首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to determine the effects of different pH regimes on root colonization with four vesicular-arbuscular mycorrhiza (VAM) isolates, and VAM effects on host plant growth and nutrient uptake. Sorghum [Sorghum bicolor (L.) Moench] was grown at pH 4.0, 5.0, 6.0 and 7.0 (±0.1) in hydroponic sand culture with the VAM isolates Glomus etunicatum UT316 (isolate E), G. intraradices UT143 (isolate I), G. intraradices UT126 (isolate B), and an unknown Glomus isolate with no INVAM number (isolate A). Colonization of roots with the different VAM isolates varied differentially with pH. As pH increased, root colonization increased with isolates B and E, remained unchanged with isolate I, and was low at pH 4.0 and high at pH 5.0, 6.0, and 7.0 with isolate A. Isolates E and I were more effective than isolates A and B in promoting plant growth irrespective of pH. Root colonization with VAM appeared to be independent of dry matter yields or dry matter yield responsiveness (dry matter produced by VAM compared to nonmycorrhizal plants). Dry matter yield responsiveness values were higher in plants whose roots were colonized with isolates E and I than with isolates A and B. Shoot P concentrations were lower in plants colonized with isolates E and I than with isolates A and B or nonmycorrhizal plants. This was probably due to the dilution effect of the higher dry matter yields. Neither the VAM isolate nor pH had an effect on shoot Ca, Mg, Zn, Cu, and Mn concentrations, while the VAM isolate affected not only P but also S, K, and Fe concentrations. The pH x VAM interaction was significant for shoot K, Mg, and Cu concentrations.  相似文献   

2.
Yamato M  Ikeda S  Iwase K 《Mycorrhiza》2008,18(5):241-249
Community of arbuscular mycorrhizal (AM) fungi in a coastal vegetation on Okinawa island in Japan was examined. A sampling plot was established in a colony of Ipomoea pes-caprae (Convolvulaceae) on the beach in Tamagusuku, Okinawa Pref, in which eight root samples of I. pes-caprae and three root samples each of Vigna marina (Leguminosae) and Paspalum distichum (Poaceae) were collected. Partial 18S rDNA of AM fungi was amplified from the root samples by polymerase chain reaction (PCR) with primers NS31 and AM1. Restriction fragment length polymorphism analysis with HinfI and RsaI for cloned PCR products revealed that two types of Glomus sp., type A and type B, were dominant in the colony. Among them, the fungi of type A were especially dominant near the edge of the colony facing the sea. A phylogenetic analysis showed that the AM fungi of type B are closely related to Glomus intraradices and those of type A are nearly related to type B. From the sequence data, it was also found that type A was further divided into two types, type A1 and A2. One representative strain each of the three types, type A1, A2, and B, propagated from single spore each, was examined for the growth of sorghum (Sorghum bicolor) at three different salinity levels, 0, 100, and 200 mM NaCl. At the non-salt-treated condition, the type B fungus was the most effective on shoot growth enhancement of the host plant, whereas at the salt-treated conditions, the type A2 fungus was the most effective. An efficient suppression of Na + translocation into the shoot by the examined AM fungi was found. These results suggested that the AM fungi dominant near the sea are adapted to salt-stressed environment to alleviate the salt stress of host plants.  相似文献   

3.
On the basis of preliminary experiments, some Crotalaria species from Senegal were investigated to determine (1) their susceptibility to Meloidogyne javanica and M. incognita compared to a sensitive host (tomato), (2) their mycorrhizal and rhizobial responses, and (3) the effect of their cultivation on the mycorrhizal soil infectivity. The nematode invasion rates on Crotalaria spp. ranked from 0.17 to 7.17% and from 0.58 to 5.25%, respectively, for M. incognita and M. javanica, vs. 97% and 77% on tomato. Moreover, the inoculated J2 which invaded tomatoes developed into adult females, while those on Crotalaria spp. rarely developed beyond the third stage, confirming that all Crotalaria spp. evaluated are non hosts or poor hosts. In two other experiments, Crotalaria spp. were inoculated with an arbuscular mycorrhizal fungus (Glomus intraradices). Mycorrhization was generally well developed among Crotalaria species, and mycorrhizal colonization enhanced mainly phosphorus content of shoot tissues and always significant plant growth. Inoculation with both rhizobial isolates and Glomus intraradices enhanced growth and nodule formation on some Crotalaria species. The data recorded in both experiments showed, for the first time, that Crotalaria spp. are highly mycorrhiza dependent, some of them reaching more than 90% mycorrhizal dependency. Among Crotalaria species, twelve were used in two different experiments. A significant correlation was obtained between their mycorrhizal dependencies calculated on the shoot dry mass recorded in each experiment. Crotalaria spp. could be used as pre-crops for providing green manure while at the same time decreasing the level of detrimental nematodes and increasing the level of beneficial mycorrhizal fungi.  相似文献   

