首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the second-highest dilution in a most-probable-number dilution series with lactate and sulfate as substrates and rice paddy soil as the inoculum, a strain of Desulfovibrio desulfuricans was isolated. In addition to reducing sulfate, sulfite, and thiosulfate, the strain also reduced nitrate to ammonia. The latter process was studied in detail, since the ability to reduce nitrate was strongly influenced by the presence of sulfide. Sulfide inhibited both growth on nitrate and nitrate reduction. A 70% inhibition of the nitrate reduction rate was obtained at 127 μM sulfide, and growth was inhibited by 50% at approximately 320 μM sulfide and was not detectable above 700 μM sulfide. In contrast, sulfate reduction was not affected at concentrations of up to 5 mM. After growth with sulfate, an induction period of 2 to 4 days was needed before nitrate reduction started. When nitrate and sulfate were present simultaneously, only sulfate was reduced, except when sulfate was present at very low concentrations (4 μM). At higher sulfate concentrations (500 μM), nitrate reduction was temporarily halted. The affinity for nitrate uptake was extremely high (Km = 0.05 μM) compared with that for sulfate uptake (Km = 5 μM). Thus, at low nitrate concentrations this bacterium is favored relative to denitrifiers (Km = 1.8 to 13.7 μM) or other nitrate ammonifiers (e.g., Clostridium spp. [Km = 500 μM]).  相似文献   

2.
Human placental alkaline phosphatase is a membrane-anchored dimeric protein. Unfolding of the enzyme by guanidinium chloride (GdmCl) caused a decrease of the fluorescence intensity and a large red-shifting of the protein fluorescence maximum wavelength from 332 to 346 nm. The fluorescence changes were completely reversible upon dilution. GdmCl induced a clear biphasic fluorescence spectrum change, suggesting that a three-state unfolding mechanism with an intermediate state was involved in the denaturation process. The half unfolding GdmCl concentrations, [GdmCl]0.5, corresponding to the two phases were 1.45 M and 2.50 M, respectively. NaCl did not cause the same effect as GdmCl, indicating that the GdmCl-induced biphasic denaturation is not a salt effect. The decrease in fluorescence intensity was monophasic, corresponding to the first phase of the denaturation process with [GdmCl]0.5 = 1.37 M and reached a minimum at 1.5 M GdmCl, where the enzyme remained completely active. The enzymatic activity lost started at 2.0 M GdmCl and was monophasic but coincided with the second-phase denaturation with [GdmCl]0.5 = 2.46 M. Inorganic phosphate provides substantial protection of the enzyme against GdmCl inactivation. Determining the molecular weight by sucrose-density gradient ultracentrifugation revealed that the enzyme gradually dissociates in both phases. Complete dissociation occurred at [GdmCl] > 3 M. The dissociated monomers reassociated to dimers after dilution of the GdmCl concentration. Refolding kinetics for the first-phase denaturation is first-order but not second-order. The biphasic phenomenon thereby was a mixed dissociation-denaturation process. A completely folded monomer never existed during the GdmCl denaturation. The biphasic denaturation curve thereby clearly demonstrates an enzymatically fully active intermediate state, which could represent an active-site structure intact and other structure domains partially melted intermediate state. Proteins 33:49–61, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
A method for determining initial velocities of enzymatic reactions at very low substrate concentrations is presented. It is based on teh continuous perfusiion of substrate-containing media through the enzyme, previously deposited as a thin layer on a solid support. An analytical rationalization of the dependence of the enzymatic activity upon the substrate supply and the flow rate was developed (substrate supply (μmol/min) = flow rate (ml/min) × inflowing substrate concentration (μmol/ml). This paper shows that a straight line should be expected from a double-reciprocal plot of the velocity of the enzymatic reaction and flow rate. The reciprocal of the ordinate at the origin is the strict initial velocity for a given, constant, and very low substrate concentration, since substrate consumption and product accumulation tend to zero. Results obtained with two different sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase preparations agree with the theoretical predictions. The method enabled the use of ATP concentrations in the range of 10?8 M: it required neither an ATP-regerating system nor the dilution of the enzyme protein, and it presented no limitations for the reaction time. Both ATPase preparations showed two apparent Km values for the substrate in the submicromolar and micromolar ranges: 0.25–12.0 μM for the purified ATPase, and 0.17–1.65 μM for the microsomal ATPase.  相似文献   

