首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
Survival, oxygen consumption (     ), total plasma cortisol and glucose levels and gill heat-shock protein 70 (hsp70) expression were measured in 10 and 50 g juvenile Atlantic cod Gadus morhua during an acute temperature increase (2° C h−1) to their critical thermal maximum. Ninety three per cent of the fish in both size classes survived to 24° C; however, mortality was 100% within 15 min of reaching this temperature. The     for both size classes increased significantly with temperature, reaching peak values at 22° C that were c. 2·8-fold those of control (10° C) fish. Resting plasma cortisol and glucose levels were lower in 10 g as compared to 50 g fish. Plasma glucose levels were highly variable in both size classes, and significant increases were only seen at >22° C for the 10 g fish. In contrast, plasma cortisol showed an exponential increase with temperature starting at 16° C in both size classes, and reached maximum levels at 22° C that were 19-fold (10 g fish) and 35-fold (50 g fish) higher than their respective control groups. Both the constitutive (73 kDa) and inducible (72 kDa) isoforms of hsp70 were detected in both size classes using the widely utilized mouse monoclonal antibody. Expression of these isoforms, however, did not change when Atlantic cod were exposed to elevated temperature, and the 72 kDa isoform was not detected using salmonid-specific antibodies. These results indicate that juvenile Atlantic cod are very sensitive to acute increases in water temperature. In addition, they (1) show that     and plasma cortisol, but not plasma glucose or gill hsp 70 levels, are sensitive indicators of thermal stress in Atlantic cod and (2) support previous reports that the upper critical temperature for this species is 16° C.  相似文献   

2.
Cold shocks: a stressor for common carp   总被引:2,自引:0,他引:2  
The stress response of common carp Cyprinus carpio was studied by evaluating plasma cortisol, glucose and lactate after single or multiple rapid temperature drops (ΔT: 7, 9 or 11° C). All three amplitudes used induced a significant rise in plasma cortisol levels. Peaks occurred within 20 min after onset of the cold shock. No stress-related secondary metabolic changes were observed in any of the experiments described: plasma glucose levels remained unaffected and plasma lactate levels dropped. Carp of 60 days old showed a significant stress response, although plasma cortisol levels were lower than those observed in carp of 120 days. Furthermore, fish that had experienced multiple cold shocks showed an overall lower cortisol response than fish experiencing a single cold shock, indicating that habituation to this stressor occurred.  相似文献   

3.
Critical swimming speed ( U crit) and rate of oxygen consumption of Pacific cod Gadus macrocephalus acclimated to 4 and 11° C were determined to assess the influence of water temperature on performance. The physiological effect of exercise trials on fish held at two temperatures was also assessed by comparing haematocrit and plasma concentrations of cortisol, metabolites and ions collected from fish before and after testing. The U crit of fish acclimated and exercised at 4° C did not differ from those acclimated and exercised at 11° C [1·07 body lengths (total length) s−1]. While the standard metabolic rate of 11° C acclimated fish was 28% higher than that of 4° C fish, no significant difference was observed between fish acclimated at the two temperatures. Plasma concentrations of cortisol, glucose and lactate increased significantly from pre- to post-swim in both groups, yet only concentrations of cortisol differed significantly between temperature treatments. Higher concentrations of cortisol in association with greater osmoregulatory disturbance in animals acclimated at the lower temperature indicate that the lower water temperature acted as an environmental stressor. Lack of significant differences in U crit between temperature treatments, however, suggests that Pacific cod have robust physiological resilience with respect to swimming performance within temperature changes from 4 to 11° C.  相似文献   

