首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human minidystrophin gene (pSG5dys plasmid) and hACR-1 gene (pRc-CMV-10.1 plasmid) were cotransfected by means of "gene-gun" to M. quadriceps femoris of mdx mice. Effects of transfection on dystrophin expression and survival of striated muscle fibres (SMF) were studied on the 21st day after shots. In the control mdx dystrophin-positive muscular fibers [D(+)] SMF and destroyed SMF made 2.1 +/- 0.1 and 2.1 +/- 0.3%, respectively. In mice transfected with pSG5dys plasmid (20 mkg of DNA per mouse), the shares of D(+) SMF and dead SMF raised, respectively, up to 5.6 +/- 1.4 and 4.5 +/- 0.9%. Transfection of mice with pRc-CMV-10.1 (DNA dose is 20 mkg per mouse) reduced the levels of apoptosis in SMF and D(+) SMF level to 1.6 +/- 0.6 and 1.1 +/- 0.4%, respectively. Cotransfection by pSG5dys and pRc-CMV-10.1 plasmids (10 and 10 mkg of each plasmids DNA per mouse) reduced the share of D(+) SMF to 1.1 +/- 0.5% and SMF destruction to 0.9 +/- 0.3%. pSG5dys transfection considerably reduced the share of SMF having peripherally located nuclei, thus indicating a decrease in SMF differentiation level after transfection. Cotransfection of ACR-1 gene and a dystrophin minigene did not suppress further cytodifferentiation of mdx muscle fibers. A conclusion is made that ballistic transfection by hACR-1 gene reduces the level of apoptosis in mdx mice SMF without changing the level of SMF differentiation. The cotransfection of mdx mice muscle by hACR-1 and human minidystrophin gene reduces SMF destruction and supports SMF differentiation, too.  相似文献   

2.
Studies have shown that 9.4 Tesla (9.4 T) high-field magnetic resonance imaging (MRI) has obvious advantages in improving image resolution and capacity, but their safety issues need to be further validated before their clinical approval. Meanwhile, emerging experimental evidences show that moderate to high intensity Static Magnetic Fields (SMFs) have some anti-cancer effects.We examined the effects of two opposite SMF directions on lung cancer bearing mice and found when the lung cancer cell-bearing mice were treated with 9.4 T SMFs for 88 h in total, the upward 9.4 T SMF significantly inhibited A549 tumor growth (tumor growth inhibition=41%), but not the downward 9.4 T SMF. In vitro cellular analysis shows that 9.4 T upward SMF treatment for 24 h not only inhibited A549 DNA synthesis, but also significantly increased ROS and P53 levels, and arrested G2 cell cycle. Moreover, the 9.4 T SMF-treatments for 88 h had no severe impairment to the key organs or blood cell count of the mice.Our findings demonstrated the safety of 9.4 T SMF long-term exposure for their future applications in MRI, and revealed the anti-cancer potential of the upward direction 9.4 T SMF.  相似文献   

3.
H G Klingemann 《CMAJ》1989,140(2):137-142
The differentiation and maturation of hematopoietic progenitor cells are regulated by certain growth factors. Several of these glycoproteins have been characterized, and their amino acid sequences have been delineated. Modern DNA technology provides sufficient quantities of these hormones for testing in clinical trials. Erythropoietin (EPO) has been shown to increase the hemoglobin level and hematocrit in patients with end-stage renal disease. Granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage CSF (GM-CSF) can increase the numbers of neutrophils and monocytes, in a dose-dependent fashion. The function of granulocytes and monocytes is also enhanced. Clinical studies of the toxicity and activity of G-CSF and GM-CSF have been conducted in patients with acquired immune deficiency syndrome, aplastic anemia, myelodysplastic syndromes, and neutropenia due to cancer and chemotherapy. In almost all patients the neutrophil count increased within 24 hours after the start of treatment. Side effects of G-CSF and GM-CSF are infrequent and usually mild. Combinations of CSFs may be even more effective.  相似文献   

