首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
Enzyme kinetic plots relating the initial rate of activation of pro-urokinase to urokinase by plasmin, according to the concentration of substrate, were smooth downward curves and indicated that an apparent decrease in binding affinity occurred with increase in the concentration of pro-urokinase. Such nonlinear plots were obtained with plasmin 1 and also plasmin 2. Over sections of each curve it was possible to estimate apparent kinetic constants. At the uppermost concentrations of substrate tested, these were Km 2.9 microM and kcat 35.5 min-1 for plasmin 1, and at the lowermost concentrations, Km 9.5 nM and kcat 2.0 min-1. Linear plots were obtained when the single proteolytic cleavage was made by K5-plasmin or undegraded plasmin in the presence of 1.0 mM 6-aminohexanoic acid (6-AHa). Constants were estimated for catalysis of this reaction by K5 plasmin to be Km 6.0 microM and kcat 38 min-1 (r = 0.987). The catalytic efficiency of plasmin, at the lowermost concentrations of pro-urokinase tested, was therefore 33-fold higher than that of K5-plasmin. Plotting of data for the cleavage of pro-urokinase by plasmin 1 (in the absence of 6-AHa) according to the model of Hill, gave a slope of 0.5 at the lowermost concentrations of pro-urokinase increasing to 1.0 at higher concentrations (greater than 0.3 microM); such a profile is characteristic of negative cooperativity. The rates of formation of plasmin and urokinase in a mixture containing a low concentration of plasminogen and pro-urokinase were measured and compared to those predicted by a computer program designed to calculate theoretical rates using available kinetic data. The observed rates of generation of both plasmin and urokinase coincided to those predicted from the negative cooperativity model. The mechanism of the negative cooperativity may reside in a conformational change induced by binding of pro-urokinase to the kringle structure of plasmin. This property may be of significance in controlling the fibrinolytic properties of the urokinase-type plasminogen activator system.  相似文献   

2.
Actin accelerates plasmin generation by tissue plasminogen activator.   总被引:2,自引:0,他引:2  
Actin has been found to bind to plasmin's kringle regions, thereby inhibiting its enzymatic activity in a noncompetitive manner. We, therefore, examined its effect upon the conversion of plasminogen to plasmin by tissue plasminogen activator. Actin stimulated plasmin generation from both Glu- and Lys-plasminogen, lowering the Km for activation of Glu-plasminogen into the low micromolar range. Accelerated plasmin generation did not occur in the presence of epsilon-amino caproic acid or if actin was exposed to acetic anhydride, an agent known to acetylate lysine residues. Actin binds to tissue plasminogen activator (t-Pa) (Kd = 0.55 microM), at least partially via lysine-binding sites. Actin's stimulation of plasmin generation from Glu-plasminogen was inhibited by the addition of aprotinin and was restored by the substitution of plasmin-treated actin, indicating the operation of a plasmin-dependent positive feedback mechanism. Native actin binds to Lys-plasminogen, and promotes its conversion to plasmin even in the presence of aprotinin, indicating that plasmin's cleavage of either actin or plasminogen leads to further plasmin generation. Plasmin-treated actin binds Glu-plasminogen and t-PA simultaneously, thereby raising the local concentration of t-PA and plasminogen. Together, but not separately, actin and t-PA prolong the thrombin time of plasma through the generation of plasmin and fibrinogen degradation products. Actin-stimulated plasmin generation may be responsible for some of the changes found in peripheral blood following tissue injury and sepsis.  相似文献   

