首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
2.
In flowering plants, flower organ identity is controlled by the ABC genes, including several MADS box genes. We present two MADS box genes of a conifer, Cryptomeria japonica D. Don. The genes, CjMADS1 and CjMADS2, were related to the angiosperm B function genes which determine the identities of petals and stamens. A phylogenetic analysis showed that these genes form a new clade outside the angiosperm B group, that is, PISTILLATA (PI) and APETALA3 (AP3) lineages. CjMADS1 had a PI-group specific motif and CjMADS2 had AP3-group specific motifs at the C terminal end, respectively. CjMADS1 was expressed in male strobili (or cones) throughout its development, while CjMADS2 was transiently expressed during male strobilus development. The specific expression in the male reproductive organ indicated that the B function is maintained in gymnosperms. Our cladistic analysis suggests that the gene duplication event which generated B function gene lineages predates the divergence of angiosperms and gymnosperms and that the gene duplication which produced the two genes of C. japonica occurred in an ancestral conifer species.  相似文献   

3.
4.
南昌市不同植物类群叶片氮磷浓度及其化学计量比   总被引:9,自引:2,他引:9  
对南昌大学前湖校区89种主要植物叶片的N、P浓度及其化学计量比进行了研究,结果表明:乔灌、常绿、针叶、种子、裸子和单子叶植物类群的N浓度分别低于相对应的草本、落叶、阔叶、蕨类、被子和双子叶植物类群,而C3和C4植物差异不显著;乔灌、常绿和裸子植物类群的P浓度含量分别低于相对应的草本、落叶和被子植物类群,而针叶和阔叶、蕨类和种子、单子叶和双子叶、C3和C4植物类群间差异不显著;乔木、阔叶、被子和双子叶植物类群叶片N/P分别高于相对应的灌草、针叶、裸子和单子叶植物类群,而常绿和落叶、蕨类和种子、C3和C4植物类群之间差异不显著.可见,不同类型植物对N和P的吸收利用存在差异,且对不同养分供应采取不同的适应对策.结合研究区土壤养分现状,建议优先选择常绿、针叶、裸子和单子叶植物类群作为城市园林植物.  相似文献   

5.
低温而不是光周期调控中国亚热带裸子植物的出芽物候 摘要:被子植物春季物候的调控机制已经得到了广泛的研究。然而,裸子植物和被子植物在3亿年前就产生分化,裸子植物与被子植物的物候可能是受不同的因素所调控。亚热带植物物候的调节机制在很大程度上尚不明确,亚热带裸子植物物候是否由冷激需求和光照调控仍未得到验证。本研究在人工气候箱中设置了3个冷激处理和3 个光周期处理,并对切枝的出芽期进行了为期8周的研究。实验中我们测试了8种裸子植物:柳杉(Cryptomeria japonica)、杉木(Cunninghamia lanceolata)、柏树(Cupressus funebris)、银杏(Ginkgo biloba)、水杉(Metasequoia glyptostroboides)、马尾松(Pinus massoniana)、金钱 松(Pseudolarix amabilis)和罗汉松(Podocarpus macrophyllus),检验其出芽物候是否对光周期敏感或者是否具有较强的冷激需求,以及这两种因素哪个对促进出芽更为重要。研究结果表明,对于裸子植物,冷 激促进了出芽并提高了出芽率,而且裸子植物需要适度的低温天数来实现出芽。有趣的是,在同一森 林中裸子植物比被子植物对积温的需求更高。与德国温带裸子植物(194–600 d · °C)相比,亚热带裸子植 物(814–1150 d · °C)对积温的需求更高。光周期对裸子植物出芽的影响较小,说明冷激对裸子植物出芽的 促进作用大于光周期。这些结果表明,随着全球气候持续变暖,冬季气温的升高不仅会影响亚热带被子植物也会影响裸子植物的物候,从而可能导致春季出芽期的延迟。  相似文献   