4.
The aim of this study was to explore the biophysical effects of static magnetic field on osteoblastic cells. MG63 cells were exposed to 0.25 and 0.4-T static magnetic fields (SMF). The cell cycle effects were tested by flow cytometry. The differentiation of the cells was assessed by detecting the changes in prostaglandin E2, osteocalcin, and extracellular matrix expression. Membrane fluidity was used to evaluate the alterations in the biophysical properties of cellular membranes after the SMF simulations. Our results show that SMF exposure increases prostaglandin E2 level and extracellular matrix express in MG63 cells. On the other hand, MG63 cells exposed to 0.4-T SMF exhibited a significant decrease in membrane fluidity at 8 h. Based on these findings, it appears reasonable to suggest that SMF affect osteoblastic maturation by increasing membrane rigidity and then inducing differentiation pathway.  相似文献   

5.
Whether exposure to static magnetic fields (SMF) for medical applications poses a therapeutic benefit or a health hazard is at the focus of current debate. As a peripheral nerve model for studies of the SMF effects, we have investigated whether exposure of in vitro frog sciatic nerve fibers to moderate-intensity gradient SMF up to 0.7 T modulates membrane excitation and refractory processes. We measured the changes in the amplitudes of the electrically evoked compound action potentials for three groups: a control group without SMF exposure and two exposed groups with continuous inhomogeneous exposure to maximum flux densities (B(max)) of 0.21 and 0.7 T SMF for 6 h. The values of the nerve conduction velocity of C fibers were significantly reduced by B(max) of 0.7 T SMF during the 4- to 6-h exposure period but not by B(max) of 0.21 T SMF during the entire exposure period of 6 h, relative to the unexposed control. From these findings, we speculate that exposure to moderate-intensity gradient SMF may attenuate pain perception because the C fibers are responsible for pain transmission. Although the mechanistic reasons for this decrease have yet to be clarified, SMF could affect the behavior of some types of ion channels associated with C fibers.  相似文献   

6.
In a search for undiscovered mechanisms of resistance to adriamycin, we screened a genomic library derived from Saccharomyces cerevisiae for genes related to adriamycin resistance. To our surprise, we found that overexpression of BSD2 rendered yeast cells resistant to adriamycin. Downregulation of the metal transporters Smf1 and Smf2 is the only activity of Bsd2 reported to date, and Bsd2 deficiency increases intracellular levels of Smf1 and Smf2. SMF2-disrupted cells exhibited significantly greater resistance to adriamycin, whereas the resistance of SMF1-disrupted cells was only slightly improved. The sensitivity of the SMF1- and SMF2-disrupted yeast cell line overexpressing BSD2 was almost the same as that of the BSD2-overexpressing parental yeast cell. Thus the overexpression of BSD2 and the disruption of SMF1 and SMF2 might be involved in the same mechanism that confers resistance to adriamycin. Although both SMF1- and SMF2-disrupted cells were very sensitive to EGTA, overexpression of BSD2 had little or no effect on sensitivity to EGTA. However, a partial decrease in the intracellular level of FLAG-Smf2 was observed by overexpression of BSD2. Thus, the resistance to adriamycin acquired by overexpression of BSD2 might be partially explained by down-regulation of Smf2, but in addition to Smf2, other as of yet unidentified targets of Bsd2 must also be responsible for the resistance.  相似文献   

7.
化学疗法为肿瘤临床治疗的常规方法,存在毒副作用大、抗药性强等缺陷。为了提高药物的利用效率,减少药物引起的毒副作用,将8.8 m T稳恒磁场分别与顺铂、阿霉素联用,经MTT检测发现磁场与药物联用可对肝癌细胞Hepa1-6生长具有协同抑制的效应,经HE染色发现联合处理组细胞发生明显的形态学改变。流式细胞仪检测显示磁场能增加顺铂对G2/M期细胞的滞留,而磁场与阿霉素共同作用可将细胞阻止于G1期和G2/M期。经彗星电泳检测表明磁场能够增强药物对DNA的损伤,且原子力显微镜观察发现联合处理组细胞膜表面出现较大且较深的孔洞,表面结构破坏严重。实验结果表明,抗肿瘤药物与磁场联用技术可有效抑制肿瘤细胞的生长,减少药物的使用浓度,为将抗肿瘤药物与磁场应用于临床治疗恶性肿瘤提供了一个全新的思路与策略。  相似文献   

