共查询到20条相似文献,搜索用时 15 毫秒
1.
D.Y. Kornyeyev 《Photosynthetica》1999,36(4):601-604
The treatment of green algae Chlorococcum lobatum with the herbicide BASTA containing phosphinothricin lead to a significant decrease in the level of peak M2 of the chlorophyll
fluorescence induction curve. This agrees with the suggestion that glutamine synthetase activity affects this region of the
induction curve.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
2.
Net photosynthetic rate, radiation use efficiency, chlorophyll (Chl) fluorescence, photochemical reflectance index (PRI), and leaf water potential were measured during a 25-d period of progressive water deficit in quinoa plants grown in a glasshouse in order to examine effects of water stress and ontogeny. All physiological parameters except Fv/Fm were sensitive to water stress. Ontogenic variations did not exist in Fv/Fm and leaf water potential, and were moderate to high in the other parameters. The complete recovery of photosynthetic parameters after re-irrigation was related with the stability in Fv/Fm. PRI showed significant correlation with predawn leaf water potential, Fm, and midday Fv/Fm. Thus PRI and Chl fluorescence may help in assessing physiological changes in quinoa plants across different developmental stages and water status. 相似文献
3.
持续脱水下海藻叶绿素瞬变荧光模式的三阶段转换及临界水量的发现 总被引:6,自引:0,他引:6
在自然干燥条件下,跟踪研究了海洋红藻带形蜈蚣藻(Grateloupia turuturu Yamada),绿藻石莼(Ulva pertusa Kjellm)和褐藻海带(Laminaria japonica Aresch)的叶绿素荧光动力学曲线的变化,并用脉冲调制荧光仪分析了藻体脱水过程中的各个荧光参数。结果表明,在持续脱水过程中,3类海藻的荧光动力学曲线都显示出3个阶段的变化,即:1)在脱水开始时正常的峰形曲线;2)荧光上升至最高时持平、形成了高原型曲线;3)荧光跌落变成平台型曲线,发现荧光跌落前藻体的含水百分数是一个重要的生理指标,称为临界水量(CWC)。一旦藻体失水至低于此临界水量时,即便复水也不能使原来的峰形曲线得以恢复,说明脱水可能引起了叶绿体类囊体膜的不可逆损伤。临界水量可以用来衡量不同海藻的耐旱力,其数值高低随不同海藻而不同,并与其耐旱力成负相关。如在上述3大类海藻中,海带的CWC值最高(约90%),但其耐旱性最差。此外,在红藻(只有红藻)经受干燥后作复水处理时,观察到有荧光急剧上升(爆发)的现象。对海膜脱水前后的几个荧光参数(F0、Fv、Fv/Fm)作了测定和比较,发现F0和Fv在脱水的第一阶段都上升,而v/Fm值维持基本不变。因此可以得出结论,活体叶绿素荧光对干旱的最初响应是立即增强,当继续失水时,F0保持上升而Fv却下降并越来越低,故此时总荧光的变化(包括荧光的跌落和爆发)主要是由F0的变化所引起的,因而进一步研究F0与脱水时类囊体膜状态变化的关系具有重要意义。 相似文献
4.
The chlorophyll fluorescence kinetics of marine red alga Grateloupia turuturu Yamada, green alga Ulva pertusa Kjellm and brown alga Laminaria japonica Aresch during natural sustained dehydration were monitored and investigated. The pulse amplified modulation (PAM) system was used to analyze the distinct fluorescence parameters during thallus dehydration. Results proved that the fluorescence kinetics of different seaweed all showed three patterns of transformation with sustained water loss. These were: 1) peak kinetic pattern (at the early stage of dehydration fluorescence enhanced and quenched subsequently, representing a normal physiological state). 2) plateau kinetic pattern (with sustained water loss fluorescence enhanced continuously but quenching became slower, finally reaching its maximum). 3) Platform kinetic pattern (fluorescence fell and the shape of kinetic curve was similar to plateau kinetic pattern). A critical water content (CWC) could be found and defined as the percentage of water content just prior to the fluorescence drop and to be a significant physiological index for evaluation of plant drought tolerance. Once thallus water content became lower than this value the normal peak pattern can not be recovered even through rehydration, indicating an irreversible damage to the thylakoid membrane. The CWC value corresponding to different marine species were varied and negatively correlated with their desiccation tolerance, for example. Laminaria japonica had the highest CWC value (around 90%) and the lowest dehydration tolerance of the three. In addition, a fluorescence “burst” was found only in red algae during rehydration. The different fluorescence parameters Fo , Fv and Fv/ Fm were measured and compared during water loss. Both Fo and Fv increased in the first stage of dehydration but Fv / Fm kept almost constant. So the immediate response of in vivo chlorophyll fluorescence to dehydration was an enhancement. Later with sustained dehydration Fo increased continuously while Fv decreased and tended to become smaller and smaller. The major changes in fluorescence (including fluorescence drop during dehydration and the burst during rehydration) were all attributed to the change in Fo instead of Fv . This significance of Fo indicates that it is necessary to do more research on Fo as well as on its relationship with the state of thylakoid membrane. 相似文献
5.