4.
Sorghum [Sorghum bicolor (L.) Moench] was grown in a greenhouse in a low P (3.6 mg kg-1) soil (Typic Argiudolls) inoculated with the vesicular-arbuscular mycorrhizal fungi (VMAF) Glomus fasciculatum and P added at 0, 12.5, 25.0, and 37.5 mg kg-1 soil to determine the effects of VAMF-root associations on plant growth, benefit and cost analysis, and P efficiency (dry matter produced/unit P absorbed). Root colonization with VAMF and shoot growth enhancements decreased with increased soil P applications. Mycorrhizal plants were less P efficient than nonmycorrhizal plants. Shoot dry matter differences between mycorrhizal and nonmycorrhizal plants were considered the benefit derived by plants from VAMF-root associations. Shoot dry matter differences between mycorrhizal and nonmycorrhizal plants with similar P concentrations were considered the costs paid by plants for VAMF-root associations. Values of benefit and cost analysis for VAMF-root associations were highest when soil P was lowest and decreased with increasing P applications. Genotypic differences for calculated costs were pronounced, but not benefits. Benefit and cost analysis.may be helpful to evaluate host plant genotypes and VAMF species to optimize efficiencies of VAMF symbiosis in different soil environments.  相似文献   

5.
Rooted cuttings ofRosa multiflora ‘Brooks 56’ were grown in a medium of 1 mineral soil: 1 sand (v/v) or bark: 1 sand (v/v) inoculated with the VA-mycorrhizal (VAM) fungiGlomus mosseae (Nicol. and Gerd.) Gerd. and Trappe andG. fasciculatum (Thaxt. sensu Gerd.) Gerd. and Trappe or left as noninoculated controls. The slow release fertilizer osmocote was applied at rates of either 0, 1.2, or 4.2 kg/m3 (18N-6P-12K) and incorporated into the container medium. After 180 days plants were evaluated for growth, development and chemical leaf analysis. Greatest growth responses occurred after the highest fertilizer application of 4.2 kg/m3, and the poorest one after 0 kg/m3. Combination bark: sand medium was superior to mineral soil: sand medium for growth of mycorrhizal plants. At 0 kg/m3, mycorrhizal plants in bark: sand medium had longer shoots than other treatments. At 1.2 kg/m3, VAM plants compared to nonmycorrhizal plants in park:sand medium had greater effect on growth parameters. At the highest fertilizer application of 4.2 kg/m3, greatest growth responses occurred with VAM plants in bark:sand medium. Mycorrhizal plants compared to nonmycorrhizal plants in bark:sand medium had greater K and Zn uptake at 0 kg/m3, and greater K, Ca, S, Mn and Zn uptake at 1.2 kg/m3. Texas Agr. Expt. Sta. Journal Series No. TA-22264.  相似文献   

6.
Biotic factors in the rhizosphere and their effect on the growth ofPlantago major L. ssp.pleiosperma Pilger (Great plantain) were studied. In a pot experiment the effect on shoot growth of the addition of 2.5% rhizosphere soil at four levels of phosphate was highly dependent on the availability of phosphate: a promoting effect at low phosphate levels was observed while a reducing effect occurred at higher phosphate levels. As the roots were infected with vesicular-arbuscular mycorrhizal (VAM) fungi in the treatment with rhizosphere soil, two other experiments were set up to separate effects of the indigenous VAM fungi from effects of the total rhizosphere population. The uptake of phosphate and shoot growth was not decreased at higher phosphate availability when VAM inoculum was added alone or in combination with rhizosphere soil. The growth reducing effect of the rhizosphere soil could therefore not be ascribed only to mycorrhizal infection. The results suggest that biotic factors in the rhizosphere soil affect the phosphate uptake ofPlantago major ssp.pleiosperma. This may, under conditions of phosphate limitation, lead to an increase of phosphate stress and, subsequently, a growth reduction. Futhermore, it is concluded that VAM fungi, as part of the rhizosphere population, may compensate this phosphate stress by enhancing the phosphate uptake.Grassland Species Research Group Publication No. 148.  相似文献   