8.
Due to widespread exposure of human being to various sources of static magnetic fields (SMF), their effect on the spatial and temporal status of structure, arrangement, and polymerization of tubulin was studied at the molecular level. The intrinsic fluorescence intensity of tubulin was increased by SMF, indicating the repositioning of tryptophan and tyrosine residues. Circular Dichroism spectroscopy revealed variations in the ratios of alpha helix, beta, and random coil structures of tubulin as a result of exposure to SMF at 100, 200, and 300 mT. Transmission Electron microscopy of microtubules showed breaches and curvatures whose risk of occurrence increased as a function of field strength. Dynamic light scattering revealed an increase in the surface potential of tubulin aggregates exposed to SMF. The rate and extent of polymerization increased by 9.8 and 33.8%, at 100 and 300 mT, respectively, but decreased by 36.16% at 200 mT. The conductivity of polymerized tubulin increased in the presence of 100 and 300 mT SMF but remained the same as the control at 200 mT. The analysis of flexible amino acids along the sequence of tubulin revealed higher SMF susceptibility in the helical electron conduction pathway set through histidines rather than the vertical electron conduction pathway formed by tryptophan residues. The results reveal structural and functional effects of SMF on tubulin assemblies and microtubules that can be considered as a potential means to address the safety issues and for manipulation of bioelectrical characteristics of cytosol, intracellular trafficking and thus, the living status of cells, remotely.  相似文献   

9.
Purpose We have previously shown that low-dose interleukin-2 (IL-2) and 13-cis-retinoic acid (13-cis-RA) improved lymphocyte and natural killer (NK) cell count of patients with advanced tumors showing a clinical benefit from chemotherapy. The primary endpoint of this study was to ask whether IL-2 and 13-cis-RA improved (≥30%) lymphocyte and NK cell count in patients with metastatic colorectal cancer (MCRC) that had a clinical benefit from induction chemotherapy. Secondary endpoint was the evaluation of toxicity, progression-free survival (PFS), and overall survival (OS). Patients and methods Forty patients with MCRC, showing a clinical benefit from chemotherapy, were treated with subcutaneous low-dose IL-2 (1.8 × 106 IU) and oral 13-cis-RA (0.5 mg/kg) in order to maintain responses and improve survival through the increase of lymphocyte and NK cells. The biological parameters and the clinical outcome of these patients were compared with those of a control group of patients (80) with a similar disease status, including clinical benefit from chemotherapy. Results The most common adverse events were mild cutaneous skin rash and fever. After 4 months and 2 years of biotherapy, a statistically significant improvement was observed in lymphocyte and number of NK cells with respect to baseline values and to controls. After a median follow-up of 36 months, median PFS was 27.8 months, while median OS was 52.9 months. Conclusion These data show that maintenance immunotherapy with low-dose IL-2 and oral 13-cis-RA in patients with MCRC showing a clinical benefit from chemotherapy is feasible, has a low toxicity profile, improves lymphocyte and NK cell count. An improvement in the expected PFS and OS was also observed. A randomized trial is warranted.  相似文献   

10.
Static magnetic field (SMF) interacts with mammal skeletal muscle; however, SMF effects on skeletal muscle cells are poorly investigated. The myogenic cell line L6, an in vitro model of muscle development, was used to investigate the effect of a 80 +/- mT SMF generated by a custom-made magnet. SMF promoted myogenic cell differentiation and hypertrophy, i.e., increased accumulation of actin and myosin and formation of large multinucleated myotubes. The elevated number of nuclei per myotube was derived from increased cell fusion efficiency, with no changes in cell proliferation upon SMF exposure. No alterations in myogenin expression, a modulator of myogenesis, occurred upon SMF exposure. SMF induced cells to align in parallel bundles, an orientation conserved throughout differentiation. SMF stimulated formation of actin stress-fiber like structures. SMF rescued muscle differentiation in the presence of TNF, a muscle differentiation inhibitor. We believe this is the first report showing that SMF promotes myogenic differentiation and cell alignment, in the absence of any invasive manipulation. SMF-enhanced parallel orientation of myotubes is relevant to tissue engineering of a highly organized tissue such as skeletal muscle. SMF rescue of muscle differentiation in the presence of TNF may have important therapeutic implications.  相似文献   

