首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological docking of secretory vesicles   总被引:1,自引:0,他引:1  
Calcium-dependent secretion of neurotransmitters and hormones is essential for brain function and neuroendocrine-signaling. Prior to exocytosis, neurotransmitter-containing vesicles dock to the target membrane. In electron micrographs of neurons and neuroendocrine cells, like chromaffin cells many synaptic vesicles (SVs) and large dense-core vesicles (LDCVs) are docked. For many years the molecular identity of the morphologically docked state was unknown. Recently, we resolved the minimal docking machinery in adrenal medullary chromaffin cells using embryonic mouse model systems together with electron-microscopic analyses and also found that docking is controlled by the sub-membrane filamentous (F-)actin. Currently it is unclear if the same docking machinery operates in synapses. Here, I will review our docking assay that led to the identification of the LDCV docking machinery in chromaffin cells and also discuss whether identical docking proteins are required for SV docking in synapses.  相似文献   

2.
Stationary-phase cells of Paramecium tetraurelia have most of their many secretory vesicles ("trichocysts") attached to the cell surface. Log-phase cells contain numerous unoccupied potential docking sites for trichocysts and many free trichocysts in the cytoplasm. To study the possible involvement of cytoskeletal elements, notably of microtubules, in the process of positioning of trichocysts at the cell surface, we took advantage of these stages. Cells were stained with tannic acid and subsequently analyzed by electron microscopy. Semithin sections allowed the determination of structural connections over a range of up to 10 micrometer. Microtubules emanating from ciliary basal bodies are seen in contact with free trichocysts, which appear to be transported, with their tip first, to the cell surface. (This can account for the saltatory movement reported by others). It is noteworthy that the "rails" represented by the microtubules do not directly determine the final attachment site of a trichocyst. Unoccupied attachment sites are characterized by a "plug" of electron-dense material just below the plasma membrane; the "plug" seems to act as a recognition or anchoring site; this material is squeezed out all around the trichocyst attachment zone, once a trichocyst is inserted (Westphal and Plattner, in press. [53]). Slightly below this "plug" we observed fasciae of microfilaments (identified by immunocytochemistry using peroxidase labeled F(ab) fragments against P. tetraurelia actin). Their arrangement is not altered when a trichocyst is docked. These fasciae seem to form a loophole for the insertion of a trichocyst. Trichocyst remain attached to the microtubules originating from the ciliary basal bodies--at least for some time--even after they are firmly installed in the preformed attachment sites. Evidently, the regular arrangement of exocytotic organelles is controlled on three levels: one operating over a long distance from the exocytosis site proper (microtubules), one over a short distance (microfilament bundles), and one directly on the exocytosis site ("plug").  相似文献   

3.
Role of tethering factors in secretory membrane traffic   总被引:10,自引:0,他引:10  
Coiled-coil and multisubunit tethers have emerged as key regulators of membrane traffic and organellar architecture. The restricted subcellular localization of tethers and their ability to interact with Rabs and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) suggests that tethers participate in determining the specificity of membrane fusion. An accepted model of tether function considers them molecular "bridges" that link opposing membranes before SNARE pairing. This model has been extended by findings in various experimental systems, suggesting that tethers may have other functions. Recent reports implicate tethers in the assembly of SNARE complexes, cargo selection and transit, cytoskeletal events, and localized attachment of regulatory proteins. A concept of tethers as scaffolding machines that recruit protein components involved in varied cellular responses is emerging. In this model, tethers function as integration switches that simultaneously transmit information to coordinate distinct processes required for membrane traffic. membrane tethering  相似文献   

4.
5.
6.
Work with Paramecium has contributed to the actual understanding of certain aspects of exocytosis regulation, including membrane fusion. The system is faster and more synchronous than any other dense-core vesicle system described and its highly regular design facilitates correlation of functional and ultrastructural (freeze-fracture) features. From early times on, several crucial aspects of exocytosis regulation have been found in Paramecium cells, e.g. genetically controlled microdomains (with distinct ultrastructure) for organelle docking and membrane fusion, involvement of calmodulin in establishing such microdomains, priming by ATP, occurrence of focal fusion with active participation of integral and peripheral proteins, decay of a population of integral proteins ("rosettes", mandatory for fusion capacity) into subunits and their lateral dispersal during fusion, etc. The size of rosette particles and their dispersal upon focal fusion would be directly compatible with proteolipid V(0) subunits of a V-ATPase, much better than the size predicted for oligomeric SNARE pins (SCAMPs are unknown from Paramecium at this time). However, there are some restrictions for a straightforward interpretation of ultrastructural results. The rather pointed, nipple-like tip of the trichocyst membrane could accommodate only one (or very few) potential V(0) counterpart(s), while the overlaying domain of the cell membrane contains numerous rosette particles. Particle size is compatible with V(0), but larger than that assumed for the SNARE complexes. When membrane fusion is induced in the presence of antibodies against cell surface components, focal fusion is seen to occur with dispersing rosette particles but without dispersal of their subunits and without pore expansion. Clearly, this is required for completing fusion and pore expansion. After cloning SNARE and V(0) components in Paramecium (with increasing details becoming rapidly available), we may soon be able to address the question more directly, whether any of these components or some new ones to be detected, serve exocytotic and/or any other membrane fusions in Paramecium.  相似文献   

7.

