首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hereditary spastic paraplegias (HSPs), characterized by progressive and bilateral spasticity of the legs, are usually caused by developmental failure or degeneration of motor axons in the corticospinal tract. There are considerable interfamilial and intrafamilial variations in age at onset and severity of spasticity. Genetic studies also showed that there are dozens of genetic loci, on multiple chromosomes, that are responsible for HSPs. Through linkage study of a pedigree of HSP with autosomal-dominant inheritance, we mapped the causative gene to 3q24-q26. Screening of candidate genes revealed that the HSP is caused by a missense mutation in the gene for acetyl-CoA transporter (SLC33A1). It is predicted that the missense mutation, causing the change of the highly conserved serine to arginine at the codon 113 (p. S113R), disrupts the second transmembrane domain in the transporter and reverses the orientation of all of the descending domains. Knockdown of Slc33a1 in zebrafish caused a curve-shaped tail and defective axon outgrowth from the spinal cord. Although the wild-type human SLC33A1 was able to rescue the phenotype caused by Slc33a1 knockdown in zebrafish, the mutant SLC33A1 (p.S113R) was not, suggesting that S113R mutation renders SLC33A1 nonfunctional and one that wild-type allele is not sufficient for sustaining the outgrowth and maintenance of long motor axons in human heterozygotes. Thus, our study illustrated a critical role of acetyl-CoA transporter in motor-neuron development and function.  相似文献   

2.

Background

Type I Bartter syndrome is a recessive human nephropathy caused by loss-of-function mutations in the SLC12A1 gene coding for the Na+-K+-2Cl cotransporter NKCC2. We recently established the mutant mouse line Slc12a1I299F exhibiting kidney defects highly similar to the late-onset manifestation of this hereditary human disease. Besides the kidney defects, low blood pressure and osteopenia were revealed in the homozygous mutant mice which were also described in humans. Beside its strong expression in the kidney, NKCC2 has been also shown to be expressed in other tissues in rodents i.e. the gastrointestinal tract, pancreatic beta cells, and specific compartments of the ear, nasal tissue and eye.

Results

To examine if, besides kidney defects, further organ systems and/or metabolic pathways are affected by the Slc12a1I299F mutation as primary or secondary effects, we describe a standardized, systemic phenotypic analysis of the mutant mouse line Slc12a1I299F in the German Mouse Clinic. Slc12a1I299F homozygous mutant mice and Slc12a1I299F heterozygous mutant littermates as controls were tested at the age of 4–6 months. Beside the already published changes in blood pressure and bone metabolism, a significantly lower body weight and fat content were found as new phenotypes for Slc12a1I299F homozygous mutant mice. Small additional effects included a mild erythropenic anemia in homozygous mutant males as well as a slight hyperalgesia in homozygous mutant females. For other functions, such as immunology, lung function and neurology, no distinct alterations were observed.

Conclusions

In this systemic analysis no clear primary effects of the Slc12a1I299F mutation appeared for the organs other than the kidneys where Slc12a1 expression has been described. On the other hand, long-term effects additional and/or secondary to the kidney lesions might also appear in humans harboring SLC12A1 mutations.  相似文献   

3.
Extensive genetic and genomic studies of the relationship between alcohol drinking preference and withdrawal severity have been performed using animal models. Data from multiple such publications and public data resources have been incorporated in the GeneWeaver database with >60,000 gene sets including 285 alcohol withdrawal and preference-related gene sets. Among these are evidence for positional candidates regulating these behaviors in overlapping quantitative trait loci (QTL) mapped in distinct mouse populations. Combinatorial integration of functional genomics experimental results revealed a single QTL positional candidate gene in one of the loci common to both preference and withdrawal. Functional validation studies in Ap3m2 knockout mice confirmed these relationships. Genetic validation involves confirming the existence of segregating polymorphisms that could account for the phenotypic effect. By exploiting recent advances in mouse genotyping, sequence, epigenetics, and phylogeny resources, we confirmed that Ap3m2 resides in an appropriately segregating genomic region. We have demonstrated genetic and alcohol-induced regulation of Ap3m2 expression. Although sequence analysis revealed no polymorphisms in the Ap3m2-coding region that could account for all phenotypic differences, there are several upstream SNPs that could. We have identified one of these to be an H3K4me3 site that exhibits strain differences in methylation. Thus, by making cross-species functional genomics readily computable we identified a common QTL candidate for two related bio-behavioral processes via functional evidence and demonstrate sufficiency of the genetic locus as a source of variation underlying two traits.  相似文献   