11.
We showed previously in rabbits that 0.2 and 0.35 T static magnetic field (SMF) modulated systemic hemodynamics by arterial baroreceptors. We now have measured the effect of 0.25 T SMF on microcirculation within cutaneous tissue of the rabbit ear lobe by the rabbit ear chamber (REC) method. Forty experimental runs (20 controls and 20 SMF) were carried out in eight different rabbits with an equal number of control and SMF experiments on each individual. Rabbits were sedated by pentobarbital sodium (5 mg/kg/h, i.v.) during the entire 80 min experiment. SMF was generated by four neodium-iron-boron alloy (Nd2-Fe14-B) magnets (15 x 25 x 30 mm, Neomax, PIP - Tokyo Co., Ltd., Tokyo, Japan), positioned around the REC on the observing stage of an optical microscope. The direct intravital microscopic observation of the rabbit's ear microvascular net, along with simultaneous blood flow measurement by microphotoelectric plethysmography (MPPG), were performed PRE (20 min, baseline), DURING (40 min), and POST (20 min) magnetic field exposure. The control experiments were performed under the same conditions and according to the same time course, but without magnetic field. Data were analyzed comparing MPPG values and percent change from baseline in the same series, and between corresponding sections of control and SMF runs. In contrast to control series (100+/-0.0%-90.0+/-5.4%-87.7+/-7.1%, PRE-EXPOSURE-POST), after magnetic field exposure we observed increased blood flow (100+/-0.0%-117.8+/-9.6%*-113.8+/-14.0%, *P<0.05) which gradually decreased after exposure cessation. We propose that long exposure of a high level nonuniform SMF probably modifies microcirculatory homeostasis through modulation of the local release of endothelial neurohumoral and paracrine factors that act directly on the smooth muscle of the vascular wall, presumably by affecting ion channels or second messenger systems.  相似文献   

12.
Yeast membrane proteins SMF1, SMF2, and SMF3 are homologues of the DCT1 metal ion transporter family. Their functional characteristics and the implications of these characteristics in vivo have not yet been reported. Here we show that SMF1 expressed in Xenopus oocytes mediates H(+)-dependent Fe(2+) transport and uncoupled Na(+) flux. SMF1-mediated Fe(2+) transport exhibited saturation kinetics (K(m) = 2.2 microM), whereas the Na(+) flux did not, although both processes were electrogenic. SMF1 is also permeable to Li(+), Rb(+), K(+), and Ca(2+), which likely share the same uncoupled pathway. SMF2 (but not SMF3) mediated significant increases in both Fe(2+) and Na(+) transport compared with control oocytes. These data are consistent with the concept that uptake of divalent metal ions by SMF1 and SMF2 is essential to yeast cell growth. Na(+) inhibited metal ion uptake mediated by SMF1 and SMF2 expressed in oocytes. Consistent with this, we found that increased sensitivity of yeast to EGTA in the high Na(+) medium is due to inhibition of SMF1- and SMF2-mediated metal ion transport by uncoupled Na(+) pathway. Interestingly, DCT1 also mediates Fe(2+)-activated uncoupled currents. We propose that uncoupled ion permeabilities in metal ion transporters protect cells from metal ion overload.  相似文献   

13.
The sperm characteristics of 44 men treated with two or more courses of BEP chemotherapy for non seminomatous germ cell testicular tumours were investigated before and 25.2 ± 19.4 months after chemotherapy. Before treatment, 54.5% of patients were oligozoospermic. The mean sperm characteristics did not differ before and after chemotherapy. However, following chemotherapy, the recovery of initial sperm count was more frequent after one year than before. During the first year, recovery was more frequent in patients treated with two than in those treated with more than two BEP cycles. In patients with good pre-treatment sperm count, sperm production was reduced by half after chemotherapy. In a subgroup of men who provided two sperm samples after chemotherapy, sperm production was better in the second sample than in the first. Our data suggest that sperm recovery is related to testicular function prior to therapy, to the time elapsed after chemotherapy and in the first year to the number of chemotherapy cycles. In conclusion, our study is reassuring concerning the long-term male reproductive toxicity of BEP. However, further studies are required to analyse the possible effects on sperm genetic material during the recovery period.  相似文献   