4.
《Plant science》1986,43(1):37-43
The lichen Evernia prunastri synthesizes urease (EC 3.5.1.5) as a response to urea supplied in the medium. Nickel is required to produce the active protein. In addition, nickel behaves as an activator of the enzyme (Ka = 8.1 μM) at low concentrations whereas it is shown to be a competitive inhibitor of urease when it is supplied at concentrations higher than 40 μM (Ki = 50 μM).  相似文献   

5.
《Plant science》1988,54(3):177-184
A member fraction from corn roots which contains a vanadate-sensitive ATPase activity has been prepared. The specific activity at 38°C is between 3 and mol 12 μmol · min−1 · mg−1, depending on the age of roots. Addition of ATP promotes a very rapid quenching of the fluorescence of 9-amino-6-chloro-3-methoxy-acridin (ACMA). Proton pumping exhibits a delayed sensitivity to vanadate but is strongly and instantaneously inhibited by the new inhibitor SW 26. Both proton pumping, measured by the initial quenching rate, and ATP hydrolysis show maximum activities at ATP concentrations in the millimolar range, but the apparent Km-value for hydrolysis is higher than that observed for proton pumping. This is interpreted as being due to the presence of two populations of ATPases, one of them hydrolyzing ATP without creating a pH-gradient. The vanadate-sensitive ATP hydrolysis and H+-pumping activity may be solubilized with lysolecithin and reconstituted into liposomes either by a freeze-thawing-sonication or an octylglucoside dilution procedure. Both methods yield proteoliposomes exhibiting very effecient proton pumping, which is more sensitive to vanadate (I50 = 2 μM) or to SW 26 (I50 = 0.5 μM) than that of the original membrane fractions.  相似文献   

6.
Properties of the fully developed phosphate transport system in the fertilized egg of the sea urchin, Strongylocentrotus purpuratus, were investigated. The rates of phosphate transport at concentrations of external phosphate of 1 to 44 μM, both in the absence and in the presence of 100 μM arsenate, exhibit typical saturation kinetics. At sea water concentrations of 2 μM phosphate, the rate of uptake is about 2 × 10?9 μm/egg/minute at 15°C. Arsenate is a competitive inhibitor of phosphate transport, fully and immediately reversible in its effects, yielding Ki values ranging from 10.5 to 14.1 × 10?6 M in comparison to the corresponding apparent KM (Michaelis-Menten) constants for phosphate of 5.6 to 7.5 × 10?6 M (pH 8.0, 15°C). The rate of arsenate uptake in a phosphate deficient medium amounts to 2.8 to 2.9 × 10?10 μm arsenate/egg/minute at an arsenate concentration of 2.9 to 10.2 μM arsenate (HAsO4??), which is 9.5 and 5.6% of the rate of phosphate uptake at corresponding phosphate concentrations. Arsenate has essentially the same developmental effects at initial concentrations of 5–10 μM and 100 μM arsenate, namely no observable effects for exposure periods of 7.5 hours, although longer periods result in blockage of development at the early blastula stage. Outward flux of phosphate ions cannot be demonstrated by washing prelabelled eggs with sea water containing low or high concentrations of phosphate, even when phosphorylation has been blocked by exposing the eggs to a metabolic inhibitor. Phosphate uptake rates measured in the pH range from 5.0 to 10.0 reveal a sharp optimum at pH 8.8–8.9. Reference to the apparent pK' values of the phosphoric acid system indicate that the entering species is the HPO4?? ion. The effects on rates of phosphate uptake of exposure to sea water at pH values between 7 and 10 for 30 minute periods are fully reversible, but at lower pH values, reversal is delayed, and is only partial. Sodium molybdate (0.01 M), sodium pyrophosphate (1.5 × 10?4 M), and adenosine triphosphate (1–5 × 10?4 M) for exposure periods ranging from 40 to 180 minutes did not significantly affect phosphate uptake. Omission of Ca++ ion from artificial sea water is without effect on phosphate uptake but the absence of both Ca++ and Mg++ results in profound and irreversible depression of both phosphate uptake and development. The data of this and the following paper are consistent with the conclusion that the transport of phosphate involves a surface located carrier. The apparent secondary and tertiary ionization constants of phosphoric acid in sea water (ionic strength = 0.6885) were measured, resulting in a value for pK′2 = 6.14 and for pK′3 = 10.99, at 15°C and phosphate at infinite dilution.  相似文献   

