首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A molecular imprinting approach to construct synthetic receptors was examined, wherein a linear pre-polymer bearing functional groups for intermolecular interaction with a given molecule is cross-linked in the presence of the molecule as a template, and subsequent removal of the template from the resultant network-polymer is expected to leave a complementary binding site. Poly(methacrylic acid) (PMAA) derivatized with a vinylbenzyl group as a cross-linkable side chain was utilized as the pre-polymer for the molecular imprinting of a model template, (-)-cinchonidine. Selectivity of the imprinted polymer was evaluated by comparing the retentions of the original template, (-)-cinchonidine and its antipode (+)-cinchonine in chromatographic tests, exhibiting a selectivity factor up to 2.4. By assessment of the imprinted polymers in a batch mode, a dissociation constant at 20 degrees C for (-)-cinchonidine was estimated to be K (d) = 2.35 x 10(-6) M (the number of binding sites: 4.54 x 10(-6) mol/g-dry polymer). The displayed affinity and selectivity appeared comparable to those of an imprinted polymer prepared by a conventional monomer-based protocol, thus showing that the pre-polymer, which can be densely cross-linked, is an alternative imprinter for developing template-selective materials. (-)-Cinchonidine-imprinted polymers were prepared and assessed using the pre-polymers bearing different densities of the vinylbenzyl group and different amounts of the cross-linking agent to examine the appropriate density of the cross-linking side chain that was crucial for developing the high affinity and selectivity of the imprinted polymers.  相似文献   

2.
We have employed FITC--albumin as the protein template molecule in an aqueous phase molecular imprinted polymer (HydroMIP) strategy. For the first time, the use of a fluorescently labeled template is reported, with subsequent characterization of the smart material to show that the HydroMIP possesses a significant molecular memory in comparison to that of the nonimprinted control polymer (HydroNIP). The imaging of the FITC--albumin imprinted HydroMIP using confocal microscopy is described, with the in situ removal of the imprinted protein displayed in terms of observed changes in the fluorescence of the imprinted polymer, both before and after template elution (using a 10% SDS/10% AcOH (w/v) solution). We also report the imaging of a bovine hemoglobin (BHb) imprinted HydroMIP using two-photon confocal microscopy and describe the effects of template elution upon protein autofluorescence. The findings further contribute to the understanding of aqueous phase molecular imprinting protocols and document the use of fluorescence as a useful tool in template labeling/detection and novel imaging strategies.  相似文献   

3.
4.
A newly designed molecularly imprinted polymer (MIP) material was fabricated and successfully utilized as recognition element to develop a quantum dots (QDs) based MIP-coated composite for selective recognition of the template cytochrome c (Cyt). The composites were synthesized by sol-gel reaction (imprinting process). The imprinting process resulted in an increased affinity of the composites toward the corresponding template. The fluorescence of MIP-coated QDs was stronger quenched by the template versus that of non-imprinted polymer (NIP)-coated QDs, which indicated the composites could recognize the corresponding template. The results of specific experiments further exhibited the recognition ability of the composites. Under optimum conditions, the linear range for Cyt is from 0.97 μM to 24 μM, and the detection limit is 0.41 μM. The new composites integrated the high selectivity of molecular imprinting technology and fluorescence property of QDs and could convert the specific interactions between imprinted cavities and corresponding template to the obvious changes of fluorescence signal. Therefore, a simple and selective sensing system for protein recognition has been realized.  相似文献   

5.
An atrazine (ATR) molecularly imprinted polymer (MIP) was prepared using a non-covalent strategy. The affinity and selectivity of the polymer was initially evaluated under non-equilibrium conditions and the polymer was shown to possess good template selectivity. The selectivity of the polymer was further investigated under equilibrium conditions and over a range of concentrations using Scatchard plots and Hill plots and by assessing distribution coefficients and normalised selectivity values. It was observed that both selectivity and affinity were dependent on the concentration of the ligand and that unusually selectivity and affinity were better at higher atrazine concentrations. It was concluded that this phenomenon resulted from the formation of atrazine-atrazine complexes during the pre-polymerisation stage and during rebinding and that the polymer demonstrated improved atrazine affinity when the conditions favoured complex formation.  相似文献   