3.
The activation kinetics of single chain urinary-type plasminogen activator (scu-PA) by plasmin have been studied in detail. Nonstandard Michaelis-Menten kinetics were observed. To explain our results, we propose a model in which plasmin can exist in two conformations of lower activity (kcat/Km = 1.4 x 10(6) M-1 s-1) or higher activity (kcat/Km = 16.7 x 10(6) M-1 s-1) depending on whether a lysine binding site is occupied or free, respectively. These kinetic studies demonstrate that scu-PA interacts at this binding site (KD approximately 30 nM) and so is able to act as both a substrate and effector in this reaction. Binding was also demonstrated between scu-PA and Glu- or Lys-plasminogen at a high affinity site (KD approximately 65 nM), sensitive to the presence of lysine analogs. This suggests that scu-PA may be almost completely bound to plasminogen in plasma under normal physiological conditions and provides a possible explanation for the fibrin specificity of this activator, as discussed.  相似文献   

4.
Binding of plasminogen to extracellular matrix   总被引:17,自引:0,他引:17  
We have previously demonstrated that plasminogen immobilized on various surfaces forms a substrate for efficient conversion to plasmin by tissue plasminogen activator (t-PA) (Silverstein, R. L., Nachman, R. L., Leung, L. L. K., and Harpel, R. C. (1985) J. Biol. Chem. 260, 10346-10352). We now report the binding of human plasminogen to the extracellular matrix synthesized in vitro by cultured endothelial cell monolayers. The binding was specific, saturable at plasma plasminogen concentrations, reversible, and lysine-binding site-dependent. Functional studies demonstrated that matrix immobilized plasminogen was a much better substrate for t-PA than was fluid phase plasminogen as shown by a 100-fold decrease in Km. Activation of plasminogen by t-PA and urokinase on the matrix was equally efficient. The plasmin generated on the matrix, in marked contrast to fluid phase, was protected from its fast-acting inhibitor, alpha 2-plasmin inhibitor. Matrix-associated plasmin converted bound Glu- into Lys-plasminogen, which in turn is more rapidly activated to plasmin by t-PA. The extracellular matrix not only binds and localizes plasminogen but also improves plasminogen activation kinetics and prolongs plasmin activity in the subendothelial microenvironment.  相似文献   

5.
Plasminogen activation by single-chain urokinase-type plasminogen activator or pro-urokinase (pro-UK) is accompanied by the generation of two-chain urokinase (UK) by plasmin which provides a positive feedback. In the present study, the time course of the activation of Glu-plasminogen and of Lys-plasminogen (10 microM) by pro-UK (1.0 nM) was studied. In the presence of native plasminogen (Glu-plasminogen), three distinct phases with different rates of plasmin generation were observed. The initial phase was slow and corresponded to the intrinsic activity of pro-UK as reflected by the activity of a plasmin-resistant mutant (Lys158----Ala). This was followed by a second phase which had the most rapid rate. The third phase had a plasminogen activation rate which was significantly slower than the second and paralleled the rate of activation by UK (1.0 nM). The second phase coincided with the time at which there was only about 50% conversion of pro-UK to UK, whereas the final phase coincided with essentially complete conversion. In the presence of fibrin fragment E-2 (20 microM), previously shown to strongly promote plasminogen activation by pro-UK, the identical phenomenon was observed, but at one-tenth the concentration of pro-UK. The most rapid rate of plasmin generation again coincided with transitional (25-60%) pro-UK to UK conversion. To further examine this phenomenon, the rate of pro-UK to UK conversion was controlled by using kallikrein in the presence of a plasmin inhibitor. In this experiment, the activation of Glu-plasminogen bound to solid-phase fibrin was measured. A similar three-phase sequence was observed, the highest rate of plasmin generation coinciding with about 45% conversion of pro-UK to UK. A mechanism for this transitional state phenomenon was postulated based on the established significantly higher affinity of pro-UK than of UK for Glu-plasminogen. This exceptional property for a proenzyme may enable a transient activity to be generated during the transition from pro-UK to UK corresponding to the more favorable KM of pro-UK and the kcat of UK. This hypothesis was supported by the results from experiments in which Lys-plasminogen was substituted for the Glu form. No transitional state activity was observed, consistent with the relatively high KM of pro-UK against Lys-plasminogen.  相似文献   

