首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Recently, we demonstrated that downregulation of inosine-5′-monophosphate dehydrogenase (IMPD; IMP:NAD oxidoreductase, EC 1.2.1.14), the rate-limiting enzyme for guanine nucleotide biosynthesis, is required for p53-dependent growth suppression. These studies were performed with cell lines derived from immortal, nontumorigenic fibroblasts that express wild-type p53 conditionally by virtue of a metal-responsive promoter. Here, the p53-dependent properties of the original “p53-inducible” fibroblasts are presented in detail and compared to related properties of epithelial cells that also express wild-type p53 conditionally, but by virtue of a temperature-responsive promoter. Both types of p53-inducible cells were designed to approximate normal physiologic relationships between the host cell and the regulated p53 protein. Together, they were used to investigate expression relationships between IMPD and other p53-responsive genes proposed as mediators of p53-dependent growth suppression. In both types of cells, IMPD activity, protein, and mRNA were consistently coordinately reduced in response to p53 expression. In contrast, mRNAs for waf1, bax, and mdm2 showed disparate patterns of expression, being induced in one conditional cell type, but not the other. This distinction in regulation pattern suggests that under normal growth conditions, unlike IMPD downregulation, bax and waf1 induction is not a rate-determining event for p53-dependent growth suppression. J. Cell. Physiol. 177:364–376, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
3.
4.
5.
Phosphorylation is important in p53-mediated DNA damage responses. After UV irradiation, p53 is phosphorylated specifically at murine residue Ser389. Phosphorylation mutant p53.S389A cells and mice show reduced apoptosis and compromised tumor suppression after UV irradiation. We investigated the underlying cellular processes by time-series analysis of UV-induced gene expression responses in wild-type, p53.S389A, and p53−/− mouse embryonic fibroblasts. The absence of p53.S389 phosphorylation already causes small endogenous gene expression changes for 2,253, mostly p53-dependent, genes. These genes showed basal gene expression levels intermediate to the wild type and p53−/−, possibly to readjust the p53 network. Overall, the p53.S389A mutation lifts p53-dependent gene repression to a level similar to that of p53−/− but has lesser effect on p53-dependently induced genes. In the wild type, the response of 6,058 genes to UV irradiation was strictly biphasic. The early stress response, from 0 to 3 h, results in the activation of processes to prevent the accumulation of DNA damage in cells, whereas the late response, from 12 to 24 h, relates more to reentering the cell cycle. Although the p53.S389A UV gene response was only subtly changed, many cellular processes were significantly affected. The early response was affected the most, and many cellular processes were phase-specifically lost, gained, or altered, e.g., induction of apoptosis, cell division, and DNA repair, respectively. Altogether, p53.S389 phosphorylation seems essential for many p53 target genes and p53-dependent processes.  相似文献   

6.
7.
8.
Tumour-derived p53 mutants are thought to have acquired ‘gain-of-function’ properties that contribute to oncogenicity. We have tested the hypothesis that p53 mutants suppress p53-target gene expression, leading to enhanced cellular growth. Silencing of mutant p53 expression in several human cell lines was found to lead to the upregulation of wild-type p53-target genes such as p21, gadd45, PERP and PTEN. The expression of these genes was also suppressed in H1299-based isogenic cell lines expressing various hot-spot p53 mutants, and silencing of mutant p53, but not TAp73, abrogated the suppression. Consistently, these hot-spot p53 mutants were able to suppress a variety of p53-target gene promoters. Analysis using the proto-type p21 promoter construct indicated that the p53-binding sites are dispensable for mutant p53-mediated suppression. However, treatment with the histone deacetylase inhibitor trichostatin-A resulted in relief of mutant p53-mediated suppression, suggesting that mutant p53 may induce hypo-acetylation of target gene promoters leading to the suppressive effects. Finally, we show that stable down-regulation of mutant p53 expression resulted in reduced cellular colony growth in human cancer cells, which was found to be due to the induction of apoptosis. Together, the results demonstrate another mechanism through which p53 mutants could promote cellular growth.  相似文献   

9.
10.
11.
Lin YC  Sun SH  Wang FF 《Cellular signalling》2011,23(11):1816-1823
Polo-like kinase 1 (Plk1) plays key roles in many aspects of mitosis. We have previously shown that induction of p21Waf1 by p53 is responsible for protection of cells against adriamycin-induced polyploidy formation and mitotic catastrophe. Here we show that adriamycin treatment suppressed Plk1 expression in a p53- and p21Waf1-dependent manner. Ablation of p21Waf1 inhibited the adriamycin-induced p53 activation, and this inhibition was alleviated by knockdown of Plk1, suggesting that p21Waf1-dependent suppression of Plk1 expression is responsible for maintaining p53 activation during stress response. Plk1 associated with p53 and disrupted its interaction with target gene promoters in cells treated with adriamycin. Overexpression of Plk1 inhibited the p53-mediated prevention of caspase-independent mitotic death, but not polyploidy formation, in adriamycin-treated cells. Together our results indicate that suppression of Plk1 by p21Waf1 is responsible for p53-dependent protection against adriamycin-induced caspase-independent mitotic death.  相似文献   

12.
13.
14.
Conversion of intestinal stem cells into tumor-initiating cells is an early step in ApcMin-induced polyposis. Wild-type p53-induced phosphatase 1 (Wip1)-dependent activation of a DNA damage response and p53 has a permanent role in suppression of stem cell conversion, and deletion of Wip1 lowers the tumor burden in ApcMin mice. Here we show that cyclin-dependent kinase inhibitor 2a, checkpoint kinase 2, and growth arrest and DNA damage gene 45a (Gadd45a) exert critical functions in the tumor-resistant phenotype of Wip1-deficient mice. We further identified Gadd45a as a haploinsufficient gene in the regulation of Wip1-dependent tumor resistance in mice. Gadd45a appears to function through its ability to activate the Jnk-dependent signaling pathway that in turn is a necessary mediator of the proapoptotic functions of p53 that respond to activation of the β-catenin signaling pathway. We propose that silencing of Gadd45a is sufficient to override p53 activation in the presence of active β-catenin under conditions of an enhanced DNA damage response.  相似文献   