Background  

Polymorphonuclear neutrophils (PMN) constitute an essential cellular component of innate host defense against microbial invasion and exhibit a wide array of responses both to particulate and soluble stimuli. As the cells recruited earliest during acute inflammation, PMN respond rapidly and release a variety of potent cytotoxic agents within minutes of exposure to microbes or their products. PMN rely on the redistribution of functionally important proteins, from intracellular compartments to the plasma membrane and phagosome, as the means by which to respond quickly. To determine the range of membrane proteins available for rapid recruitment during PMN activation, we analyzed the proteins in subcellular fractions enriched for plasma membrane and secretory vesicles recovered from the light membrane fraction of resting PMN after Percoll gradient centrifugation and free-flow electrophoresis purification using mass spectrometry-based proteomics methods.  相似文献   

8.
RAGE is a multiligand receptor of the immunoglobulin superfamily involved in regeneration of injured peripheral nerve and cell motility. RAGE is implicated in the development of various chronic diseases, such as neurodegenerative disorders, inflammatory responses, and diabetic complications. The correlation between RAGE endocytic trafficking and RAGE function is still uninvestigated. S100B is one of the ligands of RAGE. The molecular mechanisms responsible of S100B translocation in exocytic vesicles are still poorly investigated. In the present study we elucidate the role of RAGE endocytic trafficking in promoting S100B secretion in Schwann cells. Here we show that RAGE-induced secretion of S100B requires phosphorylated caveolin1-dependent endocytosis of RAGE. Endocytosis of RAGE in response to ligand binding promotes the fusion of endosomes with S100B-positive secretory vesicles. Src promotes the fusion of endosomes with S100B-secretory vesicles. Inhibition of src induces RAGE degradation. RAGE-mediated src activation induces cav1 phosphorylation and relocalization in the perinuclear compartment. RAGE signaling and recycling are required for S100-induced Schwann cells morphological changes and are inhibited by high-glucose, suggesting a possible link between diabetes and peripheral nerve injury. Indeed, high glucose inhibits RAGE-mediated src activation. Src inhibition blocks RAGE recycling, S100B secretion, and morphological changes. In summary, we identified a novel pathway of vesicular trafficking required for the amplification of RAGE signaling and cytoskeleton dynamics that is potentially involved in the regeneration of injured peripheral nerve.  相似文献   

9.
《The Journal of cell biology》1993,123(6):1491-1505
During mitosis, several types of intermediate-sized filaments (IFs) undergo an extensive remodelling in response to phosphorylation by cdc 2 and other protein kinases. However, unlike the nuclear lamins, the cytoplasmic IFs do not seem to follow a fixed disassembly stereotype and often retain their physical continuity without depolymerizing into soluble subunits. To investigate potential interactions between mitotically modified IFs and other cellular structures, we have examined prometaphase-arrested cells expressing the IF protein vimentin. We demonstrate here that vimentin filaments associate in situ and co-fractionate with a distinct population of mitotic vesicles. These vesicles carry on their surfaces nuclear lamin B, the inner nuclear membrane protein p58, and wheat germ agglutinin (WGA)-binding proteins. Consistent with a tight interaction between the IFs and the mitotic membranes, vimentin, nuclear lamin B, and a 180-kD WGA-binding protein are co-isolated when whole mitotic homogenates are incubated with anti-vimentin or anti-lamin B antibodies immobilized on magnetic beads. The vimentin-associated vesicles are essentially depleted of ER, Golgi and endosomal membrane proteins. The interaction of vimentin with lamin B-carrying membranes depends on phosphorylation and is weakened by dephosphorylation during nuclear reassembly in vitro. These observations reveal a novel interaction between IFs and cellular membranes and further suggest that the vimentin filaments may serve as a transient docking site for inner nuclear membrane vesicles during mitosis.  相似文献   