6.
7.
8.
Nuclear DNA C-values Complete Familial Representation in Gymnosperms   总被引:6,自引:3,他引:3  
The gymnosperms are a monophyletic yet diverse group of woodytrees with approx. 730 extant species in 17 families. A recentsurvey showed that DNA C-values were available for approx. 16%of species, but for only 12 of the 17 families. This paper completesfamilial representation reporting first C-values for the fiveremaining families: Boweniaceae, Stangeriaceae, Welwitschiaceae,Cephalotaxaceae and Sciadopityaceae. C-values for nine Ephedraand two Gnetum species are also reported. C-values are now availablefor 152 (21%) species. Analysis confirms that gymnosperms arecharacterized by larger C-values than angiosperms (modal 1Cof gymnosperms = 15.8 pg compared with 0.6 pg in angiosperms)although the range (1C = 2.25–32.20 pg) is smaller thanthat in angiosperms (1C = 0.05–127.4 pg). Given completefamilial coverage for C-values and increasing consensus in gymnospermphylogeny, the phylogenetic component of C-value variation wasalso investigated by comparing the two datasets. This analysisrevealed that ancestral gymnosperms (represented by cycads and/orGinkgo; mean genome size = 14.71 pg) probably had larger genomes thanancestral angiosperms. Copyright 2001 Annals of Botany Company Gymnosperm DNA amounts, C-values, phylogeny, ancestral genome size, Cycadales, Ginkgo, Gnetales, conifers, Pinaceae  相似文献   

9.
Nuclear protein coding sequences from gymnosperms are currently scarce. We have determined 4 kb of nuclear protein coding sequences from gymnosperms and have collected and analyzed >60 kb of nuclear sequences from gymnosperms and nonspermatophytes in order to better understand processes influencing genome evolution in plants. We show that conifers possess both biased and nonbiased genes with respect to GC content, as found in monocots, suggesting that the common ancestor of conifers and monocots may have possessed both biased and nonbiased genes. The lack of biased genes in dicots is suggested to be a derived character for this lineage. We present a simple but speculative model of land-plant genome evolution which considers changes in GC bias and CpG frequency, respectively, as independent processes and which can account for several puzzling aspects of observed nucleotide frequencies in plant genes.Abbreviations GC guanosine plus cytosine - GapC glycolytic glyceraldehyde-3-phosphate dehydrogenase, EC 1.2.1.12 - GapA Calvin cycle glyceraldehyde-3-phosphate dehydrogenase, EC 1.2.1.13 - O/E ratio of observed-to-expected dinucleotide frequencies Correspondence to: W. Martin  相似文献   

10.
Evolution of Reproductive Organs in Land Plants   总被引:4,自引:0,他引:4  
LEAFY gene is the positive regulator of the MADS-box genes in flower primordia. The number of MADS-box genes presumably increased by gene duplications before the divergence of ferns and seed plants. Most MADS-box genes in ferns are expressed similarly in both vegetative and reproductive organs, while in gymnosperms, some MADS-box genes are specifically expressed in reproductive organs. This suggests that (1) the increase in the number of MADS-box genes and (2) the subsequent recruitment of some MADS-box genes as homeotic selector genes were important for the evolution of complex reproductive organs. The phylogenetic tree including both angiosperm and gymnosperm MADS-box genes indicates the loss of the A-function genes in the gymnosperm lineage, which is presumably related to the absence of perianths in extant gymnosperms. Comparison of expression patterns of orthologous MADS-box genes in angiosperms, Gnetales, and conifers supports the sister relationship of Gnetales and conifers over that of Gnetales and angiosperms predicted by phylogenetic trees based on amino acid and nucleotide sequences. Received 30 July 1999/ Accepted in revised form 9 September 1999  相似文献   

11.
The extant seed plants include more than 260,000 species that belong to five main lineages: angiosperms, conifers, cycads, Ginkgo, and gnetophytes. Despite tremendous effort using molecular data, phylogenetic relationships among these five lineages remain uncertain. Here, we provide the first broad coalescent-based species tree estimation of seed plants using genome-scale nuclear and plastid data By incorporating 305 nuclear genes and 47 plastid genes from 14 species, we identify that i) extant gymnosperms (i.e., conifers, cycads, Ginkgo, and gnetophytes) are monophyletic, ii) gnetophytes exhibit discordant placements within conifers between their nuclear and plastid genomes, and iii) cycads plus Ginkgo form a clade that is sister to all remaining extant gymnosperms. We additionally observe that the placement of Ginkgo inferred from coalescent analyses is congruent across different nucleotide rate partitions. In contrast, the standard concatenation method produces strongly supported, but incongruent placements of Ginkgo between slow- and fast-evolving sites. Specifically, fast-evolving sites yield relationships in conflict with coalescent analyses. We hypothesize that this incongruence may be related to the way in which concatenation methods treat sites with elevated nucleotide substitution rates. More empirical and simulation investigations are needed to understand this potential weakness of concatenation methods.  相似文献   