7.
A field trial was conducted to study the response of sunflower (Helianthus annuus L.) to different phosphorus levels (16, 24 or 32 kg P ha–1) and inoculation with vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum on vertisol during summer 1993. At the vegetative stage of sunflower, percent mycorrhizal root colonization, spore count, dry biomass and P uptake did not differ significantly between inoculated and uninoculated control plants. However, at later stages (flowering and maturity) percent root colonization, spore count, total dry biomass and total P uptake were significantly higher in inoculated plants than in uninoculated control plants. The total dry biomass, P content and seed yield increased with increasing P level in uninoculated plants, whereas no significant difference was observed between 16 and 32 kg P ha–1 in inoculated plants. The positive effect of mycorrhizal inoculation decreased with increasing P level above 16 kg P ha–1, due to decreased percent root colonization and spore count at higher P levels.  相似文献   

8.
Soybeans [Glycine max (L.) Merr. cv. Essex] were grown in nonsterile acid (pH. 5.2) infertile Wynnville silt loam (Glossic Fragiudult) in a glasshouse. The effects of P fertilization and lime were determined by inoculation with two VAM-fungi (VAMF): Glomus fasciculatum (Gf) and Glomus etunicatum (Ge). An important factor affected by the interaction between applied lime (soil acidity), applied P, and VAMF inoculation was the soil Al. Five application rates of P as KH2PO4 and three rates of lime were tested. Potassium was equalized with KCl (muriate of potash). P-efficiency (g seed/mg P kg-1 soil) by vesicular-arbuscular mycorrhiza (VAM) was maximal at 20 mg P kg-1 soil at all lime and VAMF treatments. VAMF inoculation increased plant survival and protected the soybeans from leaf scorch, thereby substituting for the effects of lime and P. The Ge inoculum was superior in ameliorating leaf scorch in the nonlimed soil. The Gf inoculum required more lime and P than the Ge inoculum to increase seed yield relative to the noninoculated controls containing only native VAMF. Both inocula increased root Al uptake and extractable soil Al in the acid soil without apparent adverse effects on root or shoot. The ability of the VAMF inocula to enhance the efficiency of applied P and decrease seed Cl concentration was increased by lime. Seed yield (Y) was negatively related to seed Cl concentration (X) where Y=aX-b. Both VAMF inoculation and lime application reduced this negative relationship and may have increased the tolerance to both Cl and soil Al.  相似文献   

9.
The growth response ofCalopogonium caeruleum, a leguminous covercrop in plantation agriculture, to inoculation with two vesicular-arbuscular mycorrhizal (VAM) fungi was investigated in five phosphorus (P)-deficient soils supplied with various levels of rock phosphate. Significant shoot yield increases over the uninoculated controls were obtained in most sterilised or unsterilised soils at all applied P levels, although the inoculant VAM fungi differed in their effectiveness in the soils used. Responses in mycorrhizal root infections, P and nitrogen (N) concentrations in tops and plant nodulation varied. The results are discussed in relation to the edaphic environment of the mycorrhizal association.  相似文献   

10.
Inoculation of finger millet (Eleusine coracana Gaertn.) plants with one of six different vesicular, arbuscular, mycorrhizal (VAM) fungi increased plant biomass, height, leaf area and absolute growth rate; however, effectiveness of the various VAM fungi varied significantly. Maximum root colonization and mycorrhizal efficacy was observed with plants inoculated with Glomus caledonicum. Among five host genotypes tested for mycorrhizal dependency against G. caledonicum, genotype HR-374 gave the highest plant biomass, mycorrhizal efficacy and root colonization, the inoculation resulting in increased mineral (phosphate, nitrogen, Zn2+ and Cu2+) content and uptake in shoots.  相似文献   

11.
To study possible adaptive mechanisms inbred lines from three populations of Plantago major from sites that were found to differ in P availability were compared. In a pot experiment the growth and P uptake either in the presence or absence of Glomus fasciculatum was determined. Under these P-limited conditions it was shown by partitioning the relative growth rate (RGR, in mg g-1 day-1) in the components root weight ratio (RWR, in groots gplant -1), specific P uptake rate (SPUR, in mol P groots -1 day-1), and P-efficiency (PEFF, in mg mol P-1), that the increase in RGR of mycorrhizal infected plants was related to an increase in SPUR, and a decrease in RWR and PEFF. P. major ssp. major had a lower RGR (related to a lower PEFF and SPUR) and a higher RWR than P. major ssp. pleiosperma. In a second experiment three inbred lines were compared upon P depletion in a nutrient solution. The P. major ssp. major line had a lower RGR and higher RWR, and a higher accumulation of P in the roots than the P. major ssp. pleiosperma lines under optimal growing conditions. There were no differences among the inbred lines in the relative contribution of inorganic P to the total P concentration in the shoot. The results are discussed in relation to the characteristics of the habitats of the investigated P. major populations.  相似文献   