6.
Plasminogen, the zymogen form of the fibrinolytic enzyme plasmin, is known to undergo plasmin-mediated modification in vitro. The modified form, Lys-plasminogen, is superior to the native Glu-plasminogen in fibrin binding and as a substrate for activation by tissue-type plasminogen activator (t-PA). The present study was undertaken to determine the existence and significance of the Glu- to Lys-plasminogen conversion during t-PA-mediated lysis of plasma clots in vitro. When human plasma was supplemented with exogenous Lys-plasminogen and clotted, a dose-dependent shortening of lysis time was observed. Formation of Lys-plasminogen in situ during fibrinolysis was determined using 131I-Glu-plasminogen-supplemented plasma. By the time of lysis, Lys-plasminogen had accumulated to about 20% of the initial concentration of Glu-plasminogen. Quantitation of activation of both Glu- and Lys-plasminogen as well as the conversion of Glu- to Lys-plasminogen in plasma supplemented with both 131I-Glu-plasminogen and 125I-Lys-plasminogen was accomplished by determining the flux of the isotopically labeled species along three pathways: Glu-plasminogen-->Glu-plasmin, Glu-plasminogen-->Lys-plasminogen, and Lys-plasminogen-->Lys-plasmin. After a brief lag, the Glu-plasminogen activation rate was constant until lysis was achieved, at which point activation ceased. The Lys-plasminogen activation rate also was essentially constant until lysis but was not characterized by a lag phase. The rate of conversion of Glu- to Lys-plasminogen was nonlinear and correlated directly with the rate of fibrinolysis. By the time lysis had occurred, Glu-plasminogen consumption had been distributed equally between direct activation to plasmin and conversion to Lys-plasminogen, and 45% of the plasmin which had been formed was derived from Lys-plasminogen. These results demonstrate both the formation and the subsequent activation of Lys-plasminogen during fibrinolysis. As a result of improved fibrin binding and activation of Lys-plasminogen compared to Glu-plasminogen, the formation of Lys-plasminogen within a clot constitutes a positive feedback mechanism that can further stimulate the activation of plasminogen by t-PA as fibrinolysis progresses.  相似文献   

7.
Two components of the fibrinolytic system, plasminogen and the vascular plasminogen activator, have been isolated to apparent homogeneity from the post-venous occlusion plasma of three diabetic patients (hemoglobin A1C greater than 7%) and of one nondiabetic control person. Plasminogen activation was studied for each person separately in the absence and presence of CNBr fragments of fibrinogen. Activation of diabetic plasminogen by urokinase was not significantly altered as compared to the activation of control plasminogen. The same was found when diabetic plasminogen was activated by control vascular plasminogen activator in the presence of fibrinogen fragments but only at plasminogen concentrations below 10-30 nM; at higher substrate concentrations, however, plasminogen activation was impaired in a pattern resembling substrate inhibition. Activation of control plasminogen by diabetic vascular plasminogen activator was completely impaired in the absence of fibrinogen fragments. Addition of fibrinogen fragments stimulated plasmin formation by diabetic vascular plasminogen activator resulting in kinetic constants which were similar to the activation of control plasminogen by control vascular plasminogen activator in the absence of fibrinogen fragments (Km = 7.5 microM, kcat = 0.05 S-1). Addition of fibrinogen fragments in controls decreased Km values to less than 0.1 microM. Despite addition of fibrinogen fragments the rate of plasmin formation from diabetic plasminogen by diabetic vascular plasminogen activator isolated from the same diabetic donor was so small that kinetic constants could not be calculated.  相似文献   

