首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The liver stage of the Plasmodium parasite remains one of the most promising targets for intervention against malaria as it is clinically silent, precedes the symptomatic blood stage and represents a bottleneck in the parasite life cycle. However, many aspects of the development of the parasite during this stage are far from understood. During the liver stage, the parasite undergoes extensive replication, forming tens of thousands of infectious merozoites from each invading sporozoite. This implies a very efficient and accurate process of cytokinesis and thus also of organelle development and segregation. We have generated for the first time Plasmodium berghei double-fluorescent parasite lines, allowing visualization of the apicoplast, mitochondria and nuclei in live liver stage parasites. Using these we have seen that in parallel with nuclear division, the apicoplast and mitochondrion become two extensively branched and intertwining structures. The organelles then undergo impressive morphological and positional changes prior to cell division. To form merozoites, the parasite undergoes cytokinesis and the complex process of organelle development and segregation into the forming daughter merozoites could be analysed in detail using the newly generated transgenic parasites.  相似文献   

2.
Host cell invasion by Apicomplexan parasites marks a crucial step in disease establishment and pathogenesis. The moving junction (MJ) is a conserved and essential feature among parasites of this phylum during host cell invasion, thus proteins that associate at this MJ are potential targets of drug and vaccine development. In both Toxoplasma gondii and Plasmodium falciparum, a micronemal protein, Apical Membrane Antigen 1 (AMA1), and Rhoptry Neck proteins (RONs; RON2 and RON4) form an essential complex at the MJ. A new RON member, RON5, was shown to be important to stabilize RON2 during development and to associate with the MJ complex in T. gondii and also to be immunoprecipitated by anti-AMA1 antibody in P. falciparum. However, the detailed molecular nature of RON5 in Plasmodium is not well understood. In this study, Plasmodium yoelii RON5 gene (pyron5) was identified as an ortholog of P. falciparum and Plasmodium berghei ron5. The pyron5 exon–intron structure was validated by comparing genomic DNA sequences and experimentally determining full-length complementary DNA sequence. PyRON5 was detected in water-insoluble fractions but no reliable transmembrane domain(s) were predicted by transmembrane prediction algorithms. PyRON5 formed a complex with PyRON4, PyRON2, and PyAMA1 in late schizont protein extract. Taken together, we infer that these results suggest that PyRON5 associates with membrane indirectly via other MJ components. Indirect immunofluorescence assay and immunoelectron microscopy localized PyRON5 at the rhoptry neck of the late schizont merozoites and at the rhoptry of sporozoites. The two-stage expression of PyRON5 suggests that PyRON5 plays roles in invasion not only of erythrocytes, but also of mosquito salivary glands and/or mammalian hepatocytes.  相似文献   

3.
Liver biopsies of white rates infected by Plasmodium berghei sporozoites were examined by electron microscopy. Intrahepatocytic schizont development was confirmed. In addition, at 60 and 70 h after sporozoite inoculation, exoerythrocytic merozoites were noted in Kupffer cells of liver sinusoids. Although it is theoretically possible that this observation may be of merozoite development in Kupffer cells, the authors suspect that this example of phagocytosis would be one of the host's natural defenses against sporozoite-transmitted malaria.  相似文献   

4.
5.
6.
Plasmodium yoelii is a rodent parasite commonly used as a model to study malaria infection. It is the preferred model parasite for liver-stage immunological studies and is also widely used to study hepatocyte, erythrocyte and mosquito infection. We have generated a P. yoelii yoelii 17XNL line that is stably transfected with the green fluorescent protein (gfp) gene. This parasite line constitutively expresses high levels of GFP during the complete parasite life cycle including liver, blood and mosquito stages. These fluorescent parasites can be used in combination with fluorescence activated cell sorting or live microscopy for a wide range of experimental applications.  相似文献   