7.
Citrobacter freundii was grown aerobically in a chemostat on a mineral medium witn galactose or glucose as carbon and energy sources under limitation by carbon or nitrogen source respectively. At various specific growth rates ranging from 7 to 95% μmax the culture in steady state was analysed and growth yield, specific metabolic rate of substrate utilization, intracellular concentration of pyruvate, ATP, ADP, AMP and energy charge were determined and plotted as functions of dilution rate. In all four types of experiments the physiological state of cells remained practically independent of dilution rate up toD = 0.6 μmax, and at a given specific growth rate nearly independent on μmax and type of limitation. At approximatelyD = 0.6 μmax, which is close to the maximum output dilution rateD m, the physiological state of the cells changed: growth yields decreased and intr cellular pyruvate and adenylates concentrations increased. Consequently, in a given medium two dilution rates exist at which growth rate dx/dt is the same but the physiology of the population is quite different.  相似文献   

8.
Phospholipid/cholesterol vesicles were solu-bilized by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Above 30 mol% cholesterol (Ch) in the lipid vesicles several remarkable changes of the solubilization process were observed. (i) Two modes of solubilization: The effective detergent to lipid ratio Rc(M) for the formation of mixed micelles decreased from Rc(M) = 43 ± 3 at low lipid concentrations, [L]≤ 0.15 mm, to Rc(M) = 2.4 ± 0.3 above [L] = 0.5 mm (40 mol% Ch, T = 20 °C). (ii) At subsolubilizing CHAPS concentrations, filamentous and helical microstructures were formed, similar to those which were observed in native and model bile. (iii) The number of observed fibers was about two orders of magnitude higher in the presence of the negatively charged lipids phosphatidylglycerol (PG) and phosphatidic acid (PA) compared to the zwitterionic phosphatidylcholine (PC). Fiber formation began after 16–18 h using PG and PA compared to 3–4 days in the presence of PC. Screening of the charged lipids by NaCl effectively reduced the formation of fibers. Assuming binding of Na+ to the charged lipid aggregates, an intrinsic binding constant Kint = 0.6 M–1 was determined by applying the Gouy-Chapman theory. After the addition of CHAPS to PG/Ch vesicles, a fast initial solubilization of the vesicles (<1 min) to mixed micelles (rh = 2.3 ± 0.2 nm) and small vesicles (rh = 23 ± 1 nm) was observed, followed by an intermediate period of 2 h, after which the formation of fibers occurred (>15 h). The microstructures are visualized by darkfield and electron microscopy. The method of vesicle solubilization is compared to the dilution of concentrated micellar solutions, which is usually applied to model bile systems. Received: 28 May 1996 / Accepted: 26 July 1996  相似文献   