4.
Plasma cortisol levels were measured as an indicator of physiological stress in roach subjected to brief handling, or to a 14-day period of confinement, and in undisturbed control fish, during winter (water temperature 5° C) and summer (16° C), at which time plasma 17 β-oestradiol levels were also determined. Cortisol levels in undisturbed roach were low (mean 8·1 ng ml−1 at 5° C; 1·4 ng ml−1 at 16° C) and both handling and handling+confinement elevated blood cortisol levels significantly to 400 and 140 ng ml−1, respectively (at 5° C) and 700 and 600 ng ml−1, respectively (at 16) C). Blood cortisol levels had almost returned to baseline within 4 h following handling alone but in fish subjected to handling and prolonged confinement cortisol levels remained elevated for up to 168 h. Differences in baseline and poststress levels of cortisol, and in the rate of recovery from acute stress, were observed at the two different temperatures and the possible factors underlying these differences are discussed. Circulating levels of 17 β-oestradiol were reduced significantly within 24 h of exposure to either acute handling or chronic confinement indicating that the reproductive endocrine system in roach is sensitive to disruption by stressors.  相似文献   

5.
Haematocrit, haemoglobin concentration, plasma osmolarity and plasma glucose concentration of the Antarctic nototheniid fishes Pagothenia borchgrevinki and Trematomus bernacchii were monitored during 24 h periods of exposure to 3 and 6° C. The same haematological variables were also measured in P. borchgrevinki following a 5–6 week period of 4° C acclimation. The first plasma glucose measurements in acutely thermally‐stressed Antarctic nototheniids revealed a delayed hyperglycaemia which related well to the relatively slow stress‐related elevation of plasma cortisol in these species. Plasma osmolarity of both species was unchanged by acute 3° C exposure, but exhibited a delayed and transient increase during acute exposure to 6° C. Haematocrit was unaltered in T. bernacchii during the acute temperature increases but was elevated in the relatively active P. borchgrevinki . Following 5–6 weeks of warm‐acclimation (4° C) the plasma glucose concentration, haematocrit and haemoglobin concentration of P. borchgrevinki were not significantly different from fish at −1° C, but plasma osmolarity decreased toward the level found in temperate‐water teleosts.  相似文献   

6.
One year old, individually tagged Lake Inari Arctic charr, Salvelinus alpinus, were reared at three constant temperatures, 10.3°C, 14.1°C and 18.1°C, over four weeks. Blood samples were collected from a group of unstressed fish after the cultivation period at the same time as another group of fish were subjected to acute handling stress treatment (2min netting in air and 40min (± 20min) recovery period in water). Plasma cortisol, calcium, sodium, potassium and chloride concentrations were measured on both groups. To study the effect of minor daily temperature fluctuations on the stress response of Arctic charr, two additional daily fluctuating temperature (14 ± 1°C, 18 ± 1°C) treatments were established. The samples were taken in the same manner as those in the constant temperature treatments. Growth was fastest at 10.3–14.1°C and clearly lower at 18.1°C. Pre-stress plasma cortisol levels were low but increased slightly with increasing temperature. After stressor treatment, the cortisol concentrations of Arctic charr were clearly higher in all temperature treatments but there were no significant differences in plasma cortisol concentrations among temperatures. Plasma calcium levels increased during the stress treatment but temperature did not modulate this effect. The plasma potassium concentrations declined at 14.1–18.1°C after acute stress but the response was not affected by temperature within this range. The concentrations of sodium and chloride were unaffected by acute stress. Temperatures of 10.3–18.1°C and fluctuating temperature treatments had no influence on any plasma ion concentrations. Arctic charr were able to maintain the plasma ion concentrations in fresh water at 10.3–18.1°C and after acute stress treatment. Results indicate that the optimum temperature for growth of Arctic charr has little to do with the plasma ion concentrations or the ability to maintain those concentrations after short-term stress. The plasma cortisol responses further indicate that the optimum temperature for growth of Arctic charr is not related to the suppressed ability to react to an acute handling stressor. Temperature fluctuations did not cause significant differences in cortisol levels when compared with constant temperatures.  相似文献   