O. L. Lange T. G. A. Green H. Reichenberger A. Meyer 《Plant biology (Stuttgart, Germany)》1996,109(1):43-50
Abstract: Lichens, being poikilohydric, have varying thallus water contents (WC) and show a complex interaction between net photosynthesis (NP) and WC. NP can be depressed at low WC (desiccation effects) and, in some species, also at high WC. In the latter case the depression is normally ascribed to increased CO2 diffusion resistances through water blockage. Recently, an earlier explanation, that the depression at high WC is due to recycling of CO2 from increased dark respiration processes (DR), has been given renewed prominence. The two explanations were distinguished by the concurrent use of gas exchange and chlorophyll fluorescence techniques to investigate NP: WC relationships in the lichens Peltigera leucophlebia (green algal) and P. neckeri (cyanobacterial). Both species had a distinct optimal WC for NP with depressed values at low and high WC. The maximal quantum yield for both CO2 fixation (initial slope of light response curves of NP) and photosystem II (fluorescence signals of dark-adapted thalli) was depressed only at low WC and remained high at optimal and greater WC. In contrast, the relative electron transport rate (ETR, derived from fluorescence signals of thalli in the light) tracked NP and was depressed at low and high WC. The depression of both NP and ETR at high WC (not that at low WC) could be prevented by using elevated external CO2 concentrations. A single, linear relationship was found between all values of gross photosynthesis (NP + DR) and ETR regardless of external CO2 concentration or WC. Our results show that, for these lichens, the depression in NP at high WC is a real fall in photosynthetic rate of the photobionts and is not due to recycling of CO2. The removal of the depression in NP and ETR at high WC by using elevated external CO2 levels allows us to conclude that an additional CO2 diffusion resistance is present. 相似文献
6.
Hatem Zgallai Kathy Steppe Raoul Lemeur 《植物学报(英文版)》2006,48(6):679-685
A greenhouse experlment was performed In order to Investigate the effects of dlfferent levels of water stress on leaf water potentlal (ψw), stomatal resistance (rs), protein content and chlorophyll (Chl) content of tomato plants (Lycoperslcon esculentum Mill. cv. Nlkita). Water stress was Induced by addlng polyethylene glycol (PEG 6 000) to the nutrlent solution to reduce the osmotlc potential (ψs). We Investlgated the behavlor of antl-oxldant enzymes, such as catalase (CAT) and superoxide dlsmutase (SOD), durlng the development of water stress. Moderate and severe water stress (i.e. ψs= -0.51 and -1.22 MPa, respectlvely) caused a decrease In ψw for all treated (water-stressed) plants compared with control plants, wlth the reductlon belng more pronounced for severely stressed plants. In addltion, rs was slgnlflcantly affected by the Induced water stress and a decrease in leaf soluble protelns and Chl content was observed. Whereas CAT actlvlty remained constant, SOD actlvlty was increased in water-stressed plants compared wlth unstressed plants. These results Indicate the possible role of SOD as an anti-oxidant protector system for plants under water stress condltlons. Moreover, It suggests the possibllity of using this enzyme as an addltional screening crlterlon for detecting water stress in plants. 相似文献
7.