10.
We describe the reconstitution of exocytotic function through recombination of purified cortical secretory vesicles (CVs) and plasma membrane from sea urchin eggs. CVs were dislodged from a cell surface complex preparation by gentle homogenization in an isotonic dissociation buffer, and purified by differential centrifugation. CV-free plasma membrane fragments were obtained by mechanically dislodging CVs from cortical lawn (CL) preparations with a jet of CL isolation buffer. This procedure produced a "plasma membrane lawn" preparation, consisting of plasma membrane fragments attached via their vitelline layer (an extracellular glycocalyx) to a polylysine-coated microscope slide. When freshly prepared CVs were incubated with plasma membrane lawns, CVs reassociated with the cytoplasmic face of the plasma membrane, forming an exocytotically competent, reconstituted cortical lawn (RL). Exocytosis in RLs was monitored by phase-contrast microscopy, and quantitated with a sensitive microphotometric assay. Half-maximal exocytosis in RLs occurred at 18.5 microM free Ca2+; half-maximal exocytosis in control lawns occurred at 5.7 microM free Ca2+. Greater than 90% of the purified CVs that were not attached to a plasma membrane lawn remained intact when bathed in a buffer containing millimolar Ca2+. This result excluded the possibility that Ca2+-triggered CV lysis was responsible for our observations, and confirmed that the association of CVs with the plasma membrane was required for exocytosis in RLs. Evidence that the Ca2+-stimulated release of CV contents in CLs and RLs is the in vitro equivalent of exocytosis was obtained with an immunofluorescence-based vectorial transport assay, using an antiserum directed against a CV content protein: stimulation of RLs or partially CV-depleted CLs with Ca2+ resulted in fusion of the CV and plasma membranes, and the vectorial transport of CV contents from the cytoplasmic to the extracytoplasmic face of the egg plasma membrane.  相似文献   

11.
Membrane tethering and fusion in the secretory and endocytic pathways   总被引:6,自引:2,他引:6  
Studies of intracellular trafficking over the past decade or so have led to striking advances in our understanding of the molecular processes by which transport intermediates dock and fuse. SNARE proteins play a central role, assembling into complexes that bridge membranes and may catalyze membrane fusion directly. In general, different SNARE proteins operate in different intracellular trafficking pathways, so recent reports that SNARE assembly in vitro is promiscuous have come as something of a surprise. We propose a model in which proper SNARE assembly is under kinetic control, orchestrated by members of the Sec1 protein family, small GTP-binding Rab proteins, and a diverse assortment of tethering proteins.  相似文献   

12.
Bioenergetics of secretory vesicles   总被引:21,自引:0,他引:21  
  相似文献   

13.
In the early secretory pathway, asparagine-linked glycosylation facilitates the conformational maturation of diverse polypeptides by promoting their physical engagement with the glycoprotein-folding machinery. Misfolded glycoproteins are selectively eliminated from the endoplasmic reticulum by a stringent process of conformation-based quality control. Recent studies indicate that a small ensemble of oligosaccharide-processing enzymes and lectins use the asparagine-linked appendage to orchestrate the selective disposal of numerous transport-defective glycoproteins from the early secretory pathway. The glycan-based disposal system functions as an evolutionarily conserved terminal checkpoint in eukaryote genome expression. That the mechanisms by which glycoprotein substrates are recruited for degradation diverge at the level of signal recognition reflects a previously unappreciated component of cellular differentiation in higher eukaryotes.  相似文献   

14.
《Developmental cell》2023,58(2):121-138.e9
  1. Download : Download high-res image (269KB)
  2. Download : Download full-size image
  相似文献   

15.
The trans-Golgi network (TGN) is the major sorting station in the secretory pathway of all eukaryotic cells. How the TGN sorts proteins and lipids to generate the enrichment of sphingolipids and sterols at the plasma membrane is poorly understood. To address this fundamental question in membrane trafficking, we devised an immunoisolation procedure for specific recovery of post-Golgi secretory vesicles transporting a transmembrane raft protein from the TGN to the cell surface in the yeast Saccharomyces cerevisiae. Using a novel quantitative shotgun lipidomics approach, we could demonstrate that TGN sorting selectively enriched ergosterol and sphingolipid species in the immunoisolated secretory vesicles. This finding, for the first time, indicates that the TGN exhibits the capacity to sort membrane lipids. Furthermore, the observation that the immunoisolated vesicles exhibited a higher membrane order than the late Golgi membrane, as measured by C-Laurdan spectrophotometry, strongly suggests that lipid rafts play a role in the TGN-sorting machinery.  相似文献   