7.
The Mozambique tilapia, Oreochromis mossambicus, is capable of surviving a wide range of salinities and temperatures. The present study was undertaken to investigate the influence of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the tilapia. Fish were acclimated to fresh water (FW), seawater (SW) or double-strength seawater (200% SW) at 20, 28 or 35 degrees C for 7 days. Plasma osmolality increased significantly as environmental salinity and temperature increased. Marked increases in gill Na(+), K(+)-ATPase activity were observed at all temperatures in the fish acclimated to 200% SW. By contrast, Na(+), K(+)-ATPase activity was not affected by temperature at any salinity. Plasma glucose levels increased significantly with the increase in salinity and temperature. Significant correlations were observed between plasma glucose and osmolality. In brain and kidney, content of myo-inositol increased in parallel with plasma osmolality. In muscle and liver, there were similar increases in glycine and taurine, respectively. Glucose content in liver decreased significantly in the fish in 200% SW. Plasma prolactin levels decreased significantly after acclimation to SW or 200% SW. Plasma levels of cortisol and growth hormone were highly variable, and no consistent effect of salinity or temperature was observed. Although there was no significant difference among fish acclimated to different salinity at 20 degrees C, plasma IGF-I levels at 28 degrees C increased significantly with the increase in salinity. Highest levels of IGF-I were observed in SW fish at 35 degrees C. These results indicate that alterations in gill Na(+), K(+)-ATPase activity and glucose metabolism, the accumulation of organic osmolytes in some organs as well as plasma profiles of osmoregulatory hormones are sensitive to salinity and temperature acclimation in tilapia.  相似文献   

8.
Sunshine bass (Morone chrysopsxMorone saxatilis) were subjected to a 15-min low-water confinement stressor at temperatures ranging from 5 to 30 degrees C. Physiological responses were evaluated by measuring hematocrit, and plasma chloride, glucose and cortisol. Fish acclimated to 30 degrees C had initial glucose concentrations of 3.13 mM (564 mg/L) which were significantly lower than in fish acclimated to 5 and 10 degrees C (4.32 and 4.82 mM or 779 and 868 mg/l, respectively). Fish survived the conditions imposed at every temperature except 30 degrees C, where 15 out of 42 fish died during the stress and recovery protocol. The general pattern was an initial increase in hematocrit, followed by a delayed decrease in hematocrit and chloride, and an increase in plasma glucose and cortisol. In general, fish stressed at temperatures below 20 degrees C had lower and more delayed changes in plasma glucose and cortisol than fish tested at 20, 25 and 30 degrees C. Initial cortisol concentrations were 65 ng/ml and increased to above 200 ng/ml in fish held at 20 degrees C and above. At the higher temperatures, glucose concentrations were twice the initial concentration after stress and cortisol changes were four to five times the initial concentration after the stress. Quantitative responses for glucose and cortisol were moderate and recovery rapid in fish stressed at 10 and 15 degrees C; therefore, this range of water temperature is recommended when handling sunshine bass.  相似文献   

9.
Plasma cortisol levels of fingerling rainbow trout were measured as an index of the stress resulting from various procedures used for transport of the fish for stocking. When transported under 'normal' conditions, which included water at the hatchery acclimation temperature (10–11°C), O2 saturation or supersaturation, and neutral pH, there was a marked increase in plasma cortisol levels within 0.5 h, which was maintained over the next 4 h of transport; there was a significant decrease in plasma cortisol by 8 h of transport. It was found that the plasma cortisol levels at 4 and 8 h were not appreciably altered by transport under partial O2 desaturation, O2 saturation, O2 supersaturation, or 0.5% NaCl, or by anaesthesia with tricaine methanesulfonate (MS 222) prior to capture and transport in MS 222-free water or 0.5% NaCl. A 15 min exposure to an immobilizing dose of buffered or unbuffered MS 222, or 2-phenoxyethanol, caused an increase in plasma cortisol of about 2 h duration, indicating that anaesthetics are themselves stressful. Exposure to chilled water (1° C) caused a large increase in plasma cortisol levels by 4 h after initiation of exposure; plasma cortisol had decreased at 1 day, and by 2 days a constant level was reached which was above the level in fingerling trout under 'normal' hatchery conditions. Trout acclimated to chilled water for 24 h and transported in chilled water had an increase in plasma cortisol during transport. Anaesthesia prior to transport or addition of salt did not reduce the stress of transport as judged by plasma cortisol levels. The results indicate that stress from capture and transport during stocking cannot be avoided using present methods.  相似文献   