7.
8.
Pathology of the most lethal form of malaria is caused by Plasmodium falciparum asexual blood stages and initiated by merozoite invasion of erythrocytes. We present a phosphoproteome analysis of extracellular merozoites revealing 1765 unique phosphorylation sites including 785 sites not previously detected in schizonts. All MS data have been deposited in the ProteomeXchange with identifier PXD001684 ( http://proteomecentral.proteomexchange.org/dataset/PXD001684 ). The observed differential phosphorylation between extra and intraerythrocytic life‐cycle stages was confirmed using both phospho‐site and phospho‐motif specific antibodies and is consistent with the core motif [K/R]xx[pS/pT] being highly represented in merozoite phosphoproteins. Comparative bioinformatic analyses highlighted protein sets and pathways with established roles in invasion. Within the merozoite phosphoprotein interaction network a subnetwork of 119 proteins with potential roles in cellular movement and invasion was identified and suggested that it is coregulated by a further small subnetwork of protein kinase A (PKA), two calcium‐dependent protein kinases (CDPKs), a phosphatidyl inositol kinase (PI3K), and a GCN2‐like elF2‐kinase with a predicted role in translational arrest and associated changes in the ubquitinome. To test this notion experimentally, we examined the overall ubiquitination level in intracellular schizonts versus extracellular merozoites and found it highly upregulated in merozoites. We propose that alterations in the phosphoproteome and ubiquitinome reflect a starvation‐induced translational arrest as intracellular schizonts transform into extracellular merozoites.  相似文献   

9.
应用六氰酸铁钾和锇酸双染色法的透射电镜技术,对红内期疟原虫配子体形成过程中的形态生物学特征进行识别。结果表明,配子体是一渐进发育的单核、惰性(团块样、虫体不活跃)虫体,其核旁有一个由扁平囊和泡状小体极性排列组成的细胞器——高尔基体(Golgi complex),虫体被膜下有嗜锇小体。其雌性配子体的结构特点是核质较致密、内质网丰富和被膜下嗜锇小体多;而雄性配子体却是核质较疏松、线粒体发达、内织网和嗜锇小体少。结论是红内期疟原虫配子体形成与裂体增殖过程中形态结构的明显差别,雌雄配子体在结构与发育上明显的差异,都具有特定的生物学与生态学意义。  相似文献   

10.
11.
Scanning electron microscopy was used to study the surface characteristics of the oocyst, sporoblast and sporozoite of Plasmodium yoelii yoelii. Observations were made of the sporogonic stages of 6-12 day infections of the malaria parasite in Anopheles stephensi. Oocyst and sporoblast development were not synchronous. The surface of the undifferentiated (early stage) oocyst appeared smooth, whereas that of differentiated (late stage) oocysts were rough or wrinkled. The wall of the differentiated oocysts showed numerous micropores at higher magnification (x15,000-20,000) the biological significance of which is not known. Small, bud-like satellite bodies were seen attached to some oocysts. Various forms of different stages of the sporoblast were described. Sporozoite budding took place on the surface of the sporoblast body. The sporozoite was elongate, curved and with a blunt anterior end.  相似文献   

12.
A reticulocyte-binding protein complex of Plasmodium vivax merozoites.   总被引:7,自引:0,他引:7  
Plasmodium vivax merozoites primarily invade reticulocytes. The basis of this restricted host cell preference has been debated. Here we introduce two novel P. vivax proteins that comigrate on reducing SDS-polyacrylamide gels, colocalize at the apical pole of merozoites, and adhere specifically to reticulocytes. The genes encoding these proteins, P. vivax reticulocyte-binding proteins 1 and 2 (PvRBP-1 and PvRBP-2), have been cloned and analyzed. Homologous genes are evident in the closely related simian malaria parasite, P. cynomolgi, which also prefers to invade reticulocytes, but are not evident in the genome of another related simian malaria parasite, P. knowlesi, which invades all red blood cell subpopulations. Native PvRBP-1 is likely a transmembrane-anchored disulfide-linked protein, and along with PvRBP-2 may function as an adhesive protein complex. We propose that the RBPs of P. vivax, and homologous proteins of P. cynomolgi, function to target the reticulocyte subpopulation of red blood cells for invasion.  相似文献   