4.
5.
Most quantitative traits in most populations exhibit heritable genetic variation. Lande proposed that high levels of heritable variation may be maintained by mutation in the face of stabilizing selection. Several analyses have appeared of two distinct models with n additive polygenic loci subject to mutation and stabilizing selection. Each is reviewed and a new analysis and model are presented. Lande and Fleming analyzed extensions of a model originally treated by Kimura which assumes a continuum of possible allelic effects at each locus. Latter and Bulmer analyzed a model with diallelic loci. The published analyses of these models lead to qualitatively different predictions concerning the dependence of the equilibrium genetic variance on the underlying biological parameters. A new asymptotic analysis of the Kimura model shows that the different predictions are not consequences of the number of alleles assumed but rather are attributable to assumptions concerning the relative magnitudes of per locus mutation rates, the phenotypic effects of mutation, and the intensity of selection. This conclusion is reinforced by analysis of a model with triallelic loci. None of the approximate analyses presented are mathematically rigorous. To quantify their accuracy and display the domains of validity for alternative approximations, numerically determined equilibria are presented. In addition, empirical estimates of mutation rates and selection intensity are reviewed, revealing weaknesses in both the data and its connection to the models. Although the mathematical results and underlying biological requirements of my analyses are quite different from those of Lande, the results do not refute his hypothesis that considerable additive genetic variance may be maintained by mutation-selection balance. However, I argue that the validity of this hypothesis can only be determined with additional data and mathematics.  相似文献   

6.
Genetic background often influences the phenotypic consequences of mutations, resulting in variable expressivity. How standing genetic variants collectively cause this phenomenon is not fully understood. Here, we comprehensively identify loci in a budding yeast cross that impact the growth of individuals carrying a spontaneous missense mutation in the nuclear-encoded mitochondrial ribosomal gene MRP20. Initial results suggested that a single large effect locus influences the mutation’s expressivity, with 1 allele causing inviability in mutants. However, further experiments revealed this simplicity was an illusion. In fact, many additional loci shape the mutation’s expressivity, collectively leading to a wide spectrum of mutational responses. These results exemplify how complex combinations of alleles can produce a diversity of qualitative and quantitative responses to the same mutation.  相似文献   

7.
The sexual development and virulence of the fungal pathogen Cryptococcus neoformans is controlled by a bipolar mating system determined by a single locus that exists in two alleles, α and a. The α and a mating-type alleles from two divergent varieties were cloned and sequenced. The C. neoformans mating-type locus is unique, spans >100 kb, and contains more than 20 genes. MAT-encoded products include homologs of regulators of sexual development in other fungi, pheromone and pheromone receptors, divergent components of a MAP kinase cascade, and other proteins with no obvious function in mating. The α and a alleles of the mating-type locus have extensively rearranged during evolution and strain divergence but are stable during genetic crosses and in the population. The C. neoformans mating-type locus is strikingly different from the other known fungal mating-type loci, sharing features with the self-incompatibility systems and sex chromosomes of algae, plants, and animals. Our study establishes a new paradigm for mating-type loci in fungi with implications for the evolution of cell identity and self/nonself recognition.  相似文献   

8.
The surface patterns associated with arrest of cell division by temperature-sensitive mutations at five different loci are described. Mutations at the mo1 locus prevent both the subdivision of ciliary meridians that mark the fission zone and the subsequent furrowing. Mutations at mo8 and mo12 cause abnormal configurations in the fission zone and aborted furrowing. Mutations in mo3 and mo6 bring about fission arrest with associated elongation (mo3) or twisting (mo6), even though complete fission zones do develop. The defects in mo1, mo3, and mo12 are expressed in the first division after shift to restrictive temperature, whereas expression of mo6 and of one allele of mo8 are delayed. Following preincubation in an amino acid-free medium at the restrictive temperature, mo8 causes arrest at the first division after readdition of nutrients, while mo6 blocks fission only after one or more divisions at the restrictive temperature. Double homozygotes were constructed containing the mo3a mutation and mutations at each of the other loci. In addition, mo1a was combined with mo8a. In each of the double homozygotes, the characteristic phenotypes of both mutations were simultaneously expressed, and the penetrance of division blockage was very greatly enhanced. The results suggest that the functions of these five loci are not ordered in a single dependent sequence of steps, but rather that these loci probably mediate independent processes required for cytokinesis.  相似文献   