10.
Species differences in tolerance to environmental stressors can contribute to differences in species distribution and abundance along river gradients. Climate change and intensive agriculture are likely to have major effects on fish populations in temperate zones, yet understanding of the interactions between temperature and chemical stressors on fish physiology is limited. The objective of this study was to compare the stress responses of the Mountain Whitefish, (Prosopium williamsoni, a cold-water fish) and White Sucker (Catostomus commersoni, a cool-water fish), along a temperature and pesticide gradient in the Oldman River, Southern Alberta in spring and summer. Fish were seined, placed into an enclosure, and plasma cortisol, glucose, liver glycogen, and condition factor were measured. Plasma acetylcholinesterase (AChE) activity was used as an indicator of exposure to organophosphate and carbamates pesticides. Whitefish had lower plasma AChE activity and lower liver glycogen reserves compared to suckers at all sites and all sampling times but the differences in plasma cortisol were not species-specific and there were no differences in plasma glucose levels, except at one site. Plasma cortisol increased, and plasma glucose decreased along a downstream river gradient in whitefish in both spring and summer; in sucker only plasma cortisol fluctuated and only in the summer. Liver glycogen decreased along the river gradient in both species at both seasons. Our study detected important species-specific differences in AChE activities and responses of the physiological stress axis, suggesting that whitefish are more sensitive to temperature and pesticide stress than suckers.  相似文献   

11.
We measured changes in free and total plasma cortisol levels, plasma glucose, gill hsp70 levels, and growth in haddock (Melanogrammus aeglefinus) subjected to a long-term handling stress (15 s out of water, each day, for 4 weeks), and the effect of this long-term stress on the ability of haddock to respond to an acute stressor. The acute stressor was a single handling stress, and fish were sampled at 1, 6, and 12 h post-stress. During the long-term stress study, free and total plasma cortisol levels increased significantly (10-fold) in the stressed group after the second week. However, the percentage of free cortisol was already significantly elevated by the first week (control 17%, stressed 55%), and remained high during the second week (control 35% and stressed 65%). After 3 and 4 weeks of handling, both free and total cortisol declined in stressed fish to levels that were not significantly different from pre-stress values. Control fish grew significantly more than stressed fish (by 32% and 18%, respectively) over the 4 week study, and condition factor only increased in control fish. Although fish from the control group showed elevated total plasma cortisol levels (to 47 ng mL(-1)) 1 h after the acute stress, and the levels in stressed fish were comparable to those for the control fish, no significant increase in plasma cortisol was measured in the group subjected to the long-term stress. Free plasma cortisol levels did not increase significantly in either group following the acute stress. However, free plasma cortisol levels were significantly higher in long-term stress group, as compared with the control group, at 6 h post-stress. Plasma glucose and gill hsp70 levels were not altered by either the long-term stress or acute stressor. Our data indicate that cortisol (free and total), but not glucose or hsp70, appears to be adequate to assess short- and long-term stress in haddock.  相似文献   

12.
In red porgy Pagrus pagrus subjected to 3 weeks of chronic stress by crowding, plasma cortisol remained significantly higher in crowded fish compared to controls. There was no significant effect of crowding on plasma glucose levels. When the crowded fish were subjected to an acute handling the plasma cortisol response was similar to that of the uncrowded fish. No significant differences were found between the groups. The changes in plasma glucose following acute handling were also similar in both crowded and uncrowded fish.  相似文献   

