首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure for the implementation of quality control for laboratorysorting and identification of invertebrate specimens collected in biodiversityresearch is described. The procedure is based on process control sampling, aconcept of statistical process control (SPC) used widely in the manufacturingand information technology industries, and adapted to suit the tasks andproducts of biodiversity sorting procedures. The major advantages of processcontrol over other quality control mechanisms are that it is more stringent, andcontinuous. Hence, errors are detected and corrected as they occur, avoidingproliferation in the data set. The procedure is also highly interactive,offering the technicians the opportunity to learn as they work. Protocols havebeen developed while sorting material collected as part of a study into theimpacts associated with invasion of a habitat (coastal heath) by an exotic weed(bitou bush – Chrysanthemoides monilifera) on thecentral coast of New South Wales, Australia. Major findings from the analysis ofmaterial processed include: that errors may have a variety of causes andsubsequent implications for data quality, levels of identification errors can besignificant even at higher taxonomic levels (e.g. sorting insects to order),initial training periods on their own are insufficient to ensure errorminimisation, and even with stringent protocols the ratio of technician tospecialist effort can be maintained at a level of around 5:1. The need forincorporating effective quality control procedures into invertebratebiodiversity data compilations is emphasised.  相似文献   

2.
Studies show that land-living animals, plants, fungi, and bacteria leave DNA traces in the air. These results imply that sequencing of bioaerosols might be a powerful tool for simultaneous surveys of terrestrial biodiversity across lifeforms, but in parallel, it highlights the need to carefully control for possible contaminants.  相似文献   

3.
《新西兰生态学杂志》2011,28(1):151-159
Although invertebrates play a key role in the environment, their conservation and use in environmental monitoring is often considered “too difficult” and consequently ignored. One of the main problems in dealing with invertebrates is that even limited sampling can yield large numbers of specimens and an enormous diversity of species. Other problems include the taxonomic impediment (i.e. high proportions of invertebrate taxa are undescribed and there are few specialists available to identify specimens), the lack of knowledge on species distribution, diversity and ecological roles, and the fact that invertebrates are undervalued by the general public. A number of rapid biodiversity assessment (RBA) approaches have been suggested to overcome these problems. RBA approaches generally fall into four categories: (1) restricted sampling in place of intensive sampling (sampling surrogacy); (2) the use of higher taxonomic levels than species (species surrogacy); (3) the use of recognisable taxonomic units (RTUs) identified by non-specialists (taxonomic surrogacy); and (4) the use of surrogate taxa in place of all taxa (taxon-focusing). Australia has a long history of using invertebrates in terrestrial ecological studies, and in developing and using RBA approaches. Therefore, New Zealand could benefit from the experienced gained in Australia. Potentially one of the most useful RBA approaches to take in New Zealand involves focusing resources and attention on a limited range of taxa. However, this requires substantial communication, discussion, and agreement over which taxa should be selected for conservation priorities and environmental monitoring in terrestrial ecosystems.  相似文献   

4.
Assessments of invertebrate biodiversity in the agricultural landscape have been inconsistent and sometimes contradictory. There is a requirement to improve assessments, especially when quantifying the beneficial effects of low input and organic farming on biodiversity. To generate an improved understanding, data from four crops (organic leek, cabbage and broccoli, conventional calabrese), sampled in eastern England with both pitfall and pan traps, was used. Eight Orders, 55 ground beetle (Carabidae) species, 12 Coleoptera families and 66 Higher taxa (tribes, subfamilies and families) were used to calculate four diversity-related metrics and two fidelity metrics, using data from pitfall traps and from pitfall and pan traps combined. Diversity metrics were taxa richness, Shannon diversity index and Quantitative totals and indexes based on the number of each taxa recorded. Fidelity totals and indexes were used to assess deviations from the basic vegetable field habitat. Order was the least consistent taxa and the Shannon index was a poor diversity indicator. Taxa richness and Quantitative totals were more accurate and the use of quantifications based on the number of appropriate taxa recorded improved metric quality and Fidelity index was an improvement on the Fidelity total. In general, the highest metric values were in broccoli and cabbage, the crops with most weeds, and there were positive correlations between most metrics and weed cover. Metrics using combined epigeal and aerial invertebrate data, utilising the most taxa and the number recorded, were most appropriate for comparisons between crop types.  相似文献   