6.
The formation of ordered aggregates of tobacco mosaic virus (TMV) in the presence of divalent metal ions has been studied in concentrated (1-25 mg/ml) solutions of the virus. The divalent metal cations Cd2+, Zn2+, Pb2+, Cu2+, and Ni2+ have been found to promote TMV precipitation from solution at a critical concentration Ccrit, which for a given metal depends on the pH and the ionic strength of the solution, but is largely independent of the virus concentration. The TMV precipitate behaves as a nematic liquid crystal and on drying at a glass surface produces highly ordered, optically birefringent films. However, precipitation is not observed with alkali-earth metals such as Ca2+ and Mg2+. The experimental data suggest that, apart from two 'internal' metal-binding sites in each TMV subunit, the virus contains metal-binding sites of a lower affinity which promote cross-linking of TMV rods via metal bridges. The latter seem to be responsible for the precipitation of TMV in the presence of divalent cations at neutral pH. We propose that the metal-induced cross-linking may be the predominant mechanism to account for the limited solubility of a variety of proteins in solution containing metal cations with valence 2 and higher.  相似文献   

7.
In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture.  相似文献   

8.
Protein-responsive imprinted polymers with specific shrinking and rebinding   总被引:1,自引:0,他引:1  
Stimuli-responsive protein imprinted polymers were obtained via a combination of molecular imprinting and reversible stimuli-responsive polymer using lysozyme or cytochrome c as template, N-isopropylacrylamide (NIPA) as major monomer, methacrylic acid (MAA) and acrylamide (AAm) as functional co-monomers, and N,N-methylenebisacrylamide (MBAAm) as crosslinker. The molecularly imprinted polymers (MIPs) can respond not only to external stimuli such as temperature and salt concentration, but also to the corresponding template protein with significant specific volume shrinking. This specific shrinking behavior was attributed to the synergistic effect of multiple-site weak interactions (electrostatic force, hydrogen bonding and hydrophobic interaction) and the cavity effect. The MIPs showed highly selective adsorption of template proteins with specific shrinking compared with the non-imprinted polymers. The results indicated that the MIPs seemed to change shape to accommodate the conformation of the template protein leading to the formation of a shape complementary cavity.  相似文献   

9.
Molecular imprinting is a technique for the synthesis of polymers capable to bind target molecules selectively. The imprinting of large proteins, such as cell adhesion proteins or cell receptors, opens the way to important and innovative biomedical applications. However, such molecules can incur into important conformational changes during the preparation of the imprinted polymer impairing the specificity of the recognition cavities. The "epitope approach" can overcome this limit by adopting, as template, a short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted polymer can recognize both the template and the whole molecule thanks to the specific cavities for the epitope. In this work two molecularly imprinted polymer formulations (a macroporous monolith and nanospheres) were obtained using the protected peptide Z-Thr-Ala-Ala-OMe, as template, and Z-Thr-Ile-Leu-OMe, as analogue for the selectivity evaluation, methacrylic acid, as functional monomer, and trimethylolpropane trimethacrylate and pentaerythritol triacrylate (PETRA), as cross-linkers. Polymers were synthesized by precipitation polymerization and characterized by standard techniques. Polymerization and rebinding solutions were analyzed by high performance liquid chromatography. The highly cross-linked polymers retained about 70% of the total template amount, against (20% for the less cross-linked ones). The extracted template amount and the rebinding capacity decreased with the cross-linking degree, while the selectivity showed the opposite behaviour. The PETRA cross-linked polymers showed the best recognition (MIP 2-, alpha=1.71) and selectivity (MIP 2+, alpha'=5.58) capabilities. The cytotoxicity tests showed normal adhesion and proliferation of fibroblasts cultured in the medium that was put in contact with the imprinted polymers.  相似文献   

10.
ASSEMBLY AND AGGREGATION OF TOBACCO MOSAIC VIRUS IN TOMATO LEAFLETS   总被引:5,自引:5,他引:0       下载免费PDF全文
Cells of tomato leaflets (Lycopersicum esculentum Mill.) were studied by phase and electron microscopy at various intervals after inoculation with a common strain of tobacco mosaic virus (TMV). Forty-eight hours after inoculation, prior to the development of assayable virus, individual TMV particles, and also particle aggregates, were observed in the ground cytoplasm of mesophyll cells. The most rapid synthesis of virus occurred between 80 and 300 hours after inoculation. Cytological changes during this time were characterized by an increased number of individual particles in the cytoplasm, growth of some aggregates, distortion and vacuolation of chloroplasts, and formation of filaments in the cytoplasm which were approximately four times the size of TMV. These filaments were interpreted as possible developmental forms of the TMV particle. Vacuoles in chloroplasts commonly contained virus particles. Evidence indicated that TMV was assembled in the ground cytoplasm and, in some cases, subsequently was enveloped by distorted chloroplasts.  相似文献   