16.
In response to an external stimulus, neuronal cells release neurotransmitters from small synaptic vesicles and endocrine cells release secretory proteins from large dense core granules. Despite these differences, endocrine cells express three proteins known to be components of synaptic vesicle membranes. To determine if all three proteins, p38, p65, and SV2, are present in endocrine dense core granule membranes, monoclonal antibodies bound to beads were used to immunoisolate organelles containing the synaptic vesicle antigens. [3H]norepinephrine was used to label both chromaffin granules purified from the bovine adrenal medulla and rat pheochromocytoma (PC12) cells. Up to 80% of the vesicular [3H]norepinephrine was immunoisolated from both labeled purified bovine chromaffin granules and PC12 postnuclear supernatants. In PC12 cells transfected with DNA encoding human growth hormone, the hormone was packaged and released with norepinephrine. 90% of the sedimentable hormone was also immunoisolated by antibodies to all three proteins. Stimulated secretion of PC12 cells via depolarization with 50 mM KCl decreased the amount of [3H]norepinephrine or human growth hormone immunoisolated. Electron microscopy of the immunoisolated fractions revealed large (greater than 100 nm diameter) dense core vesicles adherent to the beads. Thus, large dense core vesicles containing secretory proteins possess all three of the known synaptic vesicle membrane proteins.  相似文献   

17.
Summary Using an in situ tannic acid perfusion technique, this study presents evidence that the removal of membrane components from the rat atrial secretory granule membrane after granule exocytosis is mediated by coated vesicles. When tannic acid is used to arrest the post-fusion stages of granule release, coated pit formation occurs on granule membrane, which, although continuous with the sarcolemma, is easily recognised by the membrane omega profile and the continued presence of the granule core. Tannic acid perfusion, before aldehyde fixation, allows a degree of continued cell function, and granule fusions can persist after tannic acid has reached the cell. This results in an increase in the numbers of fusion profiles and the appearance of coated pits on granule membrane at these sites. The proportion of granules with coats increases with perfusion time, suggesting that endocytotic, as well exocytotic events, may be arrested by the action of tannic acid. Coated vesicles are also involved at earlier stages of the release pathway. In other types of secretory system this is considered to represent recycling of membrane proteins as part of the maturation process of the granule. Although arrested granules exhibiting this clathrin coat could have had the coat prior to fusion, as part of the maturation process, our results show that it is more likely to represent a second stage of membrane protein recycling; the postfusion reclamation of proteins from the sarcolemma. This facet of the tannic acid perfusion procedure suggests a general method for quantifying coated pit formation during secretory granule release.  相似文献   

18.
CDP-diacylglycerol synthase, phosphatidylinositol synthase, and phosphatidylinositol kinase activities were associated with post-Golgi apparatus secretory vesicles destined for the plasma membrane of Saccharomyces cerevisiae. These results suggest that the plasma membrane is capable of synthesizing both CDP-diacylglycerol and phosphatidylinositol as well as phosphorylating phosphatidylinositol.  相似文献   

19.
B Goud  A Salminen  N C Walworth  P J Novick 《Cell》1988,53(5):753-768
SEC4, one of the 10 genes involved in the final stage of the yeast secretory pathway, encodes a ras-like, GTP-binding protein. In wild-type cells, Sec4 protein is located on the cytoplasmic face of both the plasma membrane and the secretory vesicles in transit to the cell surface. In all post-Golgi blocked sec mutants, Sec4p is predominantly associated with the secretory vesicles that accumulate as a result of the secretory block. Sec4p is synthesized as a soluble protein that rapidly (t1/2 less than or equal to 1 min) and tightly associates with secretory vesicles and the plasma membrane by virtue of a conformational change of a covalent modification. These data suggest that Sec4p may function as a "G" protein on the vesicle surface to transduce an intracellular signal needed to regulate transport between the Golgi apparatus and the plasma membrane.  相似文献   

20.
The biogenesis of synaptic-like microvesicles (SLMVs) in neuroendocrine cells was investigated by studying the traffic of newly synthesized synaptophysin to SLMVs in PC12 cells. Synaptophysin was found to be sulfated, which facilitated the determination of its exit route from the trans-Golgi network (TGN). Virtually all [35S]sulfate-labeled synaptophysin was found to leave the TGN in vesicles which were indistinguishable from constitutive secretory vesicles but distinct from immature secretory granules and SLMVs. [35S]sulfate-labeled synaptophysin was rapidly transported from the TGN to the cell surface, with a t1/2 of approximately 10 min in resting cells. After arrival at the cell surface, [35S]sulfate-labeled synaptophysin cycled for at least 1 h between the plasma membrane and an intracellular compartment likely to be the early endosome. Up to approximately 40% of the [35S]sulfate-labeled synaptophysin eventually (after 3 h and later) reached SLMVs, which could be distinguished from the other post-TGN compartments by their lower buoyant density in a sucrose gradient and their selective inclusion upon permeation chromatography using a controlled-pore glass column. Our results suggest that newly synthesized membrane proteins of SLMVs in neuroendocrine cells, and possibly of small synaptic vesicles in neurons, reach these organelles via the TGN----plasma membrane----early endosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号