12.
Three anamorph genera of the Botryosphaeriaceae namely Diplodia, Lasiodiplodia and Dothiorella have typically dark, ovoid conidia with thick walls, and are consequently difficult to distinguish from each other. These genera are well-known pathogens of especially pine species. We generated a multiple gene genealogy to resolve the phylogenetic relationships of Botryosphaeriaceae with dark conidial anamorphs, and mapped host associations based on this phylogeny. The multiple gene genealogy separated Diplodia, Lasiodiplodia and Dothiorella and it revealed trends in the patterns of host association. The data set was expanded to include more lineages of the Botryosphaeriaceae, and included all isolates from different host species for which ITS sequence data are available. Results indicate that Diplodia species occur mainly on gymnosperms, with a few species on both gymnosperms and angiosperms. Lasiodiplodia species occur equally on both gymnosperms and angiosperms, Dothiorella species are restricted to angiosperms and Neofusicoccum species occur mainly on angiosperms with rare reports on Southern Hemisphere gymnosperms. Botryosphaeria species with Fusicoccum anamorphs occur mostly on angiosperms with rare reports on gymnosperms. Ancestral state reconstruction suggests that a putative ancestor of the Botryosphaeriaceae most likely evolved on the angiosperms. Another interesting observation was that both host generalist and specialist species were observed in all the lineages of the Botryosphaeriaceae, with little evidence of host associated co-evolution.  相似文献   

13.
Gymnosperms, and conifers in particular, are sometimes very productive trees yet angiosperms dominate most temperate and tropical vegetation. Current explanations for angiosperm success emphasize the advantages of insect pollination and seed dispersal by animals for the colonization of isolated habitats. Differences between gymnosperm and angiosperm reproductive and vegetative growth rates have been largely ignored. Gymnosperms are all woody, perennial and usually have long reproductive cycles. Their leaves are not as fully vascularized as those of angiosperms and are more stereotyped in shape and size. Gymnosperm tracheids are generally more resistant to solute flow than angiosperm vessels. A consequence of the less efficient transport system is that maximum growth rates of gymnosperms are lower than maximum growth rates of angiosperms in well lit, well watered habitats. Gymnosperm seedlings may be particularly uncompetitive since their growth depends on a single cohort of relatively inefficient leaves. Later, some gymnosperms attain a higher productivity than co-occurring angiosperm trees by accumulating several cohorts of leaves with a higher total leaf area. These functional constraints on gymnosperm growth rates suggest that gymnosperms will be restricted to areas where growth of angiosperm competitors is reduced, for example, by cold or nutrient shortages. Biogeographic evidence supports this prediction since conifers are largely confined to high latitudes and elevations or nutrient-poor soils. Experimental studies show that competition in the regeneration niche (between conifer seedlings and angiosperm herbs and shrubs) is common and significantly affects conifer growth and survival, Fast-growing angiosperms, especially herbs and shrubs, may also change the frequency of disturbance regimes thereby excluding slower-growing gymnosperms. Shade-tolerant and early successional conifers share similar characteristics of slow initial growth and low plasticity to a change in resources. Shade-tolerant gymnosperms would be expected to occur only where forest openings are small or otherwise unsuitable for rapid filling by fast-growing angiosperm trees, lianas or shrubs. The limited evidence available suggests that shade-tolerant conifers are confined to forests with small gap sizes where large disturbances are very rare. The regeneration hypothesis for gymnosperm exclusion by angiosperms is consistent with several aspects of the fossil record such as the early disappearance of gymnosperms from early successional environments where competition with angiosperms would have been most severe. However there are unresolved difficulties in interpreting process from paleoecological pattern which prevent the testing of alternative hypotheses.  相似文献   