8.
A low Mr form (Mr 32,000) of single-chain urokinase-type plasminogen activator (scu-PA) was isolated from conditioned culture medium of a human lung adenocarcinoma cell line, CALU-3 (ATCC, HTB-55). The purified material (scu-PA-32k) consists of a single polypeptide chain and is immunologically similar to Mr 33,000 urokinase. Its NH2-terminal sequence is identical to that beginning at Leu-144 of Mr 54,000 urokinase. Whereas low Mr urokinase is derived from mature Mr 54,000 scu-PA by limited hydrolysis by plasmin first of the Lys-158-Ile-159 peptide bond and then of the Lys-136-Lys-137, scu-PA-32k is generated by specific hydrolysis of the Glu-143-Leu-144 peptide bond by an unidentified protease. scu-PA-32k resembles its Mr 54,000 scu-PA counterpart by its very low activity on chromogenic substrates for urokinase, by plasminogen-dependent fibrinolytic activity on fibrin plates, and by the lack of specific binding to fibrin. It activates plasminogen directly with high affinity, Km = 0.9 microM, but low turnover number, kcat = 0.0028 s-1. It is converted to fully active two-chain urokinase by plasmin with Km = 12 microM and kcat = 0.3 s-1. Like Mr 54,000 scu-PA, it causes significant lysis of a 125I-labeled fibrin clot in human plasma with relatively less fibrinogen breakdown as compared to urokinase. scu-PA-32k, which also has conserved fibrin specificity, represents a molecular variant which may be more suitable for large scale production as a fibrin-specific thrombolytic agent by recombinant DNA technology.  相似文献   

9.
We prepared heparin-inserted phospholipid liposomes as a functional model of heparan sulfate present on the vascular surface and examined tissue plasminogen activator (t-PA) catalyzed plasminogen activation on the liposome surface. Kinetic analyses showed a marked increase in the affinity of t-PA for Lys-plasminogen in the presence of heparin-inserted phosphatidylcholine (PC) liposomes. The catalytic efficiency (kcat/Km) of t-PA for the plasminogen activation on the surface of heparin-inserted PC liposomes was 5.4 times that on the surface of heparin-free PC liposomes. This stimulatory action of immobilized heparin was apparently affected by changing the phospholipid component of liposomes. Phosphatidylethanolamine or stearylamine, having a positively charged group, reduced the catalytic efficiency of t-PA by raising its Km value (10-fold), whereas negatively charged phospholipids, phosphatidylserine and phosphatidylinositol, did not affect the efficiency. t-PA and generated plasmin bound to the liposome surface heparin were protected from inhibition by plasminogen activator inhibitor type 1 and alpha 2-plasmin inhibitor, respectively. t-PA-induced clot lysis of euglobulin or whole plasma, which contained native (Glu-) plasminogen and the above inhibitors, was also accelerated by addition of heparin-inserted PC liposomes. These results suggest that the vascular surface heparin-like molecules may play an important role in modulating fibrinolytic events. The principles of conjugation of t-PA with a biologically active liposome will be applied to the construction of better thrombolytic agents.  相似文献   

10.
Using a modified procedure for measuring the time of fibrin clot lysis, the kinetics of Glu- and Lys-plasminogen activation by the tissue activator was studied. Within the plasminogen concentration range of 0.4-100 nM the rate of activation of both protein forms obeys the Michaelis-Menten kinetics. At Lys-plasminogen concentration equimolar to that of fibrin, the rate of activation of the former decreases down to that of Glu-plasminogen activation. The kinetic constants for Glu- and Lys-plasminogen activation (Km) are equal to 0.055 and 0.013 microM; k = 0.19 and 0.21 s-1, respectively. The Km values for fibrin-bound Glu- and Lys-plasminogen are equal to 0.25 nM and 8 nM, respectively (k = 0.08 and 0.26 s-1, respectively). It is assumed that the tissue activator exhibits a higher affinity for the Glu-plasminogen--fibrin complex than for the Lys-plasminogen-fibrin complex.  相似文献   