5.
Abstract: Paddock trees are a common feature in the agricultural landscapes of Australia. Recent studies have demonstrated the value of scattered paddock trees for soil fertility, native pasture plants and arboreal faunas; however, the degree to which scattered paddock trees contribute to the conservation of terrestrial invertebrate biodiversity within grazed landscapes remains unknown. We ask three questions: (i) Is there a difference between the terrestrial invertebrate assemblages found under paddock trees compared with surrounding grazed native pastures? (ii) Can gradients in soil and litter variables from the base of trees explain patterns in invertebrate assemblages? and (iii) Does the presence of scattered paddock trees have implications for the conservation of terrestrial invertebrate biodiversity within grazed native pastures? We used pitfall trapping and extraction from soil cores to sample the invertebrate assemblages under six New England Peppermint trees (Eucalyptus nova‐anglica Deane and Maiden) and compared them with assemblages sampled from the open paddock. Formicidae and Collembola univariate and multivariate data were analysed along with a range of soil and litter variables. We found (i) significant differences in the assemblages of invertebrates under trees compared with surrounding grazed pastures; (ii) that most soil and litter variables revealed gradients away from tree bases and these variables explained significant variation in invertebrate assemblages; and (iii) more native invertebrates and more species of invertebrates were found under trees compared with the surrounding pastures. We discuss the relationships between paddock trees, the ground and soil environments and the invertebrate communities that inhabit these environments, and conclude with a discussion of the future for paddock trees and the biota supported by them.  相似文献   

6.
Forest canopies support diverse assemblages of free-living mites. Recent studies suggest mite species complementarity between canopy and terrestrial soils is as high as 80–90%. However, confounding variation in habitat quality and resource patchiness between ground and canopy has not been controlled in previous comparative studies. We used experimental litter bags with standardized microhabitat structure and resource quality to contrast the colonization dynamics of 129 mite species utilizing needle accumulations on the ground vs in the canopy of Abies amabilis trees in a temperate montane forest in Canada. Mite abundance and species richness per litter bag were five to eight times greater on the ground than in the canopy, and composition differed markedly at family-, genus-, and species-level. Seventy-seven species (57%) were restricted to either ground or canopy litter bags, but many of these species were rare (n<5 individuals). Of 49 ‘common’ species, 30.6% were entirely restricted to one habitat, which is considerably lower than most published estimates. In total, 87.5% of canopy specialists had rare vagrants on the ground, whereas only 51.9% of ground specialists had rare vagrants in the canopy. Canonical correspondence analysis of mite community structure showed high species turnover through time and a high degree of specialization for early-, mid-, and late-successional stages of litter decomposition, in both ground and canopy mites. In addition, distinct assemblages of ground-specialist mites dominated each elevation (800, 1000, and 1200 m), whereas few canopy-specialist mites had defined elevational preferences. This suggests that canopy mites may have greater tolerance for wide variation in environmental conditions than soil mites. The degree of species turnover between adjacent mountains also differed markedly, with 46.5% turnover of ground species, but 63.4% turnover of canopy species between the two montane areas. While ground and canopy assemblages are similar in total biodiversity, it appears that local mite richness (alpha diversity) is higher on the ground, whereas species turnover between sites (beta diversity) is higher in the canopy. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

7.
陆域生物多样性综合评估是保护生物多样性的重要基础工作,评估生物多样性现状和变化趋势、分析其损失的影响因素,是制定生物多样性保护政策与措施的前提和必要条件.目前,我国在陆域生物多样性综合评估方面尚未形成统一的评估指标体系.本研究围绕《生物多样性公约》爱知生物多样性目标、联合国可持续发展目标,借鉴国际上生物多样性评估新趋势...  相似文献   

