and gaining insights into the role of aberrant DNA hypermethylation in colorectal tumorigenesis.  相似文献   

7.
8.
9.
10.
11.
Shen L  Kondo Y  Guo Y  Zhang J  Zhang L  Ahmed S  Shu J  Chen X  Waterland RA  Issa JP 《PLoS genetics》2007,3(10):2023-2036
The role of CpG island methylation in normal development and cell differentiation is of keen interest, but remains poorly understood. We performed comprehensive DNA methylation profiling of promoter regions in normal peripheral blood by methylated CpG island amplification in combination with microarrays. This technique allowed us to simultaneously determine the methylation status of 6,177 genes, 92% of which include dense CpG islands. Among these 5,549 autosomal genes with dense CpG island promoters, we have identified 4.0% genes that are nearly completely methylated in normal blood, providing another exception to the general rule that CpG island methylation in normal tissue is limited to X inactivation and imprinted genes. We examined seven genes in detail, including ANKRD30A, FLJ40201, INSL6, SOHLH2, FTMT, C12orf12, and DPPA5. Dense promoter CpG island methylation and gene silencing were found in normal tissues studied except testis and sperm. In both tissues, bisulfite cloning and sequencing identified cells carrying unmethylated alleles. Interestingly, hypomethylation of several genes was associated with gene activation in cancer. Furthermore, reactivation of silenced genes could be induced after treatment with a DNA demethylating agent or in a cell line lacking DNMT1 and/or DNMT3b. Sequence analysis identified five motifs significantly enriched in this class of genes, suggesting that cis-regulatory elements may facilitate preferential methylation at these promoter CpG islands. We have identified a group of non-X-linked bona fide promoter CpG islands that are densely methylated in normal somatic tissues, escape methylation in germline cells, and for which DNA methylation is a primary mechanism of tissue-specific gene silencing.  相似文献   

12.
13.
The oncogene FOXM1 has been implicated in all major types of human cancer. We recently showed that aberrant FOXM1 expression causes stem cell compartment expansion resulting in the initiation of hyperplasia. We have previously shown that FOXM1 regulates HELLS, a SNF2/helicase involved in DNA methylation, implicating FOXM1 in epigenetic regulation. Here, we have demonstrated using primary normal human oral keratinocytes (NOK) that upregulation of FOXM1 suppressed the tumour suppressor gene p16INK4A (CDKN2A) through promoter hypermethylation. Knockdown of HELLS using siRNA re-activated the mRNA expression of p16INK4A and concomitant downregulation of two DNA methyltransferases DNMT1 and DNMT3B. The dose-dependent upregulation of endogenous FOXM1 (isoform B) expression during tumour progression across a panel of normal primary NOK strains (n = 8), dysplasias (n = 5) and head and neck squamous cell carcinoma (HNSCC) cell lines (n = 11) correlated positively with endogenous expressions of HELLS, BMI1, DNMT1 and DNMT3B and negatively with p16INK4A and involucrin. Bisulfite modification and methylation-specific promoter analysis using absolute quantitative PCR (MS-qPCR) showed that upregulation of FOXM1 significantly induced p16INK4A promoter hypermethylation (10-fold, P<0.05) in primary NOK cells. Using a non-bias genome-wide promoter methylation microarray profiling method, we revealed that aberrant FOXM1 expression in primary NOK induced a global hypomethylation pattern similar to that found in an HNSCC (SCC15) cell line. Following validation experiments using absolute qPCR, we have identified a set of differentially methylated genes, found to be inversely correlated with in vivo mRNA expression levels of clinical HNSCC tumour biopsy samples. This study provided the first evidence, using primary normal human cells and tumour tissues, that aberrant upregulation of FOXM1 orchestrated a DNA methylation signature that mimics the cancer methylome landscape, from which we have identified a unique FOXM1-induced epigenetic signature which may have clinical translational potentials as biomarkers for early cancer screening, diagnostic and/or therapeutic interventions.  相似文献   

14.
15.

Background

Aberrant CpG island promoter DNA hypermethylation is frequently observed in cancer and is believed to contribute to tumor progression by silencing the expression of tumor suppressor genes. Previously, we observed that promoter hypermethylation in breast cancer reflects cell lineage rather than tumor progression and occurs at genes that are already repressed in a lineage-specific manner. To investigate the generality of our observation we analyzed the methylation profiles of 1,154 cancers from 7 different tissue types.

Results

We find that 1,009 genes are prone to hypermethylation in these 7 types of cancer. Nearly half of these genes varied in their susceptibility to hypermethylation between different cancer types. We show that the expression status of hypermethylation prone genes in the originator tissue determines their propensity to become hypermethylated in cancer; specifically, genes that are normally repressed in a tissue are prone to hypermethylation in cancers derived from that tissue. We also show that the promoter regions of hypermethylation-prone genes are depleted of repetitive elements and that DNA sequence around the same promoters is evolutionarily conserved. We propose that these two characteristics reflect tissue-specific gene promoter architecture regulating the expression of these hypermethylation prone genes in normal tissues.