11.
Prourokinase-induced plasminogen activation is complex and involves three distinct reactions: (1) plasminogen activation by the intrinsic activity of prourokinase; (2) prourokinase activation by plasmin; (3) plasminogen activation by urokinase. To further understand some of the mechanisms involved, the effects of epsilon-aminocaproic acid (EACA), a lysine analogue, on these reactions were studied. At a low range of concentrations (10-50 microM), EACA significantly inhibited prourokinase-induced (Glu-/Lys-) plasminogen activation, prourokinase activation by Lys-plasmin, and (Glu-/Lys-) plasminogen activation by urokinase. However, no inhibition of plasminogen activation by Ala158-prourokinase (a plasmin-resistant mutant) occurred. Therefore, the overall inhibition of EACA on prourokinase-induced plasminogen activation was mainly due to inhibition of reactions 2 and 3, by blocking the high-affinity lysine binding interaction between plasmin and prourokinase, as well as between plasminogen and urokinase. These findings were consistent with kinetic studies which suggested that binding of kringle 1-4 of plasmin to the N-terminal region of prourokinase significantly promotes prourokinase activation, and that binding of kringle 1-4 of plasminogen to the C-terminal lysine158 of urokinase significantly promotes plasminogen activation. In conclusion, EACA was found to inhibit, rather than promote, prourokinase-induced plasminogen activation due to its blocking of the high-affinity lysine binding sites on plasmin(ogen).  相似文献   

12.
Urokinase-related proteins were purified from 60-liter batches of human urine collected into the protease inhibitor aprotinin to prevent proteolytic degradation. Three homogeneous species were obtained by chromatography on zinc chelate-Sepharose, SP-Sephadex C-50, Sephadex G-100, benzamidine-Sepharose, and immunoadsorption on a murine anti-human urokinase monoclonal antibody. One urokinase-related protein with Mr 95,000 representing a complex of two-chain urokinase with an inhibitor accounts for about 70% of the total urokinase-related antigen in urine. Nucleophilic agents dissociate the complex into active two-chain urokinase and a protein with Mr 45,000-50,000 which is immunologically distinct from urokinase. Approximately 25% of the urinary urokinase-related antigen represents a single-chain molecule with Mr 54,000. This highly purified single-chain molecule was obtained with a yield of 5 micrograms/liter of urine. Only trace amounts (less than 5%) of the urokinase-related antigen were recovered as free two-chain urokinase. The urinary single-chain urokinase-related protein has no specific affinity for fibrin. It has a very low activity on Pyroglu-Gly-Arg-p-nitroanilide, a urokinase-specific synthetic substrate, but directly activates plasminogen following Michaelis-Menten kinetics with Km = 0.7 microM and kcat = 0.0011 S-1. The single-chain molecule is rapidly converted to active two-chain urokinase by plasmin. Active two-chain urinary urokinase has a very high amidolytic activity and activates plasminogen with Km = 60 microM and kcat = 1.4 S-1. It is concluded that the urokinase-related proteins in human urine consist of about 25% of single-chain urokinase (10-20 micrograms/liter) and of about 75% two-chain urokinase (40-50 micrograms/liter), the bulk of which is complexed to an inhibitor. Because even in freshly voided urine most of the urokinase-related antigen is already converted to two-chain urokinase, urine does not seem to be a suitable source for the large-scale purification of single-chain urokinase. In view of the very significant intrinsic plasminogen-activating properties of single-chain urokinase, it should not be considered to be a proenzyme form of urokinase. The dramatic differences of its kinetic constants from those of urokinase render the designation single-chain urokinase equally inadequate. Consequently, the designation "single-chain urokinase-type plasminogen activator" was recently adopted by the International Committee on Thrombosis and Haemostasis (Annual Meeting, San Diego, CA, July 13-14, 1985).  相似文献   