盐胁迫对鸡爪槭幼苗生长及其叶绿素荧光参数的影响 总被引:3,自引:0,他引:3
以鸡爪槭幼苗为材料,采用盆栽方法,研究了不同盐浓度[0.042%(对照)、0.2%、0.4%和0.6%]对鸡爪槭幼苗生长的伤害和叶绿素荧光参数的影响。结果显示:当土壤NaCl含量为0.2%、0.4%和0.6%时,鸡爪槭幼苗分别表现为轻度、中度和重度盐害;叶片含水量、叶绿素a和b及叶绿素总含量均随盐浓度的增加而显著下降,花色素苷含量则表现为随盐浓度的增大而显著上升,分别比对照高出48.7%、280.3%和382.7%;叶片叶绿素荧光参数PSⅡ潜在活性(Fv/Fo)、潜在量子效率(Fv/Fm)、光化学量子产量(Yield)、光合电子传递速率(ETR)、实际光化学效率(ΦPSⅡ)和光化学猝灭系数(qP)均随着盐浓度的增大呈显著下降趋势,但非光化学猝灭系数(NPQ)在低盐胁迫时则较对照显著提高,0.2%NaCl处理时比对照显著增加33.3%,而高盐胁迫下则显著下降。研究表明,盐胁迫显著抑制了鸡爪槭幼苗叶片叶绿素合成和光合作用进行,而幼苗叶片在低盐胁迫下则可能通过增加PSⅡ反应中心非辐射热能量耗散来保护光合机构不受损害,从而表现出一定的耐盐胁迫能力。 相似文献
8.
Temperature dependence (25–50 °C) of chlorophyll (Chl) fluorescence induction, far-red radiation (FR)-induced relaxation of the post-irradiation transient increase in apparent F0, and the trans-thylakoid proton gradients (pH) was examined in maize leaves. Temperatures above 30 °C caused an elevation of F0 level and an enhancement of F0 quenching during actinic irradiation. Millisecond delayed light emission (ms-DLE), which reflects the magnitude of pH, decreased strikingly above 35 °C, and almost disappeared at 50 °C. It indicates that the heat-enhanced quenching of F0 under actinic irradiation could not be attributed mainly to the mechanism of pH-dependent quenching. The relaxation of the post-irradiation transient increase in apparent F0 upon FR irradiation could be decomposed into two exponential components (1 = 0.7–1.8 s, 2 = 2.0–9.9 s). Decay times of both components increased with temperature increasing from 25 to 40–45 °C. The bi-phasic kinetics of FR-induced relaxation of the post-irradiation transient increase in apparent F0 and its temperature dependence may be related to plastoquinone (PQ) compartmentation in the thylakoid membranes and its re-organisation at elevated temperature. 相似文献
9.
Leaf Pubescence, Water Relations and Chlorophyll Fluorescence in Two Subspecies of Lotus Creticus L.
The objective of the present study was to compare the plant morphology, water relations and photochemical efficiency of photosystem 2 in two wild. Mediterranean species Lotus creticus creticus and Lotus creticus cytisoides. L. creticus creticus showed higher density of trichomes and stomatal density on the adaxial leaf surface than L. creticus cytisoides, whereas L. creticus cytisoides showed higher stomatal density in abaxial surface than L. creticus creticus. These morphological traits promoted clear differences in leaf surface water retention and leaf reflectance. Leaf water potential and photochemical efficiency were lower in L. creticus cytisoides than in L. creticus creticus. 相似文献
10.
Chlorophyll a fluorescence induction measured by a fluorometer with a high temperature stressed plant material shows a new K step which
is a clear peak due to fast fluorescence rise and subsequent decrease of fluorescence intensity. We focused on an explanation
of the decrease of fluorescence after the K step using artificial electron acceptors and donors to photosystem 2 (PS2). Addition
of the artificial electron acceptors or donors suppressed the decrease of fluorescence after the K step. We suggest that the
decrease mainly reflects (by more than 81 %) an energy loss process in the reaction centre of PS2 which is most probably a
nonradiative charge recombination between P680+ (oxidised primary electron donor in PS2) and a negative charge stored on either Pheo− or QA
− (reduced primary electron acceptor of PS2 and reduced primary quinone electron acceptor of PS2, respectively). We suggest
that the energy loss process is only possible when the inhibition of both the donor and the acceptor sides of PS2 occurs.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
11.