9.
Three types of epidermal cultures of fish were used for toxicological investigations, a primary cell culture and a tissue culture prepared from the rainbow trout Oncorhynchus mykiss Walbaum and the cell line EPC, derived from a skin tumour of the carp Cyprinus carpio L. Two studies were carried out to compare the different culture systems. In the first cultures were incubated with nonylphenol and in the second set of experiments the cell cultures were exposed to a wastewater sample containing low concentrations of nonylphenol (NP). Both cell cultures were similarly sensitive to nonylphenol with respect to the endpoints cell viability (LC50 (24 h) 47.1 μM NP (primary cell culture) and 44.2 μM NP (EPC)) values and apoptotic rate (significantly increased apoptotic rate after exposure to 50 μM NP for 24 h, p < 0.001 (primary cell culture), p = 0.008 (EPC)). The explant culture was slightly less sensitive (increased apoptotic rate after exposure to 50 μM NP for 24 h, but not significant: p = 0.385), which could be due to the capabilities of a differentiated tissue, providing more protective repair mechanisms, compared with single cells. All cultures revealed a concentration–response relationship for the endpoint apoptotic rate after the application of nonylphenol for 24 h. After wastewater exposure, a significant decrease in the apoptotic rate was measured in the primary cell culture (dilution wastewater : medium 1:1:p = 0.018; dilution wastewater : medium 1:2:p = 0.003), whereas the cell line EPC did not reveal any effects. Our results show that the endpoint apoptotic rate is more sensitive than the parameter cell viability for detecting adverse effects of a wastewater sample.  相似文献   

10.
Transformed cells from human lung carcinoma (Line A549), resembling type II pneumocytes, were cultured in monolayer at 37°C and incubated for five hours with 3H-choline and 14C-palmitate in the presence of various concentrations of prostaglandins (PGs) E2 and F. In the control (no PG) the level of % palmitate incorporation was 13.5 × as high as that of choline, after taking isotope dilution into account. Between the concentrations studied, 0.1 and 10 μM, both prostaglandins stimulated markedly the incorporation of both precursors, though choline up to 3 × better than palmitate. This was indicated by a change in the palmitate/choline incorporation ratio from 13.5 to as low as 4.2. At the lowest PG concentration, 0.1 μM, PGE2 was much more effective than PGF in stimulating the incorporation of both precursors.  相似文献   

11.
Several concentrations of glycerol for cryoprotection and several concentrations of sucrose for cryoprotectant dilution were examined with frozen, thawed and cultured mouse embryos. Four hundred and eighty late morulae to early blastocyst stage embryos were collected from 35 superovulated mice (B6D2 x Swiss Webster crosses back-crossed to Swiss Webster males) 3-1/2 days after breeding. The embryos were transferred through increasing concentrations of glycerol in modified Dulbecco(1)s phosphate buffered saline (MDPBS) to reach three final concentrations of 1.0 M, 1.4 M and 1.8 M. The embryos were loaded in 0.5-ml French straws appropriately filled with the cryoprotectant and sucrose solutions for each treatment. The straws were cooled with a standard fast-freezing program to -35 degrees C, then plunged into liquid nitrogen. After 58 days of storage at -196 degrees C the straws were thawed in a 37 degrees C water bath. Cryoprotectant dilution was accomplished with a standard step-wise procedure or in the straw with one of three concentrations of sucrose solution (0.25 M, 0.5 M, 1.0 M) in MDPBS. The embryos were then washed twice in MDPBS, twice in Whitten's media for embryo culture and then placed in microdrops of Whitten's media under paraffin oil in a water saturated 5% CO(2) in air atmosphere at 37 degrees C. Embryos were observed 24 hours later for development to the expanded blastocyst stage. The proportion of embryos developing in vitro from the three glycerol concentrations were not significantly different with standard step-wise dilution procedures for glycerol removal. After step-wise cryoprotectant removal, blastocyst expansion occurred in 49%, 44% and 52% of embryos frozen in 1.0 M, 1.4 M and 1.8 M glycerol, respectively. The 1.0 M sucrose dilution of 1.0 M glycerol showed the highest development (60.5%) in vitro but was not significantly different from any of these three step-wise diluted glycerol concentrations. The step-wise dilution of the three glycerol concentrations and dilution of the 1.0 M glycerol and 1.0 M sucrose were all superior (P < 0.01) to any other dilution procedure examined.  相似文献   