13.
The cyclooxygenase (COX) pathway converts arachidonic acid (ArA) into prostaglandins (PGs), which interact with the stress response in mammals and possibly in fish as well. Acetylsalicylic acid (ASA) is a COX inhibitor and was used to characterize the effects of PGs on the release of several hormones and the stress response of tilapia (Oreochromis mossambicus). Plasma PGE2 was significantly reduced at 100 mg ASA/kg body wt, and both basal PGE2 and cortisol levels correlated negatively with plasma salicylate. Basal plasma 3,5,3'-triiodothyronine (T3) was reduced by ASA treatment, whereas prolactin (PRL)188 increased at 100 mg ASA/kg body wt. ASA depressed the cortisol response to the mild stress of 5 min of net confinement. As expected, glucose and lactate were elevated in the stressed control fish, but the responses were blunted by ASA treatment. Gill Na+-K+-ATPase activity was not affected by ASA. Plasma osmolarity increased after confinement in all treatments, whereas sodium only increased at the high ASA dose. This is the first time ASA has been administered to fish in vivo, and the altered hormone release and the inhibition of the acute stress response indicated the involvement of PGs in these processes.  相似文献   

14.
Recovery from acute and chronic stress in the pot-bellied seahorse Hippocampus abdominalis under aquaculture conditions was investigated in this study to evaluate (a) whether these relatively slow and sedentary fish develop the 'fight or flight' response and (b) the impact of transportation stress on pot-bellied seahorse physiology. Fish were exposed to either a control treatment, an acute stressor (air exposure for 60 s) or a chronic stressor (confinement or transportation). Plasma concentrations of cortisol, glucose and lactate did not increase in response to an acute stressor, suggesting that adrenergic activation was absent. In contrast, chronic stress initiated increases in cortisol (77 ng ml−1) and glucose (7 mM), which both returned to pre-stress concentrations (4 ng ml−1, 4 mM respectively) within the subsequent 6 h. Recovery from chronic stress thus fitted the teleost paradigm, i.e. plasma levels of cortisol and glucose returned to pre-stress values in c . 6 h during recovery from a chronic stressor. The seemingly rapid return to homeostasis suggests that special precautions, over and above normal procedures, may not be required for long-distance transportation of pot-bellied seahorses.  相似文献   

15.
The effects of time of day and water temperature on the acute physiological stress response were investigated in young-of-the-year green sturgeon (Acipenser medirostris). The response to a 1-min air-emersion stressor was assessed during the day (08.00 h) and at night (20.00 h), as well as after acclimation to either 11 degrees C or 19 degrees C. Blood samples were collected prior to stress and at several times after exposure to the stressor, and plasma concentrations of cortisol, lactate, and glucose were determined. The magnitudes of cortisol (19.1 ng ml(-1) vs. 4.9 ng ml(-1)) and lactate (190.6 mg l(-1) vs. 166.7 mg l(-1)) were significantly higher in fish stressed at night when compared with the day. There were no significant differences in glucose levels between time periods. Although, acclimation temperature did not affect peak cortisol concentrations (56.7 and 50.3 ng ml(-1) at 11 degrees C and 19 degrees C, respectively), the duration of the response was significantly extended at 11 degrees C. Post-stressor lactate increases were similar between temperature groups, but at 11 degrees C post-stressor glucose levels were significantly increased through 6 h, suggesting stressor-induced glycogenolysis and gluconeogenesis or decreased glucose utilization. These data demonstrate that the physiological stress response in green sturgeon is modified by both time of day and temperature.  相似文献   