14.
Nitric oxide (NO) is involved in osteoclast differentiation. Our previous studies showed that static magnetic fields (SMFs) could affect osteoclast differentiation. The inhibitory effects of 16 T of high SMF (HiMF) on osteoclast differentiation was correlated with increased production of NO. We raised the hypothesis that NO mediated the regulatory role of SMFs on osteoclast formation. In this study, 500 nT of hypomagnetic field (HyMF), 0.2 T of moderate SMF (MMF) and 16 T of high SMF (HiMF) were utilized as SMF treatment. Under 16 T, osteoclast formation was markedly decreased with enhanced NO synthase (NOS) activity, thus producing a high level of NO. When treated with NOS inhibitor N-Nitro-L-Arginine Methyl Ester (L-NAME), NO production could be inhibited, and osteoclast formation was restored to control group level in a concentration-dependent manner. However, 500 nT and 0.2 T increased osteoclast formation with decreased NOS activity and NO production. When treated with NOS substrate L-Arginine (L-Arg) or NO donor sodium nitroprusside (SNP), the NO level in the culture medium was obviously elevated, thus inhibiting osteoclast differentiation in a concentration-dependent manner under 500 nT or 0.2 T. Therefore, these findings indicate that NO mediates the regulatory role of SMF on osteoclast formation.  相似文献   

15.
Beneficial or adverse effects of Static Magnetic Fields (SMFs) are a large concern for the scientific community. In particular, the effect of SMF exposure during anticancer therapies still needs to be fully elucidated. Here, we evaluate the effects of SMF at induction levels that cisPt-treated cancer patients experience during the imaging process conducted in Low field (200–500 mT), Open field (300–700 mT) and/or inhomogeneous High field (1.5–3 T) Magnetic Resonance Imaging (MRI) machines. Human adrenergic neuroblastoma SH-SY5Y cells treated with 0.1 µM cisPt (i.e. the lowest concentration capable of inducing apoptosis) were exposed to SMF and their response was studied in vitro. Exposure of 0.1 µM cisPt-treated cells to SMF for 2 h decreased cell viability (30%) and caused overexpression of the apoptosis-related cleaved caspase-3 protein (46%). Furthermore, increase in ROS (Reactive Oxygen Species) production (23%) and reduction in the number of mitochondria vs controls were seen. The sole exposure of SMF for up to 24 h had no effect on cell viability but increased ROS production and modified cellular shape. On the other hand, the toxicity of cisPt was significantly prevented during 24 h exposure to SMF as shown by the levels of cell viability, cleaved caspase-3 and ROS production. In conclusion, due to the cytoprotective effect of 31.7–232.0 mT SMF on low-cisPt-concentration-treated SH-SY5Y cells, our data suggest that exposure to various sources of SMF in cancer patients under a cisPt regimen should be strictly controlled.  相似文献   

16.
This study investigated the effects of a static magnetic field (SMF) on hematopoiesis and biochemical parameters in female rats. Pregnant rats were exposed to SMF (128 mT-1 hour/day from day 6 to day 19 of pregnancy). At 25 degrees C, the exposure of rats 1 hour/day for 13 consecutive days to SMF induced an increase in hematocrit (Ht) level (+6%, p < 0.05), hemoglobin (Hb) concentration (+12%, p < 0.05) and LDH levels (67%, p < 0.05 ), suggesting an hypoxia-like state. Moreover, exposure to SMF increased blood glucose and decreased insulin release, leading to a diabetic-like state in pregnant rats.  相似文献   