12.
不同pH值下丛枝菌根真菌对枳生长及铁吸收的影响   总被引:4,自引:0,他引:4  
王明元  夏仁学 《微生物学报》2009,49(10):1374-1379
摘要:【目的】本文对营养液不同pH值下丛枝菌根(arbuscular mycorrhiza)真菌地表球囊霉(Glomus versiforme)对枳[Poncirus trifoliata]实生苗生长及植株铁营养状况的影响进行了初步研究。【方法】采用盆栽砂培试验,分别施浇pH 5.0、6.0、7.0和8.0的霍格兰营养液(含50 μM Fe-EDTA);常规方法测定植株生长指标;曲利苯蓝染色法测定菌根侵染率;分光光度法测定叶绿素含量和根系三价铁螯合物还原酶活性;原子吸收分光光度法测定叶片钾和活性铁含量;钒  相似文献   

13.
We hypothesized that the grazing of vesicular-arbuscular mycorrhizal (VAM) hyphae by soil animals could be responsible for the lack of a direct relationship between mycorrhizal infection intensity and nutrient uptake under field conditions. To test this hypothesis, we determined the effect of a range of densities of the collembola, Folsomia candida, on growth, VAM infection, and P uptake in Geranium robertianum, a common forest herb, under greenhouse conditions. Total and aboveground growth were greater at low collembola density than either at higher collembola density or without collembola. These differences were greater when the plants were grown in a high organic content soil mix than when grown in sand. Root mass was not affected by collembola density. In the soil mix, root length decreased with increasing collembola density, but not in the sand. The percent of root length infected with VAM was lower at any collembola density than when collembola were absent. Total infected root length decreased linearly with increasing collembola density. Few significant differences in P uptake or tissue concentration were found. Thus, plant growth (but not P uptake) may be stimulated at low collembola density and inhibited at high. We discuss mechanisms which may be responsible for this non-linear response, and the implications of the pattern of response to studies of plant competition, nutrient turnover, and revegetation.  相似文献   

14.
The interaction between native and introduced fungi and their effect on plant growth and mineral uptake were studied. The host plants wereLygeum spartum andAnthyllis cytisoides, the introduced fungus wasGlomus fasciculatum. The four soils used were selected from disturbed and contaminated by mining activities areas. Inoculated and uninoculated plants were grown in the unsterilized and sterilized soils (with and withouth native microflora, respectively). Plants inoculated withG. fasciculatum were higher and had higher tissue P concentration than uninoculated plants, especially inA. cytisoides. However, this inoculation was not effective in unsterilized substrates, suggesting a competition between introduced and native fungi. Concentration of mineral elements other than P varied depending on the host plant and soil. Decrease in Fe, Cu, Mn, Zn and Pb was observed in mycorrhizalA. cytiosides plants and a slight increase in Zn concentration was noted in mycorrhizalL. spartum plants. The study showed that the type of soil and their populations of native endophytes have a considerable effect on plant response to mycorrhizal symbiosis, especially in disturbed soils.  相似文献   

15.
Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop of the world. In South America, it is grown mainly on acid soils, and its production on these soils is limited by deficient levels of available P, Ca, Mg, and micronutrients, and toxic levels of Al and Mn. A greenhouse experiment was undertaken to evaluate the genotypic differences in sorghum for uptake (U), inhibition (IH), influx (IN) into roots, and transport (TR) to shoot for nutrients at three levels of soil Al saturation (2, 41, 64%). Overall shoot nutrient U, IN, and TR showed a significant inverse correlation with soil Al saturation and shoot Al concentration, and a significant positive correlation with shoot and root dry weight. The nutrient uptake parameters differentiated genotypes into most and least efficient categories at various levels of soil Al saturation. The nutrient uptake parameters showed significant differences with respect to soil Al saturation, genotypes, and their interactions. In the current study, Al tolerant genotypes recorded higher IN and TR for P, K, Ca, Mg, Zn, and Fe than Al-sensitive genotypes. Therefore, these U, IN, and TR traits could be used in selection of sorghum plants adaptable to acid soils. Sorghum genotypes used in this study showed intraspecific genetic diversity in U, IN, and TR for essential nutrients. It was concluded that selection of acid soil tolerant genotypes and further breeding of acid (Al) tolerant sorghum cultivars are feasible.IICA/EMBRAPA/World BankIICA/EMBRAPA/World BankIICA/EMBRAPA/World Bank  相似文献   