13.
In the present work we have determined Km,app and kcat,app values for tissue-type plasminogen-activator-catalyzed activation of Glu-plasminogen, Lys-plasminogen and mini-plasminogen in the absence and in the presence of fibrinogen-derived fragments. These were CNBr fragment 2, the A alpha chain remnant of CNBr fragment 2 (A alpha 148-207) and plasmin-generated fragment D-EGTA. The time course of plasmin formation from the various types of plasminogen (plg) was measured spectrophotometrically in a coupled assay system where D-valyl-L-leucyl-L-lysine p-nitroanilide served as a plasmin substrate. The kinetic constants are summarized as follows. (Values in parentheses are concentrations at which the minimum Km,app and maximum kcat,app value is reached.) (Table: see text). In conclusion our results show that CNBr fragment 2, A alpha 148-207 and to some extent D-EGTA mimic the accelerating effect of fibrin. The first two of these fragments did not accelerate activation of mini-plasminogen, lacking the kringle structures I-IV. This suggests that the stimulating effects of these two fragments were dependent on the presence of kringles I-IV of the plasminogen molecule.  相似文献   

14.
J N Liu  V Gurewich 《Biochemistry》1992,31(27):6311-6317
In a previous study, it was shown that fibrin fragment E-2 selectively promotes the activation of plasminogen by pro-urokinase (pro-UK) [Liu, J., & Gurewich, V. (1991) J. Clin. Invest. 88, 2012-2017]. In this study, the kinetics of this promotion by fragment E-2 was studied. Alanine-158-rpro-UK (A-pro-UK), a recombinant plasmin-resistant mutant, was used in order to avoid interference by UK generation during the reaction. In some experiments, pro-UK was substituted in order to validate the mutant as a surrogate. In the presence of a range of concentrations (0-20 microM) of fragment E-2, a linear promotion of the catalytic efficiency of A-pro-UK against native Glu-plasminogen was seen which was 245.5-fold at the highest concentration of fragment E-2 and 450-fold at the highest ratio of E-2/plasminogen used. The promotion was largely a function of an increase in kcat, since fragment E-2 induced a less than 10-fold reduction in KM (8.50-1.40 microM). In contrast to this ligand, epsilon-aminocaproic acid (EACA) induced a biphasic promotion of the activation of Glu-plasminogen which was only 18-fold at maximum. Fragment E-2 did not promote the activation of Lys-plasminogen, but the catalytic efficiency of A-pro-UK was 19.7-fold greater against the open Lys-form than against the closed Glu- form of plasminogen. Fragment E-2 had no effect on the amidolytic activity of A-pro-UK or pro-UK, suggesting that the promotion of their activities was indirect and related to a fragment E-2-induced conformational change in Glu-plasminogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Zymographic analysis of the supernates from confluent cultures of a rat prostate adenocarcinoma cell line, PA-III, revealed the existence of two molecular forms of specific plasminogen activators, one of molecular weight of approximately 80 000 and another of approximate molecular weight of 45 000, in sodium dodecyl sulfate. The low molecular weight form has been purified 364-fold in 66% yield from the culture medium by a combination of gel filtration on Sephacryl S-200 and affinity chromatography on Sepharose 4B-benzamidine. The purified material possessed a specific activity of 192 000 urokinase CTA units mg-1. This enzyme displayed activity toward human Glu1-plasminogen, characterized by a Km of 1.7 +/- 0.2 microM and a Vmax of 0.53 +/- 0.1 pmol of plasmin min-1 unit-1. A synthetic chromogenic substrate, H-D-Ile-Pro-Arg-p-nitroanilide (S-2288), was found for the activator. The enzyme possessed a Km of 0.33 mM and a kcat of 55 s-1 for S-2288. The activator was found to be a serine protease, inhibited by diisopropyl fluorophosphate (iPr2PF). At a concentration of 1 mM iPr2PF, and 30 nM enzyme, the half-time of this inhibition was 3.8 min. The 45 000 molecular weight enzyme was found to be inhibited by rabbit antibodies to human urokinase, thus characterizing the activator as a member of the urokinase class. The 80 000 molecular weight enzyme was not neutralized by anti-human urokinase but was neutralized by rabbit anti-human melanoma activator, likely allowing it to be classified as the tissue activator type.  相似文献   