Conclusions

As aberrantly hypermethylated genes are already repressed in pre-cancerous tissue, we suggest that their hypermethylation does not directly contribute to cancer development via silencing. Instead aberrant hypermethylation reflects developmental history and the perturbation of epigenetic mechanisms maintaining these repressed promoters in a hypomethylated state in normal cells.  相似文献   

16.
Epigenetic modifications may occur during in vitro manipulations of stem cells but these effects have remained unexplored in the context of cell and gene therapy protocols. In an experimental model of ex vivo gene modification for hematopoietic gene therapy, human CD34+ cells were cultured shortly in the presence of cytokines then with a gene transfer lentiviral vector (LV) expected to transduce cells but to have otherwise limited biological effects on the cells. At the end of the culture, the population of cells remained largely similar at the phenotypic level but some epigenetic changes were evident. Exposure of CD34+ cells to cytokines increased nuclear expression of epigenetic regulators SIRT1 or DNMT1 and caused genome-wide DNA methylation changes. Surprisingly, the LV caused additional and distinct effects. Large-scale genomic DNA methylation analysis showed that balanced methylation changes occurred in about 200 genes following culture of CD34+ cells in the presence of cytokines but 900 genes were modified following addition of the LV, predominantly increasing CpG methylation. Epigenetic effects resulting from ex vivo culture and from the use of LV may constitute previously unsuspected sources of biological effects in stem cells and may provide new biomarkers to rationally optimize gene and cell therapy protocols.  相似文献   

17.
18.
Aberrant promoter methylation and resultant silencing of TRAIL decoy receptors were reported in a variety of cancers, but to date little is known about the relevance of this epigenetic modification in melanoma. In this study, we examined the methylation and the expression status of TRAIL receptor genes in cutaneous and uveal melanoma cell lines and specimens and their interaction with DNA methyltransferases (DNMTs) DNMT1, DNMT3a, and DNMT3b. DR4 and DR5 methylation was not frequent in cutaneous melanoma but on the contrary it was very frequent in uveal melanoma. No correlation between methylation status of DR4 and DR5 and gene expression was found. DcR1 and DcR2 were hypermethylated with very high frequency in both cutaneous and uveal melanoma. The concordance between methylation and loss of gene expression ranged from 91% to 97%. Here we showed that DNMT1 was crucial for DcR2 hypermethylation and that DNMT1 and DNMT3a coregulate the methylation status of DcR1. Our work also revealed the critical relevance of DcR1 and DcR2 expression in cell growth and apoptosis either in cutaneous or uveal melanoma. In conclusion, the results presented here claim for a relevant impact of aberrant methylation of decoy receptors in melanoma and allow to understand how the silencing of DcR1 and DcR2 is related to melanomagenesis.  相似文献   

19.
In addition to genetic changes, the occurrence of epigenetic alterations is associated with accumulation of both genetic and epigenetic events that promote the development and progression of human cancer. Previously, we reported a set of candidate genes that comprise part of the emerging “cancer methylome”. In the present study, we first tested 23 candidate genes for promoter methylation in a small number of primary colon tumor tissues and controls. Based on these results, we then examined the methylation frequency of Oncostatin M receptor-β (OSMR) in a larger number of tissue and stool DNA samples collected from colon cancer patients and controls. We found that OSMR was frequently methylated in primary colon cancer tissues (80%, 80/100), but not in normal tissues (4%, 4/100). Methylation of OSMR was also detected in stool DNA from colorectal cancer patients (38%, 26/69) (cut-off in TaqMan-MSP, 4). Detection of other methylated markers in stool DNA improved sensitivity with little effect on specificity. Promoter methylation mediated silencing of OSMR in cell lines, and CRC cells with low OSMR expression were resistant to growth inhibition by Oncostatin M. Our data provide a biologic rationale for silencing of OSMR in colon cancer progression and highlight a new therapeutic target in this disease. Moreover, detection and quantification of OSMR promoter methylation in fecal DNA is a highly specific diagnostic biomarker for CRC.  相似文献   

20.
DNA cytosine methylation is one of the major epigenetic gene silencing marks in the human genome facilitated by DNA methyltransferases. DNA cytosine-5 methyltransferase 1 (DNMT1) performs maintenance methylation in somatic cells. In cancer cells, DNMT1 is responsible for the aberrant hypermethylation of CpG islands and the silencing of tumor suppressor genes. Here we show that the catalytically active recombinant DNMT1, lacking 580 amino acids from the amino terminus, binds to unmethylated DNA with higher affinity than hemimethylated or methylated DNA. To further understand the binding domain of enzyme, we have used gel shift assay. We have demonstrated that the CXXC region (C is cysteine; X is any amino acid) of DNMT1 bound specifically to unmethylated CpG dinucleotides. Furthermore, mutation of the conserved cysteines abolished CXXC mediated DNA binding. In transfected COS-7 cells, CXXC deleted DNMT1 (DNMT1 (DeltaCXXC)) localized on replication foci. Both point mutant and DNMT1 (DeltaCXXC) enzyme displayed significant reduction in catalytic activity, confirming that this domain is crucial for enzymatic activity. A permanent cell line with DNMT1 (DeltaCXXC) displayed partial loss of genomic methylation on rDNA loci, despite the presence of endogenous wild-type enzyme. Thus, the CXXC domain encompassing the amino terminus region of DNMT1 cooperates with the catalytic domain for DNA methyltransferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号