8.
Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models.  相似文献   

9.
Background  The primary purpose of environmental assessment is to protect biological systems. Data collected over the last several decades indicates that the greatest impacts on biological resources derive from physical changes in land use. However, to date there is no consensus on indicators of land use that could be applicable worldwide at all scales. This has hampered the assessment of land use in the context of LCA. Objectives  The Institute for Environmental Research and Education and its partner Defenders of Wildlife have begun an effort to develop the necessary consensus. Methods  In July 2000, they held a workshop attended by a diverse group of interested parties and experts to develop a preliminary list of life cycle indicators for land use impacts. Results  Their preliminary list of impact indicators includes: protection of priority habitats/species; soil characteristics: soil health; proximity to & protection of high priority vegetative communities; interface between water and terrestrial habitats/buffer zones; assimilative capacity of water and land; hydrological function; percent coverage of invasive species within protected areas; road density; percent native-dominated vegetation; restoration of native vegetation; adoption of Best Management Practices linked to biodiversity objectives; distribution (patchiness; evenness, etc.); and connectivity of native habitat. Conclusion  The list of indicators conforms well to other efforts in developing indicators. There appears to be convergence among experts in the field and in related fields on the appropriate things to measure. Future Prospects  These indicators are currently being tested in the United States. Further workshops and testing is planned towards developing internationally recognized indicators for land use.  相似文献   

10.

Aim

Conservation assessment and planning across extensive regions rely on the use of mapped or modelled surrogates because direct field‐based inventories of biodiversity rarely provide complete spatial coverage. Surrogates are assumed to represent spatial patterns in the distribution of biodiversity, yet the validity of this assumption is rarely evaluated. Here, we use data from new biological surveys targeting poorly known taxonomic groups across sparsely surveyed landscapes to test: (1) the performance of established and novel surrogates; and (2) the value of targeted survey data in further improving surrogate effectiveness.

Location

Continental Australia.

Methods

Surrogates were derived from either mapped land classifications (bioregions, vegetation types), or models of spatial turnover in biodiversity composition. Models were derived by linking best‐available biological observations to high‐resolution mapped climate, terrain and soil attributes using generalized dissimilarity modelling (GDM). The performance of surrogates was evaluated using survey data for eight biological groups collected as part of the Bush Blitz programme ( http://bushblitz.org ). For the GDM‐based surrogates, within‐ and cross‐taxon performance was first evaluated for models fitted to biological data available prior to Bush Blitz, and then for models enhanced through the addition of the Bush Blitz data.

Results

All of the tested surrogates performed significantly better than random across all eight biological groups. GDM‐based surrogates performed over 10% better on average than the best performing combination of mapped land classifications. The addition of Bush Blitz targeted data in GDM‐based surrogates led to further improvements in surrogate performance.

Main conclusions

Our results support continued investment in targeted biological survey programmes to enhance the performance of surrogates and ensure that surrogates represent a wider breadth of biodiversity. The strong performance of compositional turnover modelling, relative to mapped land classifications, suggests that this surrogate strategy deserves greater consideration in future conservation assessments and has potential for use in continental‐scale monitoring of biodiversity.
  相似文献   

11.
Considerable attention has focused on the climatic effects of global climate change on biodiversity, but few analyses and no broad assessments have evaluated effects of sea-level rise on biodiversity. Taking advantage of new maps of marine intrusion under scenarios of 1 and 6 m sea-level rise, we calculated areal losses for all terrestrial ecoregions globally, with areal losses for particular ecoregions ranging from nil to complete. Marine intrusion is a global phenomenon, but its effects are most prominent in Southeast Asia and nearby islands, eastern North America, northeastern South America, and western Alaska. Making assumptions regarding faunal responses to reduced distributional areas of species endemic to ecoregions, we estimated likely numbers of extinctions caused by sea-level rise, and found that marine-intrusion-caused extinctions of narrow endemics are likely to be most prominent in northeastern South America, although anticipated extinctions in smaller numbers are scattered worldwide. This assessment serves as a complement to recent estimates of losses owing to changing climatic conditions, considering a dimension of biodiversity consequences of climate change that has not previously been taken into account.  相似文献   