13.
The rhoptries of Plasmodium species participate in merozoite invasion and modification of the host erythrocyte. However, only a few rhoptry proteins have been identified using conventional gene identification protocols. To investigate the protein organization of this organelle and to identify new rhoptry proteins, merozoite rhoptries from three different Plasmodium rodent species were enriched by sucrose density gradient fractionation, and subjected to proteome analysis using multidimensional protein identification technology (MudPIT); 148 proteins were identified. To distinguish abundant cellular contaminants from bona fide organellar proteins, a differential analysis comparing the proteins in the rhoptry-enriched fractions to proteins identified from whole cell lysates of P. berghei mixed asexual blood stages was undertaken. In addition, the proteins detected were analyzed for the presence of transmembrane domains, secretory signal peptide, cell adhesion motifs, and/or rhoptry-specific tyrosine-sorting motifs. Combining the differential analysis and bioinformatic approaches, a set of 36 proteins was defined as being potentially located to the Plasmodium rhoptries. Among these potential rhoptry proteins were homologues of known rhoptry proteins, proteases, and enzymes involved in lipid metabolism. Molecular characterization and understanding of the supramolecular organization of these novel potential rhoptry proteins may assist in the identification of new intervention targets for the asexual blood stages of malaria.  相似文献   

14.
Plasmodium lacks the de novo pathway for purine biosynthesis and relies exclusively on the salvage pathway. Adenosine deaminase (ADA), first enzyme of the pathway, was purified and characterized from Plasmodium yoelii, a rodent malarial species, using ion exchange and gel exclusion chromatography. The purified enzyme is a 41 kDa monomer. The enzyme showed Km values of 41 μM and 34 μM for adenosine and 2′-deoxyadenosine, respectively. Erythro-9-(2-hydroxy-3-nonyl) adenine competitively inhibited P. yoelii ADA with Ki value of 0.5 μM. The enzyme was inhibited by DEPC and protein denaturing agents, urea and GdmCl. Purine analogues significantly inhibited ADA activity. Inhibition by p-chloromercuribenzoate (pCMB) and N-ethylmaleimide (NEM) indicated the presence of functional –SH groups. Tryptophan fluorescence maxima of ADA shifted from 339 nm to 357 nm in presence of GdmCl. Refolding studies showed that higher GdmCl concentration irreversibly denatured the purified ADA. Fluorescence quenchers (KI and acrylamide) quenched the ADA fluorescence intensity to the varied degree. The observed differences in kinetic properties of P. yoelii ADA as compared to the erythrocyte enzyme may facilitate in designing specific inhibitors against ADA.  相似文献   

15.
Neutral proteases of Plasmodium sp erythrocytic stages were studied by means of a sensitive fluorogenic method and gelatin-SDS-PAGE. The substrates gluconoyl-Val-Leu-Gly-Lys(or Arg)-3-amido-9-ethylcarbazole were selectively hydrolyzed by an endopeptidase from rodent Plasmodium berghei (Pb) and Plasmodium chabaudi (Pc) and from human Plasmodium falciparum (Pf) parasites. These endopeptidases were purified from 100,000-g soluble schizont extract by high pressure liquid chromatography; they have a similar Mr of 68,000 in SDS-PAGE, and an optimal activity at pH 7.4. The Pb 68 and Pf 68 endopeptidases were localized in schizonts and also in merozoites as shown by indirect immunofluorescence on Pb merozoites and by the identification of the Pf 68 endopeptidase activity in free viable merozoites. The Pb 68 and Pf 68 endopeptidases belong to the class of cysteine proteases. Analysis by gelatin-SDS-PAGE of a Pb 68 endopeptidase-enriched fraction showed a reproducible 95,000 proteolytic band. The initial extracts showed a similar 95,000 proteolytic band, and also 2 other 90,000 and 85,000 major bands. During reinvasion experiments, it was possible to recover a 95,000 and a 40,000 protease band from supernates of cultures grown in a semidefined medium without serum. Hydrophilic peptide derivatives related to the substrate of Pf 68 endopeptidase are shown to be potential inhibitors of the Pf reinvasion process in vitro.  相似文献   