17.
Zhao G  Chen S  Wang L  Zhao Y  Wang J  Wang X  Zhang W  Wu R  Wu L  Wu Y  Xu A 《Bioelectromagnetics》2011,32(2):94-101
The literature on the impact of strong static magnetic fields (SMF) on human health is vast and contradictory. The present study focused on the cellular effects of strong homogeneous SMF in human–hamster hybrid (AL) cells, mitochondria‐deficient (ρ0 AL) cells, and double‐strand break (DSB) repair‐deficient (XRS‐5) cells. Adenosine triphosphate (ATP) content was significantly decreased in AL cells exposed to 8.5 Tesla (T) but not 1 or 4 T SMF for either 3 or 5 h. In addition, ATP content significantly decreased in the two deficient cell lines exposed to 8.5 T SMF for 3 h. With further incubation of 12 or 24 h without SMF exposure, ATP content could retrieve to the control level in the AL cells but not ρ0 AL and XRS‐5 cells. Under a fluorescence reader, the levels of reactive oxygen species (ROS) in the three cell lines were significantly increased by exposure to 8.5 T SMF for 3 h. Concurrent treatment with ROS inhibitor, DMSO, dramatically suppressed the ATP content in exposed AL cells. However, the CD59 mutation frequency and the cell cycle distribution were not significantly affected by exposure to 8.5 T SMF for 3 h. Our results indicated that the cellular ATP content was reduced by 8.5 T SMF for 3 h exposure, which was partially mediated by mitochondria and the DNA DSB repair process. Moreover, ROS were involved in the process of the cellular perturbations from the SMF. Bioelectromagnetics 32:94–101, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Exposure to ionizing total-body radiation suppresses hematopoiesis, resulting in decreased production of blood cells. Many researchers have demonstrated the critical role of zinc (Zn) in diverse physiological processes, such as growth and development, maintenance and priming of the immune system, and tissue repair. The aim of the present study was to determine the effects of zinc sulfate (40 mg/kg and 80 mg/kg) on early hematopoietic toxicity, caused by total-body irradiation (TBI) of rats with a single dose of 8 Gy. Both in the Zn 40 and in the Zn 80 groups, there were significantly increased white blood cell (WBC) count, when compared with control group. The WBC count was higher in the control group than in the TBI group. This result was statistically significant (p<0.05). Both the TBI+Zn 40 and the TBI+Zn 80 groups had a significantly protected WBC count against TBI. No difference was detected in any final measurement of thrombocyte count and hemoglobin level with direct comparison among all groups, with the exception that the hemoglobin level in the Zn 80 group compared to the control group. Whereas hemoglobin level in the control group was at a median figure of 13.98 g/dL (13.30–14.80), it was at a median figure of 14.25 g/dL (14.10–15.50) in the Zn 80 group. It would be worth while studying the effect of oral zinc sulfate supplements in radiation-treated cancer patients, in the hope of reducing radiation-induced toxicity.  相似文献   

19.
All the living organisms originate, evolve and live under geomagnetic field (GMF, 20–70 µT). With rapid development in science and technology, exposure to various static magnetic fields (SMFs) from natural and man-made sources remains a public environmental topic in consideration of its probable health risk for humans. Many animal studies related to health effect have demonstrated that SMF could improve bone formation and enhance bone healing. Moreover, most of the studies focused on local SMF generated by rod-type magnet. It was difficult to come to a conclusion that how SMF affected bone metabolism in mice. The present study employed hypomagnetic field (HyMF, 500 nT), and moderate SMF (MMF, 0.2 T) to systematically investigate the effects of SMF with continuous exposure on microstructure and mechanical properties of bone. Our results clearly indicated that 4-week MMF exposure did not affect bone biomechanical properties or bone microarchitecture, while HyMF significantly inhibited the growth of mice and elasticity of bone. Furthermore, mineral elements might mediate the biological effect of SMF.  相似文献   

20.
Static magnetic fields (SMFs) and time-varying electromagnetic fields exposure is necessary to obtain the diagnostic information regarding the structure of patient's tissues, by the use of magnetic resonance imaging (MRI) scanners. A diagnostic procedure may also include the administration of pharmaceuticals called contrast, which are to be applied to a patient during the examination. The nurses involved in administering contrast into a patient during the pause in examination are approaching permanently active magnets of MRI scanners and are exposed to SMF. There were performed measurements of spatial distribution of SMF in the vicinity of MRI magnets and parameters of personal exposure of nurses (i.e. individual exposimetric profiles of variability in time of SMF affecting the nurse who is performing tasks in the vicinity of magnet, characterized by statistical parameters of recorded magnetic flux density affecting the nurse). The SMF exposure in the vicinity of various MRI magnets depends on both magnetic flux density of the main field B 0 (applicable to a patient) and the construction of the scanner, but the most important factor determining the workers' exposure is the work practice. In the course of a patient's routine examination in scanners of B 0 = 1.5 T, the nurses are present over ~0.4–2.9 min in SMF exceeding 0.03% of B 0 (i.e. 0.5 mT), but only sometimes they are present in SMF exceeding 5% of B 0 (i.e. 75 mT). When patients need more attention because of their health status/condition, the nurses' exposure may be significantly longer – it may even exceed 10 min and 30% of B 0 (i.e. 500 mT). We have found that the level of exposure of nurses to SMF may vary from < 5% of the main field (a median value: 0.5–1.5%; inter-quartile range: 0.04–8.8%; max value: 1.3–12% of B 0) when a patient is moved from the magnets bore before contrast administration, up to the main field level (B 0) when a patient stays in the magnets bore and nurse is crawling into the bore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号