11.
Three nitrophenol isomer-imprinted polymers were prepared under the same conditions using 4-vinylpyridine as a functional monomer. Different recognition capacities for template molecules were observed for the three polymers. Another imprinting system with stronger acidity than nitrophenol isomers, 2-hydroxybenzoic acid (salicylic acid) and 4-hydroxybenzoic acid, was imprinted using 4-vinylpyridine or acrylamide as functional monomer respectively. Both 4-hydroxybenzoic acid-imprinted polymers using the two monomers showed recognition ability for the template molecule. However, when acrylamide was chosen as functional monomer, the salicylic acid-imprinted polymer showed very weak recognition for the template molecule, whereas strong recognition ability of the resultant polymer for salicylic acid was observed with 4-vinylpyridine as functional monomer. It seems that the structure and acidity of template molecules is responsible for the difference in recognition, by influencing the formation and strength of interaction between template molecule and functional monomer during the imprinting process. An understanding of the mechanism of molecular imprinting and molecular recognition of MIPs will help to predict the selectivity of MIPs on the basis of template molecule properties.  相似文献   

12.
Polymer capable of specific binding to Cu(2+)-2, 2'-dipyridyl complex was prepared by molecular imprinting technology. The binding specificity of the polymer to the template (Cu(2+)-2, 2'-dipyridyl complex) was investigated by cyclic voltammetric scanning using the carbon paste electrode modified by polymer particles in phosphate buffer solution. Factors that influence rebinding of the imprinted polymer were explored. The results demonstrated that cyclic voltammetry was an efficient approach to explore interactions between template and imprinted polymers.  相似文献   

13.
A strategy for arranging two porphyrin moieties in a face-to-face fashion in polymeric material was demonstrated by molecular imprinting, whereby porphyrin Zn(II) complex monomers were cross-linked with ethylene glycol dimethacrylate in the presence of pyrazine or 1,5-naphthyridine as a template molecule. In chromatographic studies using the resultant imprinted polymers as stationary phase, both the polymers showed selectivity for the original template molecule, suggesting that two zinc porphyrin moieties were immobilized in the face-to-face fashion, and were center-aligned for pyrazine recognition and offset-arranged for 1,5-naphthyridine recognition. The imprinted polymer with porphyrin moieties also showed a decrease in its fluorescence intensity in response to the concentration of the target molecule, suggesting the potential utility as sensing material.  相似文献   

14.
A combinatorial screening procedure was used for the selection of polymer precursors in the preparation of molecularly imprinted polymer (MIP), which is useful in the detection of the air pollution marker molecule benzo[a]pyrene (BAP). Molecular imprinting is a technique for the preparation of polymer materials with specific molecular recognition receptors. The preparation of imprinted polymers requires polymer precursors such as functional monomer, cross-linking monomer, solvent, an initiator of polymerization and thermal or UV radiation. A virtual library of functional monomers was prepared based on interaction binding scores computed using HyperChem Release 8.0 software. Initially, the possible minimum energy conformation of the monomers and BAP were optimized using the semi-empirical (PM3) quantum method. The binding energy between the functional monomer and the template (BAP) was computed using the Hartree-Fock (HF) method with 6-31 G basis set, which is an ab initio approach based on Moller-Plesset second order perturbation theory (MP2). From the computations, methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were selected for preparation of BAP imprinted polymer. The larger interaction energy (ΔE) represents possibility of more affinity binding sites formation in the polymer, which provides high binding capacity. The theoretical predictions were complimented through adsorption experiments. There is a good agreement between experimental binding results and theoretical computations, which provides further evidence of the validity of the usefulness of computational screening procedures in the selection of appropriate MIP precursors in an experiment-free way.  相似文献   