Chr Wilhelm 《Plant biology (Stuttgart, Germany)》1988,101(1):14-17
The prasinophycean alga Mantoniella contains, in addition to Chl a and b, at least a third green pigment which is functionally active in the light-harvesting antenna. This third Chl was isolated in order to elucidate its chemical structure. The absorption and fluorescence spectra were measured not only from the purified pigment but also from its pheophytin and its methylpheophorbide. The spectra were compared with those of authentic Chl c-1 and c-2, which were isolated from the diatom Nitzschia sp. and with Mg-DVPP (purified from Rhodobacter). The results show that the pigment from Mantoniella compares best with Chl c-1. In order to clarify the spectral data, Chl c-1 and c-2, Mg-DVPP, and the pigment from Mantoniella were subjected to a chromatographic system that is able to separate these porphyrins. The chromatographic analysis clearly shows that the pigment from Mantoniella co-migrates with Chl c-1 and not with the bacterial pigment. Mantoniella is the first organism which has been demonstrated to contain Chl a, b, and authentic c. 相似文献
12.
Discs cut from the thallus of the lichen Peltigera polydactylacontain relatively large amounts of ammonia nitrogen and smallamounts of amide nitrogen. During starvation in the dark theamounts of ammonia and amide nitrogen remain unchanged, butthe amount of amino-nitrogen increases. Absorption of ammoniaresults in increases in the amounts of ammonia and amino-nitrogenin the discs, but not in the amount of amide nitrogen. It istherefore concluded that amides do not have an important quantitativerole in the nitrogen metabolism of the discs. Ammonia absorption is stimulated by addition of glucose to themedium, but the very slow rate of protein synthesis is onlyslightly increased by glucose. The rate of nitrate absorptionis much slower than that of ammonia absorption. The ecological implications of the results are discussed, andexisting knowledge of the nitrogen metabolism of lichens isreviewed. 相似文献
13.
The effects of drought and the diurnal changes in photosynthetic electron transport were studied in non-nodulated plants of Casuarina equisetifolia. The induction of fluorescence showed a slightly higher I step in water-stressed than control plants, and the time from the start of irradiation to the P step of induction was significantly shortened by drought. The quantum efficiency of photosystem 2 (PS2) in the dark-adapted state (Fv/Fm) was generally not affected by drought, whereas it decreased during the central hours of the day. The decrease in quantum yield of PS2 electron transport (2) in water-stressed plants was associated with decreases in the photochemical efficiency of open (oxidised) PS2 centres (Fv'/Fm') and increases in non-photochemical quenching (qN) rather than with increased closure of PS2 centres (lowered photochemical quenching, qP). In contrast, the changes in quantum yield of electron transport during the day were related to changes in qP rather than in Fv'/Fm'. When chlorophyll fluorescence was measured at the same irradiance during the day, a greater qN was observed at the end of the drying cycle than after watering, and early and late in the photoperiod than in the central hours of the day. The greater qN at the beginning and end of the day did not prevent an increase in energy not used photochemically nor dissipated non-photochemically. Drought did not affect this excess of photon energy. 相似文献
14.
Photosynthesis, Chlorophyll Fluorescence and Within-Canopy Distribution of Epiphytic Ferns in a Mexican Cloud Forest 总被引:2,自引:0,他引:2
Abstract: Parameters associated with the photosynthetic performance of eight common epiphytic ferns in a Mexican cloud forest were investigated in relation to the distribution of these species within the canopy. If the substantial microclimatic gradients within tropical forest canopies provide microhabitats exploited by different epiphytic species, we would expect to find correlations between distribution and physiological traits. Maximum rates of CO2 uptake (Amax) and photon flux densities at light compensation points (LCP) were in the range of shade plants (Amax = 0.6 ‐ 5.2 μmol m‐2 s‐1; LCP = 4 ‐ 6.5 μmol m‐2 s‐1), but saturation light intensities were more typical for sun plants (270 ‐ 550 μmol m‐2 s‐1). Amax and nitrogen content per unit dry weight were correlated with the distribution of the species within the canopy, but LCP, apparent quantum yield and dark respiration were not. When leaves were left to desiccate, the fluorescence yield of dark‐adapted leaves (Y0) remained high until the relative water content (RWC) had dropped below 30 to 20 %. Fluorescence after short illumination with 200 μmol m‐2 s‐1 declined when RWC dropped below 70 to 40 %. After exposure to full sunlight for 1 h, Y0 of species growing in the outer canopy (Pleopeltis mexicana and Polypodium plebeium) and a plant characteristic of the mid‐canopy (Elaphoglossum petiolatum) recovered better than in species from shadier locations (Trichomanes bucinatum, Asplenium cuspidatum, Phlebodium areolatum). With the exception of Ph. areolatum and a species growing at both exposed and shaded sites (Polypodium puberulum), Y0 recovered at least partially after a loss of 80 ‐ 96 % of saturation water, with the humidity‐loving filmy fern (T. bucinatum) showing no signs of permanent damage at all. The results suggest that tolerance or avoidance of desiccation and high light may be at least as important in controlling the distribution of the species studied as photosynthetic performance without stress. 相似文献
15.