12.
An upgraded national biodiversity risk assessment index   总被引:1,自引:0,他引:1  
The setting of priorities for international conservation assistance is important due to limited available financial resources. A recent study constructed a national biodiversity risk assessment index (NABRAI) in order to prioritise nations for conservation assistance. The present study aimed to upgrade the original index in order to address computational and weighting inconsistencies. The results of the upgraded index corresponded relatively well with those of the original model. We feel this study goes a step further towards strengthening the methodologies for biodiversity risk assessment. However, due to the absence of theoretical constructs for biodiversity risk assessment and the considerable disagreement between the various models of biodiversity risk, we recognise a need for a more sophisticated understanding of national biodiversity risk before these models can be used to identify global conservation priorities with any degree of confidence.  相似文献   

13.
14.
The world is covered in DNA. In any ecosystem, extracellular DNA fragments can be found that once formed the genomes of a variety of micro‐ and macroorganisms. A few years ago, it was proposed to use this environmental DNA (eDNA) as a source of information on local vertebrate biodiversity (Ficetola et al. 2008 ; Taberlet et al. 2012 ). This idea offered an elegant solution to take up the gauntlet of rapidly increasing monitoring needs. Coupled with barcoding efforts, it promised to be cost‐efficient in many respects, for example man‐hours and taxonomic expertise. Ecologists and conservation biologists with an interest in aquatic ecosystems have enthusiastically adopted and pioneered this new method, producing dozens of eDNA studies. Most of these studies have, however, focused on a single or a few aquatic species. In this issue of Molecular Ecology, Valentini et al. ( 2016 ) move the field a step further by demonstrating that metabarcoding approaches – which simultaneously target large groups of organisms such as amphibians or fish – can match and sometimes even outperform other inventory methods.  相似文献   

15.
We developed a methodology to objectively and transparently assess the impacts on terrestrial biodiversity of proposals to clear native vegetation in New South Wales (NSW), Australia. The methodology was developed to underpin a policy to permit land clearing only where it ‘improves or maintains environmental outcomes’. It was developed in the following steps: (1) operational requirements and resource constraints were defined. (2) Biodiversity surrogates and assessment techniques that matched these requirements and constraints were identified. (3) Sites were assessed locally, but also in the broader landscape, regional and national contexts. (4) Explicit rules and metrics were developed to facilitate transparent and consistent assessments. (5) These rules, metrics and the data that underpinned them were codified into a simple computer software tool. The tool did not permit clearing in vegetation communities or landscapes that were already over-cleared or listed as threatened, unless the vegetation was in ‘low condition’ (unlikely to persist in the long-term). Other native vegetation could be cleared if regional, landscape and site impacts could be offset. In the first year after the assessment methodology was implemented a net area of approximately 187 ha of native vegetation was approved for clearing with offsets. Most approvals (68%) were for proposals to clear native vegetation with a low likelihood of persistence under the existing land use (predominantly scattered trees among cultivation) and offset these impacts by improving the condition and likelihood of persistence of native vegetation in comparable ecosystems. Remaining approvals were for clearing relatively small areas (mean = 0.6 ha) of partially modified native vegetation. Proposals to offset the impacts of clearing substantially intact native vegetation or larger areas of partially modified native vegetation were generally assessed as unlikely to ‘improve or maintain environmental outcomes’.  相似文献   