9.
Primary microcephaly (MCPH) is an autosomal-recessive congenital disorder characterized by smaller-than-normal brain size and mental retardation. MCPH is genetically heterogeneous with six known loci: MCPH1–MCPH6. We report mapping of a novel locus, MCPH7, to chromosome 1p32.3–p33 between markers D1S2797 and D1S417, corresponding to a physical distance of 8.39 Mb. Heterogeneity analysis of 24 families previously excluded from linkage to the six known MCPH loci suggested linkage of five families (20.83%) to the MCPH7 locus. In addition, four families were excluded from linkage to the MCPH7 locus as well as all of the six previously known loci, whereas the remaining 15 families could not be conclusively excluded or included. The combined maximum two-point LOD score for the linked families was 5.96 at marker D1S386 at θ = 0.0. The combined multipoint LOD score was 6.97 between markers D1S2797 and D1S417. Previously, mutations in four genes, MCPH1, CDK5RAP2, ASPM, and CENPJ, that code for centrosomal proteins have been shown to cause this disorder. Three different homozygous mutations in STIL, which codes for a pericentriolar and centrosomal protein, were identified in patients from three of the five families linked to the MCPH7 locus; all are predicted to truncate the STIL protein. Further, another recently ascertained family was homozygous for the same mutation as one of the original families. There was no evidence for a common haplotype. These results suggest that the centrosome and its associated structures are important in the control of neurogenesis in the developing human brain.  相似文献   

10.
The Phoronida are a coelomate phylum consisting of only two genera and about 12–15 described species. Phoronids probably represent the common ancestral stock of all lophophorates, and may be the most primitive living deuterostomes. Using the techniques of starch gel electrophoresis, we have studied genetic variation at 39 loci in 120 individuals of Phoronopsis viridis collected in Bodega Harbor, Bodega Bay, California. Allelic variation was found at 27 (69.2%) loci. If a locus is considered polymorphic when the frequency of the most common allele is no greater than 0.99, the proportion of polymorphic loci in the total sample is 48.7%. The average number of alleles per locus is 2.23. The expected frequency of heterozygous loci per individual on the assumption of Hardy-Weinberg equilibrium is 9.4%. There is evidence of inbreeding; the mean value of F, Wright's fixation index, is 0.21±0.02. Genetic variability in P. viridis is intermediate among marine invertebrates. The tropical clam, Tridacna maxima, has on the average 20.2% heterozygous loci per individual. At the other extreme, a brachiopod from Antarctica, Liothyrella notorcadensis, has an average of 3.9% heterozygous loci per individual. Among marine invertebrates, there seems to be a gradient of decreasing genetic variability from low to high latitudes, which may reflect their different adaptive strategies.  相似文献   

11.
《Experimental mycology》1994,18(3):247-266
Banuett, F., and Herskowitz, I. 1994. Morphological transitions in the life cycle of Ustilago maydis and their genetic control by the a and b loci. Experimental Mycology 18: 247-266. Two forms characterize the life cycle of Ustilago maydis: a haploid yeast-like form and a filamentous dikaryotic form. Dimorphism and other aspects of the life cycle (including tumor induction) are governed by two mating type loci, a and b . Here we report characterization of two different morphological transitions in the life cycle of U. maydis. First, we describe an assay for conjugation tube formation in which cellular response is rapid and occurs synchronously and uniformly in the population. Using this assay, we demonstrate that different alleles of the a locus (but not the b locus) are necessary for conjugation tube formation. We also show that the b locus determines the type of filament formed after cell fusion: different b alleles lead to formation of true filaments, whereas identical b alleles result in production of pseudofilaments. Second, we analyze the role of a and b in postfusion events leading to filament formation in diploid strains. We show that diploid strains heterozygous for both a and b are capable of a dimorphic transition from yeast-like to filamentous growth when shifted from rich medium to low-nitrogen medium. This transition has two components: the first is dependent on the a locus and generates structures similar to conjugation tubes; the second is dependent on the b locus and produces true hyphal structures. We surmise that similar events take place in formation of the dikaryotic filament.  相似文献   