12.
Two strains ofCandida albicans, one of low, the other of high virulency, were cultivated in a semi-synthetic medium with glucose concentrations 3 and 0.4%. The validity of the mathematical theory of single stage continuous cultivation was verified. The standard hyperbolic course of the curves expressing mutual relations between the substrate and microorganisms concentrations (S and X respectively), and dilution rate D gets lost at the concentration of 3%. For the 0.4% glucose concentration, reasonable agreement between theoretical and experimental values was obtained at lower dilution rates, so far as the yield coefficient remained constant. At greater dilution rates D, the yield coefficient decreased and the experimental values deviated from the theoretical ones. Specific rate of oxygen consumption\(Q_{O_2 } \), specific rate of CO2 formation\(Q_{CO_2 } \), the specific rate of the substrate consumption q, alcohol formation P and total acids formation have been followed. By calculation, the smallest dilution rate “a”, was determined for which steady state conditions are still valid. This magnitude has been experimentally verified for the strain “19”. The steady state conditions are possible at 0.4% glucose concentration for the following range of dilution rates D: Strain “19” from D=0.0039 to 0.42 h?1 strain “109” from D=0.003 to 0.41 h?1. All calculated values were evaluated by statistical t-test. Significant differences between strains have been found for the yield coefficient at the concentration of 0.4%. This difference is probably caused by a small difference in the initial concentration of glucose S0.  相似文献   

13.
The most frequently used catalase (CAT) activity assay is based on the spectrophotometric measurement of hydrogen peroxide (H2O2) absorbance decrease at 240 nm. Here we report an alternative high-performance liquid chromatography (HPLC) assay for human erythrocytic CAT (heCAT) activity measurement based on glutathione (GSH) analysis as a highly stable, H2O2-insensitive o-phthalaldehyde (OPA) derivative. The method was developed and validated using an isolated heCAT in phosphate-buffered saline at pH 7.4 and was applied to measure CAT activity in lysed human erythrocytes. heCAT activity was measured at initial concentrations of 5 nM for heCAT, 5 mM for H2O2, and 10 mM for GSH, and the incubation time was 10 min. Nitrite (NO2) was found to be an uncompetitive inhibitor of heCAT activity (IC50 = 9 μM) and of CAT activity in hemolysate (IC50 ∼ 750 μM). Nitrate (NO3) at concentrations up to 100 μM did not inhibit heCAT activity. Azide (N3) was found to be a very strong inhibitor of the heCAT (IC50 = 0.2 nM) but a relatively weak CAT inhibitor (IC50 ∼ 10 μM) in human hemolysates. The novel CAT activity assay works under redox conditions that more closely resemble those prevailing in cells and allows high-throughput analysis despite the required HPLC step.  相似文献   

14.
Conformational modifications and changes in the aggregation state of human αB-crystallin were investigated at different concentrations of SDS, KBr, urea, and NH4SCN and at different temperatures. Intrinsic fluorescence measurements indicated complete and reversible unfolding of the protein at 2 M NH4SCN, whereas the concentration of urea required for complete and irreversible unfolding was 6 M. Gel permeation chromatography indicated almost complete dissociation of the micelle-like aggregate of αB-crystallin in 2 M NH4SCN, but only partial dissociation into large-sized aggregates in 6 M urea. Thiocyanate-treated αB-crystallin recovered its chaperone-like activity upon dilution of the dissociating agent, whereas the urea-treated protein did not.  相似文献   