16.
Abstract Most ecologists are comfortable with the notion of habitats as recognizable entities and also with situations where the junction between two adjacent habitats forms a discrete edge. Such edges form naturally because of sharp changes in important edaphic, geomorphological, climatic or chemical properties to which plants, in particular, respond. Less clear is the effect of such edges on assemblages of mobile organisms, especially invertebrates that operate at relatively small spatial scales. The objective of the present study was to sample invertebrate composition across a natural edge between a well‐developed riparian habitat on fluvial sands and a saltbush habitat developed on a stony gibber plain in a semi‐arid region of New South Wales, Australia. A total of 150 pitfall traps on five 1‐km‐long transects that straddled the edge produced more than 13 000 adult specimens from 21 ordinal invertebrate taxa. A total of 10 446 beetle, ant, wasp, fly and springtail specimens were further sorted into 426 morphospecies. Comparisons and estimates of trends in abundance and richness were made, along with computation of multivariate dissimilarity and permutation statistics, to determine if the land system edge was coincident with changes in invertebrate abundance and composition. These analyses were unable to detect disjunctions in diversity coincident with the edge. The data suggest that many taxa are either present consistently in both habitats or are mostly found in one habitat but ‘leak’ several hundred metres across into the other. Few taxa were unique to either habitat. The result is that assemblage composition for invertebrates changes gradually over distances of up to 400 m either side of the edge and that the distance to a recognizable change in composition is taxon dependent. Even sharp habitat edges, as defined by discrete changes in soils and plants, are not edges but broad transition zones for many invertebrate taxa. There are several implications of these results, especially for landscape ecology.  相似文献   

17.
We review progress toward developing a data-analysis system using invertebrate species lists in wetland evaluation procedures. Species lists for Mollusca, Carabidae (Coleoptera), Empidoidea and Syrphidae (Diptera), derived from samples collected at six stations along a transect established at a site on the floodplain of the River Loire (France) provide the raw data. An initial analysis using a traditional ordination method (Correspondence Analysis) is carried out. A data base was established for the 118 mollusc, carabid and syrphid species recorded, and each species was then treated not as a simple integer, but as an amalgam of digitised attributes deemed responsive to wetland conditions, in a correspondence analysis on instrumental variables. Despite the generalized nature of the attributes as defined for this example, the approach demonstrates a marked increase in interpretability of the output of analysis, in respect of the relation between the species and the floodplain environment. It also highlights the value of use of data pertaining to more than one taxonomic group and of selecting these taxonomic groups on the basis of complementarity of their bioindicator potential.Corresponding Editor: J.T.A. Verhoeven  相似文献   

18.
The International Journal of Life Cycle Assessment - There is generally a mismatch in the land use classification of life cycle inventory (LCI) databases and life cycle impact assessment (LCIA)...  相似文献   

19.
20.
河岸是河流与陆地之间重要的生态界面,生物多样性丰富,但受到人为活动的严重威胁。无脊椎动物在河岸生物多样性中占有重要地位,发挥着非常重要的生态功能,也是水生生态系统和陆地生态系统之间物质和能量联系的重要纽带。尽管已有很多学者对河岸无脊椎动物群落进行了研究,但缺乏对河岸无脊椎动物多样性维持机制的总结。本文结合洪水和干旱、营养物质、微生境多样性、河岸植被、微气候梯度、食物资源以及河流空间梯度等影响因素,初步讨论和归纳了河岸无脊椎动物多样性的维持机制。周期性洪水和干旱引发了无脊椎动物的繁殖和迁移等行为,增加了河岸无脊椎动物群落周转率,为无脊椎动物创造了理想的条件。充足的营养物质使河岸具有较高的初级生产力,支撑了较高的无脊椎动物多样性。较高的微生境多样性为无脊椎动物提供了多样的生态位空间,孕育了特殊的河岸无脊椎动物种类。复杂的河岸植物群落不但是河岸无脊椎动物的食物来源之一,也为河岸无脊椎动物提供了多样的生态位空间和重要的避难场所。微气候环境的空间分异提供了复杂多样的生境条件,为水生无脊椎动物和陆生无脊椎动物种类在河岸共存创造了条件。跨越界面的资源补给增加了河岸无脊椎动物的食物可利用率,为河岸无脊椎动物提供了特殊的食物来源。这些因素在空间上呈现出明显的纵向梯度和侧向梯度,从更大尺度上为河岸无脊椎动物的多样化提供了条件。因此,探讨河岸无脊椎动物多样性的维持机制对于河岸生物多样性保护以及河流生态系统综合管理具有重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号