12.
Epilepsy is a common neurological disorder affecting approximately 1% of the population. Mutations in voltage‐gated sodium channels are responsible for several monogenic epilepsy syndromes. More than 800 mutations in the voltage‐gated sodium channel SCN1A have been reported in patients with generalized epilepsy with febrile seizures plus and Dravet syndrome. Heterozygous loss‐of‐function mutations in SCN1A result in Dravet syndrome, a severe infant‐onset epileptic encephalopathy characterized by intractable seizures, developmental delays and increased mortality. A common feature of monogenic epilepsies is variable expressivity among individuals with the same mutation, suggesting that genetic modifiers may influence clinical severity. Mice with heterozygous deletion of Scn1a (Scn1a+/?) model a number of Dravet syndrome features, including spontaneous seizures and premature lethality. Phenotype severity in Scn1a+/? mice is strongly dependent on strain background. On the 129S6/SvEvTac strain Scn1a+/? mice exhibit no overt phenotype, whereas on the (C57BL/6J × 129S6/SvEvTac)F1 strain Scn1a+/? mice exhibit spontaneous seizures and early lethality. To systematically identify loci that influence premature lethality in Scn1a+/? mice, we performed genome scans on reciprocal backcrosses. Quantitative trait locus mapping revealed modifier loci on mouse chromosomes 5, 7, 8 and 11. RNA‐seq analysis of strain‐dependent gene expression, regulation and coding sequence variation provided a list of potential functional candidate genes at each locus. Identification of modifier genes that influence survival in Scn1a+/? mice will improve our understanding of the pathophysiology of Dravet syndrome and may suggest novel therapeutic strategies for improved treatment of human patients.  相似文献   

13.
The essential trace element zinc is involved in multiple biological processes including development and metabolism, while its role in melanocyte formation is still unclear. Slc30a1a and Slc30a1b are zinc exporters in zebrafish. Here, we found that melanocytes were increased in slc30a1a and slc30a1b double mutant zebrafish. SMART-seq data revealed that genes involved in the melanoma pathway and the gene mt2, which encodes zinc-binding protein, were significantly upregulated in the mutants. In addition, the expression of mt2 was specifically increased in mutant melanocytes, as detected by in situ hybridization, suggesting an essential role of this gene in the tissue. Mechanistically, we demonstrated that elevated zinc levels resulting from Slc30a1 deficiency promoted melanocyte proliferation and that mt2 played a protective role in the process of Slc30a1/zinc-mediated melanocyte hyperplasia. This study uncovered the critical function of Slc30a1-mediated zinc homeostasis in melanocyte development and suggests that accumulated zinc in melanocytes would be a risk for inducing melanoma and that mt2 is a potential target for controlling diseases related to abnormal melanocyte development.  相似文献   

14.
Iron is essential for erythropoiesis and other biological processes, but is toxic in excess. Dietary absorption of iron is a highly regulated process and is a major determinant of body iron levels. Iron excretion, however, is considered a passive, unregulated process, and the underlying pathways are unknown. Here we investigated the role of metal transporters SLC39A14 and SLC30A10 in biliary iron excretion. While SLC39A14 imports manganese into the liver and other organs under physiological conditions, it imports iron under conditions of iron excess. SLC30A10 exports manganese from hepatocytes into the bile. We hypothesized that biliary excretion of excess iron would be impaired by SLC39A14 and SLC30A10 deficiency. We therefore analyzed biliary iron excretion in Slc39a14-and Slc30a10-deficient mice raised on iron-sufficient and -rich diets. Bile was collected surgically from the mice, then analyzed with nonheme iron assays, mass spectrometry, ELISAs, and an electrophoretic assay for iron-loaded ferritin. Our results support a model in which biliary excretion of excess iron requires iron import into hepatocytes by SLC39A14, followed by iron export into the bile predominantly as ferritin, with iron export occurring independently of SLC30A10. To our knowledge, this is the first report of a molecular determinant of mammalian iron excretion and can serve as basis for future investigations into mechanisms of iron excretion and relevance to iron homeostasis.  相似文献   