15.
16.
The efficacy of a new mass-transfer method for estimating milk intake was examined in Antarctic fur seals (Arctocephalus gazella) at Iles Kerguelen. Our method differed from previous mass-transfer approaches in that we estimated milk-mass transfer as the maternal mass lost (MML; kg) during an attendance bout, less the mass lost to metabolic maintenance (MMLE) over that time. MML was significantly related to pup mass-gain (PMG) and attendance bout duration (d days) as follows: MML=1.106PMG+1.002d (r2=0.998). Based on this and previous studies, we estimated that the MMLE was 0.0285 kg kg–1 day–1 for lactating females; and we developed the following milk-mass transfer equation: MMLM=1.106PMG+1.002d–0.0285MMd (where MM is maternal mass). Milk-mass intake was also estimated in an additional 21 pups, using the isotopic dilution method. These values were then compared with estimates based on the milk mass-transfer equation for the same individual pups. A pair-wise comparison indicated that milk-mass transfer estimated using tritium dilution methods were significantly lower than those based on mass-transfer (MMLM). Furthermore, the absolute PMG exceeded tritium dilution estimates of milk-mass transfer in 35% of cases. In contrast, all milk-mass transfer estimates using the mass transfer method were greater than PMG. Overestimation of metabolic water production (MWP), leading to a smaller proportion of the total water intake being attributed to milk ingestion, is believed to be the most likely cause for significant underestimation of milk-mass transfer using the tritium dilution method. Consumption of exogenous water by pups is the most likely reason for the overestimation of MWP, although errors in estimated milk water content may have also contributed to underestimates. We conclude that, in our study, the mass-transfer method provided a more reliable estimate of milk-mass transfer than the isotopic dilution method; and we argue that, under certain conditions, it provides a practical alternative method where the assumptions of isotopic dilution methodology (e.g., all exogenous water from maternal milk) and quantitative parameters (e.g., maternal milk water content) may either be violated or impractical to measure.  相似文献   

17.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

18.
The tube dilution method of performing antibiotic sensitivity tests is commonly employed as an accurate method for defining the minimal inhibitory concentration in relation to pathogenic organisms. It is also used as a reference for comparing minimal inhibitory concentrations with the size of the zone of inhibition in the agar diffusion test. Although surveys have shown that there is no standardized method and technique of performing the tube dilution test, it is generally assumed that all of the diversified methods will yield the same results and interpretations. With the assistance of five experts, seven different tube dilution methods were compared; 16 antibiotics, and three organisms for each antibiotic, were used. The conclusions drawn are that, although the accuracy of a single method within its own confines is acknowledged, the minimal inhibitory concentrations and interpretations cannot be interpolated from one laboratory to another where a different technique is employed. The results are frequently discrepant. It is suggested that a uniform method be developed and promulgated for general use.  相似文献   

19.
The effects of mineral salts constituting water hardness on fecundity ofDaphnia magna were assessed. Of the salts tested, increased concentrations of NaHCO3 and MgSO4 had no effect on fecundity, CaSO4 significantly increased fecundity, and KCl significantly reduced fecundity. The number of offspring produced per daphnid was correlative to the CaSO4 concentration at CaSO4 concentrations between 91 and 2100 mg/ℓ. The effects of CaSO4 on daphnid fecundity could influence the interpretive outcome of industrial wastewater toxicity tests using this species when the waste and dilution waters contain different concentrations of CaSO4. It is recommended that when performing these tests, dilution water be sampled at the intake site of the industry's water source, thus assuring initial comparability of the waste and dilution waters. The CaSO4 content of the water prior to and after industrial use should be determined to identify any alterations of CaSO4 concentration during use. Identification of CaSO4 concentration differences can aid in the interpretation of effects associated with the wastewater.  相似文献   

20.
A simple and rapid method is described for determining Pi by spectrophotometric measurement of a soluble complex of phosphomolybdic acid and Cirrasol ALN-WF, a non-ionic detergent formerly known as Lubrol W. The measured complex has a molar extinction coefficient of 4.59 · 103 at 390 nm and little interference is found with relatively high concentrations of chelating agents, salts, and other compounds which interfere with most other Pi assays. Linearity is observed in the range 0–1.2 μmoles Pi and developed assay samples are stable for 8 h at 20 °C or 24 h at 4 °C. The method is suitable for use in the presence of moderate concentrations of protein or ATP.After suitable modification the assay can be used at pH 4.0. Sensitivity is reduced at this pH (εM, 390nm = 2.79 · 103) but linearity is maintained up to 1 μmole Pi and the coloured complex is stable for 4 h at 20 °C. The pH-4 procedure is suitable for measurement of Pi in the presence of very labile phosphate esters such as creatine phosphate.The phosphomolybdic acid-Cirrasol complex can be reduced at ambient temperature in both the above systems. A blue complex results with εM, 820nm of 9.9 · 103 at pH 4.0, and 1.8 · 104 under more acidic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号