15.
The tumor suppressor function of p53 is disabled in the majority of tumors, either by a point mutation of the p53 gene, or via MDM2-dependent proteasomal degradation. We have screened a chemical library using a cell-based assay and identified a low molecular weight compound named MITA which induced wild-type p53-dependent cell death in a variety of different types of human tumor cells, such as lung, colon and breast carcinoma cells, as well as in osteosarcoma and fibrosarcoma-derived cells. MITA inhibited p53-MDM2 interaction in vitro and in cells, which in turn prevented MDM2-mediated ubiquitination of p53 and resulted in a prolonged half-life and accumulation of p53 in tumor cells. Notably, p53 induction by MITA resulted in upregulated expression of p53 target genes MDM2, Bax, Gadd45 and PUMA, on protein and mRNA level. Importantly, neither p53 nor these target genes were induced in normal human fibroblasts (HDFs), which correlated with the absence of growth suppression in fibroblasts after treatment with MITA. However, upon activation of oncogenes in fibroblasts an induction and activation of p53 was observed, suggesting that activation of p53 by MITA occurs predominantly in tumor cells.  相似文献   

16.
Ral GTPases are critical effectors of Ras, yet the molecular mechanism by which they induce malignant transformation is not well understood. In this study, we found the expression of K-Ras, RalB, and sometimes RalA, but not AKT1/2 and c-Raf, to be required for maintaining low levels of p53 in human cancer cells that harbor mutant K-Ras and wild-type p53. Down-regulation of K-Ras, RalB, and sometimes RalA increases p53 protein levels and results in a p53-dependent up-regulation of the expression of p21WAF. K-Ras, RalA, and RalB depletion increases p53 stability as demonstrated by ataxia telangiectasia-mutated kinase activation, increased Ser-15 phosphorylation, and a significant (up to 6-fold) increase in p53 half-life. Furthermore, depletion of K-Ras and RalB inhibits anchorage-independent growth and invasion and interferes with cell cycle progression in a p53-dependent manner. Depletion of RalA inhibits invasion in a p53-dependent manner. Thus, expression of K-Ras and RalB and possibly RalA proteins is critical for maintaining low levels of p53, and down-regulation of these GTPases reactivates p53 by significantly enhancing its stability, and this contributes to suppression of malignant transformation.  相似文献   

17.
Mammalian reovirus is a benign virus that possesses the natural ability to preferentially infect and kill cancer cells (reovirus oncolysis). Reovirus exploits aberrant Ras signalling in many human cancers to promote its own replication and spread. In vitro and in vivo studies using reovirus either singly or in combination with anti-cancer drugs have shown very encouraging results. Presently, a number of reovirus combination therapies are undergoing clinical trials for a variety of cancers. Previously we showed that accumulation of the tumor suppressor protein p53 by Nutlin-3a (a specific p53 stabilizer) enhanced reovirus-induced apoptosis, and resulted in significantly higher levels of reovirus dissemination. In this study, we examined the role of p53 in combination therapies involving reovirus and chemotherapeutic drugs. We showed that sub-lethal concentrations of traditional chemotherapy drugs actinomycin D or etoposide, but not doxorubicin, enhanced reovirus-induced apoptosis in a p53-dependent manner. Furthermore, NF-κB activation and expression of p53-target genes (p21 and bax) were important for the p53-dependent enhancement of cell death. Our results show that p53 status affects the efficacy of combination therapy involving reovirus. Choosing the right combination partner for reovirus and a low dosage of the drug may help to both enhance reovirus-induced cancer elimination and reduce drug toxicity.  相似文献   

18.
19.
The p53 tumor suppressor is activated in response to a variety of cellular stress signals, although specific in vivo signals that trigger tumor suppression are unknown. In mouse thymocytes, where p53 inactivation leads to tumorigenesis, several observations suggest that V(D)J recombination of T-cell receptor (TCR) loci could provide a DNA damage signal triggering p53-dependent apoptosis and tumor suppression. Inactivation of p53 would allow V(D)J driven mutation of additional cancer genes, facilitating tumorigenesis. Here, we show that mice with a p53 deficiency in thymocytes and unable to carry out V(D)J recombination are not impaired in the development of thymoma. Recombination-activating gene (RAG) deficiencies were introduced into both p53−/− mice and TgTΔN transgenic mice, a strain in which 100% of the mice develop thymoma due to thymocyte-specific inactivation of p53 by a simian virus 40 T-antigen variant. V(D)J recombination was dispensable for tumorigenesis since thymomas developed with or without the RAG-1 or RAG-2 gene, although some delay was observed. When V(D)J recombination was suppressed by expression of rearranged TCR transgenes, 100% of the TgTΔN mice developed thymoma, surprisingly with reduced latency. Further introduction of a RAG deficiency into these mice had no impact on the timing or frequency of tumorigenesis. Finally, karyotype and chromosome painting analyses showed no evidence for TCR gene translocations in p53-deficient thymomas, although abundant aneuploidy involving frequent duplication of certain chromosomes was present. Thus, contrary to the current hypothesis, these studies indicate that signals other than V(D)J recombination promote p53 tumor suppression in thymocytes and that the mechanism of tumorigenesis is distinct from TCR translocation oncogene activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号