14.
The cellular and molecular biology of conifer embryogenesis   总被引:4,自引:0,他引:4  
Gymnosperms and angiosperms are thought to have evolved from a common ancestor c. 300 million yr ago. The manner in which gymnosperms and angiosperms form seeds has diverged and, although broad similarities are evident, the anatomy and cell and molecular biology of embryogenesis in gymnosperms, such as the coniferous trees pine, spruce and fir, differ significantly from those in the most widely studied model angiosperm Arabidopsis thaliana. Molecular analysis of signaling pathways and processes such as programmed cell death and embryo maturation indicates that many developmental pathways are conserved between angiosperms and gymnosperms. Recent genomics research reveals that almost 30% of mRNAs found in developing pine embryos are absent from other conifer expressed sequence tag (EST) collections. These data show that the conifer embryo differs markedly from other gymnosperm tissues studied to date in terms of the range of genes transcribed. Approximately 72% of conifer embryo-expressed genes are found in the Arabidopsis proteome and conifer embryos contain mRNAs of very similar sequence to key genes that regulate seed development in Arabidopsis. However, 1388 loblolly pine (Pinus taeda) embryo ESTs (11.4% of the collection) are novel and, to date, have been found in no other plant. The data imply that, in gymnosperm embryogenesis, differences in structure and development are achieved by subtle molecular interactions, control of spatial and temporal gene expression and the regulating agency of a few unique proteins.  相似文献   

15.
Large numbers of expressed sequence tags (ESTs) have now been generated from a variety of model organisms. In plants, substantial collections of ESTs are available for Arabidopsis and rice, in each case representing significant proportions of the estimated total numbers of genes. Large-scale comparisons of Arabidopsis and rice sequences are especially interesting due to the fact that these two species are representatives of the two subclasses of the flowering plants (Dicotyledonae and Monocotyledonae, respectively). Here we present the results of systematic analysis of the Arabidopsis and rice EST sets. Non-redundant sets of sequences from Arabidopsis and rice were first separately derived and then combined so that gene families in common between the two species could be identified. Our results show that 58% of non-singleton ESTs are derived from genes in gene families common to the two species. These gene families constitute the basis of a core set of higher plant genes.  相似文献   

16.
Kramer EM  Jaramillo MA  Di Stilio VS 《Genetics》2004,166(2):1011-1023
Members of the AGAMOUS (AG) subfamily of MIKC-type MADS-box genes appear to control the development of reproductive organs in both gymnosperms and angiosperms. To understand the evolution of this subfamily in the flowering plants, we have identified 26 new AG-like genes from 15 diverse angiosperm species. Phylogenetic analyses of these genes within a large data set of AG-like sequences show that ancient gene duplications were critical in shaping the evolution of the subfamily. Before the radiation of extant angiosperms, one event produced the ovule-specific D lineage and the well-characterized C lineage, whose members typically promote stamen and carpel identity as well as floral meristem determinacy. Subsequent duplications in the C lineage resulted in independent instances of paralog subfunctionalization and maintained functional redundancy. Most notably, the functional homologs AG from Arabidopsis and PLENA (PLE) from Antirrhinum are shown to be representatives of separate paralogous lineages rather than simple genetic orthologs. The multiple subfunctionalization events that have occurred in this subfamily highlight the potential for gene duplication to lead to dissociation among genetic modules, thereby allowing an increase in morphological diversity.  相似文献   

17.
Nina Hewitt 《Oecologia》1998,114(3):432-440
Large seed size is a trait associated with plant species of mature, closed habitats, and is thought to supply an ample nutrient reserve necessary for seedling establishment. While this relationship has been shown for annuals and short-lived perennials, it is poorly documented for trees. A comparative method was used to determine whether North American temperate tree species which typically establish in shady conditions have larger seeds than those requiring more open conditions. Both angiosperms (hardwoods) and gymnosperms (conifers) were involved in the study. A significant relationship was found between large seed mass and shade-tolerance for angiosperms, but not for gymnosperms. These contrasting results seem to relate to unique evolutionary opportunities or constraints in different taxa. The absence of a relationship for gymnosperms is discussed in terms of character traits which might prevent seed size selection in response to shade. The finding for angiosperms underlines the importance of the regeneration niche in promoting coexistence among temperate hardwood species through seed size differentiation. Received: 18 March 1997 / Accepted: 26 November 1997  相似文献   

18.
19.
20.
A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号