16.
17.
Tropical labrids Hemigymnus melapterus sampled underwater had low plasma levels of cortisol, glucose, and lactate. Plasma cortisol levels were elevated by capture stress within 5–6 min, while glucose and lactate levels were not. Plasmalevels of cortisol and glucose increased after 2–4 h of handling and transport to the laboratory. Levels of cortisol and glucose fell with laboratory acclimation back to values similar to those found in wild fish. Parasitism by gnathiid isopods across an order of magnitude of isopod numbers had no effect on plasma levels of cortisol or glucose. Thus, H. melapterus has a stress response similar to that shown by temperate species, and relatively high parasite loads are not apparently stressful to fish in the wild. This may be related to the counterproductive effects of physiological stress responses on the immune system or behaviour-modulated processes that counter parasitic invasion.  相似文献   

18.
Fish in aquaculture are often exposed to various stressors that may change their ability to survive or limit growth. Amino acids are used for processes other than growth, including stress response. This study intended to analyse how repeated acute handling stress can affect growth and amino acid requirements in fish. Senegalese sole juveniles were weekly held in the air during 3 min (Handling) for 9 weeks; Control groups were left undisturbed. Growth and plasma levels of stress indicators and of free amino acids were assessed at the end of the experiment. Plasma cortisol and osmolality levels showed that fish in the Handling treatment were stressed, but growth was unaffected. Plasma amino acid concentrations indicate that their requirements in stressed fish were altered, which probably reflects the synthesis of proteins or other specific compounds related to stress response.  相似文献   

19.
The aim of this study was to determine the effects of chronic waterborne copper (Cu) exposure on the acute stress-induced cortisol response and associated physiological consequences in rainbow trout (Oncorhynchus mykiss). Trout were exposed to 30 μg Cu/L in moderately hard water (120 mg/L as CaCO(3)) for 40 days, following which time the acute cortisol response was examined with a series of stressors. At 40 days, a 65% increase in Cu was observed in the gill, but no accumulation was observed in the liver, brain or head kidney. Stressors such as air exposure or confinement did not elicit an increase in circulating cortisol levels for Cu-exposed fish, in contrast to controls. However, this inhibitory effect on the acute cortisol response appeared to have few implications on the ability of Cu-exposed fish to maintain ion and carbohydrate homeostasis. For example, plasma Na(+), Ca(2+) and glucose levels as well as hepatic glycogen levels were the same post-stress in control and Cu-exposed fish. Trout were also challenged with exposure to 50% seawater for 48 h, where Cu-exposed trout maintained plasma Na(+), glucose and hepatic glycogen levels. However, Cu-exposed fish experienced decreased plasma K(+) levels throughout the Cu exposure and stress tests. In conclusion, chronic Cu exposure resulted in the abolition of an acute cortisol response post-stress. There was no Cu accumulation in the hypothalamus-pituitary-interrenal axis (HPI axis) suggesting this was not a direct toxic effect of Cu on the cortisol regulatory pathway. However, the lack of an acute cortisol response in Cu-exposed fish did not impair the ability of the fish to maintain ion and carbohydrate homeostasis. This effect on cortisol may be a strategy to reduce costs during the chronic stress of Cu exposure, and not endocrine disruption as a result of toxic injury.  相似文献   

20.
The effects of confinement and exercise on the stress response of the spiny damselfish Acanthochromis polyacanthus were investigated in a laboratory stock of fish. Cultured spiny damselfish had basal plasma cortisol values (<16 ng ml−1) similar to those found in wild fish, and basal plasma glucose and lactate levels that were similar to those found in other teleosts. Plasma cortisol concentrations increased in response to stress with a latency period of 5–10 min. Removal of the stressor resulted in partial recovery of cortisol levels by 24 h. Plasma glucose levels increased in response to stress in all experiments with significant increases occurring within 15 min of the imposition of stress. Elevations in plasma glucose concentrations were not initially reflected in changes in liver or muscle glycogen content, with significant reductions in liver glycogen concentrations only occurring in response to extended periods of stress. In contrast to many temperate species, plasma lactate concentrations did not consistently increase in response to stress, suggesting that the stress response in spiny damselfish is not strongly characterized by anaerobiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号