16.
R A Bok  W F Mangel 《Biochemistry》1985,24(13):3279-3286
The binding of human Glu- and Lys-plasminogens to intact fibrin clots, to lysine-Sepharose, and to fibrin cleaved by plasmin was quantitatively characterized. On intact fibrin clots, there was one strong binding site for Glu-plasminogen with a dissociation constant, Kd, of 25 microM and one strong binding site for Lys-plasminogen with a Kd of 7.9 microM. In both cases, the number of plasminogen binding sites per fibrin monomer was 1. Also, a much weaker binding site for Glu-plasminogen was observed with a Kd of about 350 microM. Limited digestion of fibrin by plasmin created additional binding sites for plasminogen with Kd values similar to the binding of plasminogen to lysine-Sepharose. This was predictable given the observations that plasminogen binds to lysine-Sepharose and can be eluted with epsilon-aminocaproic acid [Deutsch, D.G., & Mertz, E.T. (1970) Science (Washington, D.C.) 170, 1095-1096] and that plasmin preferentially cleaves fibrin at the carboxy side of lysyl residues [Weinstein, M.J., & Doolittle, R.F. (1972) Biochim. Biophys. Acta 258, 577-590], because the structures of the lysyl moiety in lysine-Sepharose and of epsilon-aminocaproic acid are identical with the structure of a COOH-terminal lysyl residue created by plasmin cleavage of fibrin. The Kd for the binding of Glu-plasminogen to lysine-Sepharose was 43 microM and for fibrin partially cleaved by plasmin 48 microM. The Kd for the binding of Lys-plasminogen to lysine-Sepharose was 30 microM. With fibrin partially cleaved by plasmin, there were two types of binding sites for Lys-plasminogen, one with a Kd of 7.6 microM and the other with a Kd of 44 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. Possible interactions between fibrin(ogen) and heparin in the control of plasminogen activation were studied in model systems using the thrombolytic agents tissue-type plasminogen activator (t-PA), urokinase and streptokinase.plasminogen activator complex and the substrates Glu- and Lys-plasminogen. 2. Both t-PA and urokinase activities were promoted by heparin and by pentosan polysulphate, but not by chondroitin sulphate or hyaluronic acid. The effect was on Km. 3. In the presence of soluble fibrin (and its mimic, CNBr-digested fibrinogen) the effect of heparin on t-PA was attenuated, although not abolished. In studies using a monoclonal antibody and 6-aminohexanoic acid, it was found that heparin and fibrin did not seem to share a binding site on t-PA. 4. The activity of t-PA B-chain was unaffected by heparin, so the binding site is located on the A-chain of t-PA (and urokinase). 5. Fibrin potentiated the activity of heparin on urokinase. The activity of streptokinase.plasminogen was unaffected by heparin whether or not fibrin was present. 6. If these influences of heparin and fibrin also occur in vivo, then, in the presence of heparin, the relative fibrin enhancement of t-PA will be diminished and the likelihood of systemic activation by t-PA is increased.  相似文献   

18.
Activation of human Glu-plasminogen, Lys-plasminogen and low-Mr plasminogen (lacking lysine-binding sites) by pro-urokinase (pro-UK), obtained from a human lung adenocarcinoma cell line (Calu-3, ATCC), obeys Michaelis-Menten kinetics. Activation occurs with a comparable affinity (Km 0.40-0.77 microM), while the catalytic rate constant (kcat) is comparable for Glu-plasminogen (0.0022s-1) and low-Mr plasminogen (0.0034 s-1), but is somewhat higher for Lys-plasminogen (0.0106 s-1). The rate of activation of plasminogen by pro-UK is not significantly influenced by the presence of 6-aminohexanoic acid, purified fragments LBS I or LBS II or histidine-rich glycoprotein, indicating that the high affinity of pro-UK for plasminogen is not mediated via the high-affinity lysine-binding site of plasminogen located in kringles 1-3 (LBS I) nor via the low-affinity lysine-binding site comprised within kringle 4 (LBS II). The site(s) in plasminogen involved in the high-affinity interaction with pro-UK thus appear to be located within the low-Mr plasminogen moiety.  相似文献   