16.
Genetic control of immunity to Plasmodium yoelii sporozoites   总被引:9,自引:0,他引:9  
Using a rodent malaria system, we have shown that protective immunity to the preerythrocytic stages of malaria is genetically controlled by MHC and non-MHC genes. Ten congenic strains of mice were immunized with irradiated sporozoites of Plasmodium yoelii. When challenged with viable sporozoites, only two strains had a high proportion of animals that did not develop blood stage infections. Immunity did not correlate with antisporozoite antibody levels. Two protective mechanisms exist determined by non-H-2 genes, and each mechanism is further controlled by H-2-linked Ir genes. On the BALB background only H-2d mice are protected, and protection is abolished by depleting CD8+ T cells. In contrast, on the B10 background only H-2q mice are strongly protected, and protection is not affected by CD8+ T cell depletion. If similar complex genetic regulation of immunity occurs in the human malarias, it will be a major hurdle for vaccine development.  相似文献   

17.
Lewis-Hughes P. H. and Howell M. J. 1984. In vitro culture of Plasmodium yoelii blood stages. International Journal for Parasitology14: 447–451. Plasmodium yoelii infected reticulocytes were cultured for 72 h at either 37 or 20°C in MEM (Eagle's modification) medium containing, in addition, glucose, para-aminobenzoic acid and 5% foetal calf serum, buffered at pH 7.3 with sodium bicarbonate/ HEPES and maintained under 10% CO2 in air. Red blood cell numbers were more stable at 20°C than at 37°C. Culture at both temperatures resulted in an increase in parasitaemia of the reticulocyte population over the initial 36 h at 37°C and for at least 72 h at 20°C. The effects of different temperatures appeared to be related to the continued presence of target cells. Parasites were not detected after 72 h culture at 37°C, but persisted for up to 120 h at 20°C. Increasing parasitaemia at both temperatures was associated with changes in the numbers of some parasite development types. Early falls in schizont numbers were associated with an increase in the numbers of ring forms. Trophozoite numbers tended to remain constant throughout the culture period. Viability of parasites cultured for 36 h was confirmed by their infectivity to CBA mice. In addition, parasites progressively incorporated H3-leucine into TCA-precipitable material over the initial 36 h of culture.  相似文献   

18.
The 110 kDa/Rhop-3 rhoptry protein of Plasmodium falciparum is non-covalently associated with two other proteins, the 140 kDa Rhop-1 and the 130 kDa Rhop-2. cDNAs encoding Rhop-3 from Plasmodium yoelii were isolated using rhoptry-specific antisera from Plasmodium falciparum, P. yoelii, and Plasmodium chabaudi. The cDNAs encoded peptides with partial homology to the C-terminal region (residues 541-861) of P. falciparum Rhop-3. Core regions of homology to the P. falciparum gene will be useful in determining the biological role of Rhop-3 and its potential as a vaccine candidate for malaria.  相似文献   

19.
20.
Study of the parasite mosquito stages of Plasmodium and its use in the production of sporozoite vaccines against malaria has been hampered by the technical difficulties of in vitro development. Here, we show the complete axenic development of the parasite mosquito stages of Plasmodium yoelii. While we demonstrate that matrigel is not required for parasite development, soluble factors produced and secreted by Drosophila melanogaster S2 cells appear to be crucial for the ookinete to oocyst transition. Parasites cultured axenically are both morphologically and biologically similar to mosquito-derived ookinetes, oocysts, and sporozoites. Axenically derived sporozoites were capable of producing an infection in mice as determined by RT-PCR; however, the parasitemia was significantly much less than that produced by mosquito-derived sporozoites. Our cell free system for development of the mosquito stages of P. yoelii provides a simplified approach to generate sporozoites that may be for biological assays and genetic manipulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号