16.
R. Baas 《Plant and Soil》1990,124(2):187-193
An experiment was set up in order to study 1) the relationship between net P uptake and dry matter production in mycorrhizal and non-mycorrhizal plants and 2) the effects of isolated rhizosphere bacteria and fungi on net P uptake and growth of P. major ssp. pleiosperma. A similar relationship between net P uptake and dry matter production was found for both mycorrhizal and non-mycorrhizal plants, although the regression lines differed in intercept.Compared to non-inoculated treatments, inoculation with bacteria slightly decreased dry matter production and P uptake of P. major, whereas inoculation with fungi or bacteria + fungi showed no effect. The results are discussed in terms of competition for available P and host photosynthates between host plant and rhizosphere microorganisms.  相似文献   

17.
18.
Augé RM  Moore JL  Sylvia DM  Cho K 《Mycorrhiza》2004,14(2):85-92
Colonization of roots and soil by arbuscular mycorrhizal (AM) fungi sometimes promotes stomatal conductance (g s) of the host plant, but scientists have had difficulty predicting or manipulating the response. Our objective was to test whether the magnitude of AM influence on g s is related to environmental conditions: irradiance, air temperature or leaf temperature. Stomatal conductances of two groups of uncolonized sorghum plants were compared to g s of plants colonized by Glomus intraradices (Gi) or Gigaspora margarita (Gm) in 31 morning and afternoon periods under naturally varying greenhouse conditions. Stomatal conductance of Gi and Gm plants was often markedly higher than g s of similarly sized nonAM plants. AM promotion of g s was minimal at the lowest irradiances and lowest air and leaf temperatures, but was substantial at intermediate irradiance and temperatures. AM promotion was again low or absent at the highest irradiances and temperatures. Magnitude of AM promotion of g s was not a function of absolute g s. Promotion of g s by Gi and Gm was remarkably similar. Differing phosphorus fertilization did not affect g s.  相似文献   

19.
31P nuclear magnetic resonance (NMR) spectroscopy was used to study phosphate (P) metabolism in mycorrhizal and nonmycorrhizal roots of cucumber (Cucumis sativus L) and in external mycelium of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith. The in vivo NMR method allows biological systems to be studied non-invasively and non-destructively. 31P NMR experiments provide information about cytoplasmic and vacuolar pH, based on the pH-dependent chemical shifts of the signals arising from the inorganic P (Pi) located in the two compartments. Similarly, the resonances arising from α, β and γ phosphates of nucleoside triphosphates (NTP) and nucleoside diphosphates (NDP) supply knowledge about the metabolic activity and the energetic status of the tissue. In addition, the kinetic behaviour of P uptake and storage can be determined with this method. The 31P NMR spectra of excised AM fungi and mycorrhizal roots contained signals from polyphosphate (PolyP), which were absent in the spectra of nonmycorrhizal roots. This demonstrated that the Pi taken up by the fungus was transformed into PolyP with a short chain length. The spectra of excised AM fungi revealed only a small signal from the cytoplasmic Pi, suggesting a low cytoplasmic volume in this AM fungus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
以采煤沉陷区柠条为宿主植物,研究接种丛枝菌根真菌(arbuscular mycorrhizal fungi,简称AM菌)对柠条生长和根际土壤的改良效应。结果表明:8月份接种AM菌比不接菌柠条的株高、冠幅和地径显著增加了29.11%,29.83%和14.81%,9月份接菌区柠条的根长、平均直径、根表面积和根体积分别比对照区增加了151.0%,34.2%,116.0%和129.3%。接种AM菌增强柠条的抗逆性,接菌区的柠条叶片可溶性糖含量和过氧化氢酶活性分别比对照区增加了13.4%和111.1%。8月份接种AM菌改善了土壤的生物理化性质,接菌区有机质、碱解氮、速效磷和速效钾比对照区分别增加7.06g/kg,140.0 mg/kg,1.82 mg/kg和16.72mg/kg,接种AM菌显著增加了根际土壤中真菌、放线菌、细菌数量和酸性磷酸酶活性。总之,接种AM菌促进采煤沉陷区柠条的生长和土壤的改良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号