限氮培养是提高小球藻油脂含量的一种方法,本研究探讨了小球藻限氮培养过程中藻细胞的生物量、水分含量和叶绿素荧光参数的变化。结果表明:在限氮培养条件下,小球藻藻细胞的生物量和水分含量分别下降了18%和7%;藻细胞的最大光能转化效率(Fv/Fm),表观量子效率(α)和最大光合电子传递速率(rETRmax)在整个限氮培养过程中均快速下降,到培养末期下降至接近于0,显著低于对照;半饱和光强(Ek)在对数期迅速下降,到稳定期后显著上升;最小荧光(F0)在整个限氮培养过程中显著上升。可见,限氮培养显著影响了小球藻细胞光系统Ⅱ的结构和功能。 相似文献
16.
Effects of nitrogen nutrition and root medium water potential on growth, nitrogen uptake and osmotic adjustment of rice 总被引:2,自引:0,他引:2
The effects of nitrogen (N) nutrition on growth, N uptake and leaf osmotic potential of rice plants (Oryza sativa L. ev. IR 36) during simulated water stress were determined. Twenty-one-day-old seedlings in high (28.6 × 10 ?4M) and low (7.14 × 10 4M) N levels were exposed to decreased nutrient solution water potentials by addition of polyethylene glycol 6000. The roots were separated from the solution by a semi-permeable membrane. Nutrient solution water potential was ?0.6 × 105 Pa and was lowered stepwise to ?1 × 105, ?2 × 105, ?4 × 105 and ?6 × 105 Pa at 2-day intervals. Plant height, leaf area and shoot dry weight of high and low nitrogen plants were reduced by lower osmotic potentials of the root medium. Osmotic stress caused greater shoot growth reduction in high N than in low N plants. Stressed and unstressed plants in 7.14 × 104M N had more root dry matter than the corresponding plants in 28.6 × 104M N. Dawn leaf water potential of stressed plants was 1 × 105 to 5.5 × 105 Pa lower than nutrient solution water potential. Nitrogen-deficient water-stressed plants, however, maintained higher dawn leaf water potential than high nitrogen water-stressed plants. It is suggested that this was due to higher root-to-shoot ratios of N deficient plants. The osmotic potentials of leaves at full turgor for control plants were about 1.3 × 105 Pa higher in 7.14 × 10?4M than in 28.6 × 10?4M N and osmotic adjustment of 2.6 × 105 and 4.3 × 105 Pa was obtained in low and high N plants, respectively. The nitrogen status of plants, therefore, affected the ability of the rice plant to adjust osmotically during water stress. Plant water stress decreased transpiration and total N content in shoots of both N treatments. Reduced shoot growth as a result of water stress caused the decrease in amount of water transpired. Transpiration and N uptake were significantly correlated. Our results show that nitrogen content is reduced in water-stressed plants by the integrated effects of plant water stress per se on accumulation of dry matter and transpiring leaf area as well as the often cited changes in soil physical properties of a drying root medium. 相似文献
17.