15.
Solution behaviour of hydroxyethyl cellulose (HEC) is reported in the polymer concentration range spanning over two decades (c=0.002-5% (w/v)). The results conclude the following: (i) dilute solution regime prevailed for c<0.2% (w/v), flexible HEC fibres of typical length ≈ 1 μm and persistence length ≈ 10 nm were found here, (ii) for 0.2相似文献   

16.
The relationship between processes of thermal denaturation and heat-induced aggregation of tobacco mosaic virus (TMV) coat protein (CP) was studied. Judging from differential scanning calorimetry melting curves, TMV CP in the form of a trimer–pentamer mixture (4S-protein) has very low thermal stability, with a transition temperature at about 40°C. Thermally denatured TMV CP displayed high propensity for large (macroscopic) aggregate formation. TMV CP macroscopic aggregation was strongly dependent on the protein concentration and solution ionic strength. By varying phosphate buffer molarity, it was possible to merge or to separate the denaturation and aggregation processes. Using far-UV CD spectroscopy, it was found that on thermal denaturation TMV CP subunits are converted into an intermediate that retains about half of its initial -helix content and possesses high heat stability. We suppose that this stable thermal denaturation intermediate is directly responsible for the formation of TMV CP macroscopic aggregates.  相似文献   

17.
In this paper, we describe the epitope approach to molecular imprinting. The applicability of molecular imprinting, a method that allows the preparation of biomimetic compounds (artificial receptors and antibodies), is extended by this approach. Our approach makes it possible to obtain imprinted polymers selective to peptides and proteins whereas, to date, molecular imprinting has been used primarily for the preparation of polymers that selectively bind to relatively low molecular weight substances. The epitope approach is based on using (as a template) a short peptide that represents only part of a larger peptide or protein (as an epitope represents an antigen), which in turn can be recognized by the synthesized polymer. It is demonstrated that although other parts of peptides can influence the process of molecular recognition, the polymers imprinted with a short peptide efficiently recognize both the template and larger peptides (for example, oxytocin) that possess the same C-terminal part of the structure.  相似文献   

18.
Cui A  Singh A  Kaplan DL 《Biomacromolecules》2002,3(6):1353-1358
Aromatic monomers with various functional groups were utilized in horseradish peroxidase-catalyzed polymerization reactions with metal ions Cu(II), Ni(II), and Fe(III) as imprinting templates. The approach described combines molecular imprinting with enzymatic free radical coupling. Selectivity in metal ion affinity between the various polymer products was assessed and found to depend on the metal used in the imprinting process using aniline, tyramine, and phenol as monomers. Selectivity in binding metals was found when polymers imprinted with copper, nickel, or iron were screened against the three metals, with preference for the metal used in the imprinting step. A model for the structural features of the putative imprinted polymers is proposed based on electron paramagnetic resonance, NMR, and IR analysis. Specific potential benefits to this imprinting method include reactivity with a wide range of aromatic monomers to provide more diverse options for molecular recognition with the target analyte and thus polymer products with higher selectivity, mild reaction conditions for the enzyme polymerization step to enable imprinting against labile substrates, imprinted polymeric products that contain conjugated backbones that could be suitable for electronics-based biosensor applications, and a potential for combinatorial selection to further enhance specificity.  相似文献   

19.
20.
The submicroscopic organization of mesophyll cells from tobacco leaves systemically infected with tobacco mosaic virus (TMV) is described. After fixation with glutaraldehyde and osmium tetroxide the arrangement of the TMV particles within the crystalline inclusions is well preserved. Only the ribonucleic acid-containing core of the virus particles is visible in the micrographs. Besides the hexagonal virus crystals, several characteristic types of "inclusion bodies" are definable in the cytoplasm: The so-called fluid crystals seem to correspond to single layers of oriented TMV particles between a network of the endoplasmic reticulum and ribosomes. Unordered groups or well oriented masses of tubes with the diameter of the TMV capsid are found in certain areas of the cytoplasm. A complicated inclusion body is characterized by an extensively branched and folded part of the endoplasmic reticulum, containing in its folds long aggregates of flexible rods. Certain parts of the cytoplasm are filled with large, strongly electron-scattering globules, probably of lipid composition. These various cytoplasmic differentiations and the different forms of presumed virus material are discussed in relation to late stages of TMV reproduction and virus crystal formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号