19.
Rat oocytes synthesize tissue plasminogen activator (tPA) in response to stimuli which initiate meiotic maturation. Purified tPA exhibits optimal activity only in the presence of fibrin or fibrin substitutes. Because oocytes are not exposed to fibrin in situ, we investigated the possible stimulation of rat oocyte tPA activity by other endogenous factor(s). Oocytes were obtained from immature female rats which were induced to ovulate with gonadotropins. tPA activity was measured by the plasminogen-dependent cleavage of a chromogenic substrate. Measurements of kinetic parameters with Glu- or Lys-plasminogen revealed a Km for the rat oocyte enzyme of 1.3-2.1 microM compared with 23-24 microM for purified human tPA. Inclusion of the soluble fibrin substitute polylysine lowered the Km of human tPA by 30-fold (0.8 microM) but had no effect on the oocyte tPA Km. Polylysine had no significant effect on the Vmax values. The rate of plasminogen activation catalyzed by oocyte tPA was increased only 4.3-fold by fibrin while fibrin stimulated purified human tPA activity by 15.2-fold. After fractionation of oocyte extract by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, polylysine enhanced oocyte tPA activity as seen by casein zymography. tPA activity in the conditioned medium of a rat insulinoma cell line was also not stimulated with polylysine prior to fractionation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These data suggest that extravascular cells which elaborate tPA may produce stimulatory factor(s) which allow for full tPA activity at physiological concentrations of plasminogen in the absence of fibrin.  相似文献   

20.
Trinitrobenzyl alkylation of poly(D-lysine) provides a novel powerful stimulator of tissue-type plasminogen activator. Its stimulatory effect on plasminogen activation is far greater than that of the original poly(D-lysine), and even surpasses that of fibrin. Its effect on plasmin-catalysed modification of both tissue-type plasminogen activator (t-PA) and native (Glu-1-) plasminogen are also investigated. Cleavage of one-chain t-PA to its two-chain form is monitored by measuring the increase in amidolytic activity which accompanies this transformation. Presupposing apparent first-order reaction kinetics, a theory is developed by which the rate constant, kcat/Km = 1.0 X 10(6) M-1 X s-1 of plasmin cleavage of one-chain t-PA can be calculated. Plasmin-catalysed transformation of 125I-labelled Glu-1- to Lys-77-plasminogen is quantified following separation by polyacrylamide gel electrophoresis at pH 3.2. A rate constant, kcat/Km = 4.4 X 10(3) M-1 X s-1 is obtained for the reaction between plasmin and Glu-1-plasminogen in the presence of 1 mM trans-4-(aminomethyl)cyclohexane-1-carboxylic acid. Both of the above plasmin-catalysed reactions are strongly enhanced by trinitrobenzoylated poly(D-lysine). The mechanism of action of this stimulator is elucidated by studying its binding to both activator and plasmin(ogen), and by direct comparison of the results with measurements of plasminogen activation kinetics in the presence of the stimulator. Binding studies are performed exploiting the observation that an insoluble yellow complex is formed between plasminogen and modified poly(D-lysine). Protein-polymer interactions are also studied with solubilised components in an aqueous two-phase partition system containing dextran and poly(ethylene glycol). The rate enhancement of plasminogen activation is found to be closely correlated to the association of plasminogen to the stimulator. It is proposed that the stimulator effects of this simple polymer on the enzymatic activities of both plasminogen activator and plasmin are brought about by association of the proteinase and its substrate to a common matrix. Similarities between the action of the artificial and the natural stimulator (fibrin) are stressed. These properties of trinitrobenzoylated poly(D-lysine) makes it useful as a model for the study of the regulatory mechanism of the fibrinolytic process at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号