Chlorella was used to study the effects of dehydration on photosynthetic activities. The use of unicellular green algae assured that the extent of dehydration was uniform throughout the whole cell population during the course of desiccation. Changes in the activities of the cells were monitored by measurements of fluorescence induction kinetics. It was found that inhibition of most of the photosynthetic activities started at a similar level of cellular water content. They included CO2 fixation, photochemical activity of Photosystem II and electron transport through Photosystem I. The blockage of electron flow through Photosystem I was complete and the whole transition occurred within a relative short time of dehydration. On the other hand, the suppression of Photosystem II activity was incomplete and the transition took a longer time of dehydration. Upon rehydration, the inhibition of Photosystem II activity was fully reversible when samples were in the middle of the transition, but was not thereafter. The electron transport through Photosystem I was also reversible during the transition, but was only partially afterward.Abbreviations DCMU
3-(3,4-dichlorophenyl)-1,1-dimethyl urea
- Fm
maximum fluorescence yield
- F0
non-variable fluorescence level emitted when all PS II centers are open
- Fv
variable part of fluorescence
- PS
photosystem
- QA
primary quinone acceptor of Photosystem II 相似文献
18.
Six-year-old Scots pine (Pinus sylvestris L.) seedlings were grown in open top chambers (OTCs) at ambient (AC) or elevated (ambient + 400 µmol mol–1; EC) CO2 concentration for three years (1996–1998). Chlorophyll (Chl) a fluorescence of current and one-year-old needles was measured in the field at two-weekly intervals in the period July–October 1998. In addition, Chl, carbon (C), and nitrogen (N) concentrations in both needle age classes were determined monthly during the same period. Chl fluorescence parameters were not significantly affected by EC, suggesting there was no response of the light reactions and the photochemical efficiency of photosystem 2. Chl concentrations were not significantly different but a reduced N concentration was observed in needles of EC treatment. Significant differences between needle age classes were observed for all parameters, but were most apparent under EC and toward the end of the growing season, possibly due to an acclimation process. As a result, significant interactions between CO2 treatment, needle age class, and season were found. This study emphasizes the importance of repeated measures including different leaf/needle age classes to assess the photosynthetic response of trees under EC. 相似文献
19.
An overview is given on the fluorescence imaging of plants. Emphasis is laid upon multispectral fluorescence imaging in the maxima of the fluorescence emission bands of leaves, i.e., in the blue (440 nm), green (520 nm), red (690 nm), and far-red (740 nm) spectral regions. Details on the origin of these four fluorescence bands are presented including emitting substances and emitting sites within a leaf tissue. Blue-green fluorescence derives from ferulic acids covalently bound to cell walls, and the red and far-red fluorescence comes from chlorophyll (Chl) a in the chloroplasts of green mesophyll cells. The fluorescence intensities are influenced (1) by changes in the concentration of the emitting substances, (2) by the internal optics of leaves determining the penetration of excitation radiation and partial re-absorption of the emitted fluorescence, and (3) by the energy distribution between photosynthesis, heat production, and emission of Chl fluorescence. The set-up of the Karlsruhe multispectral fluorescence imaging system (FIS) is described from excitation with UV-pulses to the detection with an intensified CCD-camera. The possibilities of image processing (e.g., formation of fluorescence ratio images) are presented, and the ways of extraction of physiological and stress information from the ratio images are outlined. Examples for the interpretation of fluorescence images are given by demonstrating the information available for the detection of different developmental stages of plant material, of strain and stress of plants, and of herbicide treatment. This novel technique can be applied for near-distance screening or remote sensing. 相似文献
20.
外源6-BA对低温胁迫下茄子幼苗光合作用、叶绿素荧光参数及光能分配的影响 总被引:3,自引:0,他引:3
本文研究了外源6-BA对低温胁迫下茄子幼苗光合作用、叶绿素荧光参数和能量分配的影响。结果表明,外源6.BA显著增加了低温胁迫下茄子叶绿素含量、净光合速率(Pn)、蒸腾速率(t)、气孔导度(Gs)和胞间CO2浓度(c1);同时外源6-BA明显提高了低温胁迫下茄子幼苗叶片的PSⅡ最大光化学效率(Fv/Fm)、PSⅡ潜在活性(R/Fo)、PSII天线转化效率(FvFm)、实际光化学效率(φpsⅡ)、光化学猝灭系数(g,)和光化学反应能量(P),降低了非光化学猝灭系数(NPQ)、天线热耗散能量(D),对非光化学反应耗散能量(E)无明显影响。表明外源6-BA处理通过促进低温胁迫下茄子幼苗光合作用,提高光合电子传递效率,从而保护光合系统,降低低温胁迫对植物的损伤。 相似文献