15.
Parent-of-origin–dependent gene expression resulting from genomic imprinting plays an important role in modulating complex traits ranging from developmental processes to cognitive abilities and associated disorders. However, while gene-targeting techniques have allowed for the identification of imprinted loci, very little is known about the contribution of imprinting to quantitative variation in complex traits. Most studies, furthermore, assume a simple pattern of imprinting, resulting in either paternal or maternal gene expression; yet, more complex patterns of effects also exist. As a result, the distribution and number of different imprinting patterns across the genome remain largely unexplored. We address these unresolved issues using a genome-wide scan for imprinted quantitative trait loci (iQTL) affecting body weight and growth in mice using a novel three-generation design. We identified ten iQTL that display much more complex and diverse effect patterns than previously assumed, including four loci with effects similar to the callipyge mutation found in sheep. Three loci display a new phenotypic pattern that we refer to as bipolar dominance, where the two heterozygotes are different from each other while the two homozygotes are identical to each other. Our study furthermore detected a paternally expressed iQTL on Chromosome 7 in a region containing a known imprinting cluster with many paternally expressed genes. Surprisingly, the effects of the iQTL were mostly restricted to traits expressed after weaning. Our results imply that the quantitative effects of an imprinted allele at a locus depend both on its parent of origin and the allele it is paired with. Our findings also show that the imprinting pattern of a locus can be variable over ontogenetic time and, in contrast to current views, may often be stronger at later stages in life.  相似文献   

16.
The efflux transporter P-glycoprotein (P-gp) is an important mediator of various pharmacokinetic parameters, being expressed at numerous physiological barriers and also in multidrug-resistant cancer cells. Molecular cloning of homologous cDNAs is an important tool for the characterization of functional differences in P-gp between species. However, plasmids containing mouse mdr1a cDNA display significant genetic instability during cloning in bacteria, indicating that mdr1a cDNA may be somehow toxic to bacteria, allowing only clones containing mutations that abrogate this toxicity to survive transformation. We demonstrate here the presence of a cryptic promoter in mouse mdr1a cDNA that causes mouse P-gp expression in bacteria. This expression may account for the observed toxicity of mdr1a DNA to bacteria. Sigma 70 binding site analysis and GFP reporter plasmids were used to identify sequences in the first 321 bps of mdr1a cDNA capable of initiating bacterial protein expression. An mdr1a M107L cDNA containing a single residue mutation at the proposed translational start site was shown to allow sub-cloning of mdr1a in E. coli while retaining transport properties similar to wild-type P-gp. This mutant mdr1a cDNA may prove useful for efficient cloning of mdr1a in E. coli.  相似文献   

17.
Friedreich ataxia is a genetic disease caused by deficiencies in frataxin. This protein has homologs not only in higher eukaryotes but also in bacteria, fungi, and plants. The function of this protein is still controversial. We have identified a frataxin homolog in fission yeast, and we have analyzed whether its depletion leads to any of the phenotypes observed in other organisms. Cells deleted in pfh1 are sensitive to growth under aerobic conditions, display increased levels of total iron, hallmarks of oxidative stress such as protein carbonylation, decreased aconitase activity, and lower levels of oxygen consumption compared with wild-type cells. This mitochondrial protein seems to be important for iron and/or reactive oxygen species homeostasis. We have analyzed the proteome of cells devoid of Pfh1, and we determined that gene products up- and down-regulated upon iron depletion in wild-type cells are constitutively misregulated in this mutant. Because of the particular signaling pathway components governing the iron starvation response in fission yeast, our experiments suggest that cells lacking Pfh1 display a decrease of cytosolic available iron that triggers activation of Grx4, the common regulator of the iron starvation gene expression program. Our Schizosaccharomyces pombe Δpfh1 strain constitutes a new and useful model system to study Friedreich ataxia.  相似文献   

18.
Lemontt JF  Fugit DR  Mackay VL 《Genetics》1980,94(4):899-920
The umr7–1 mutation, previously identified in a set of mutants that had been selected for defective UV-induced mutagenesis at CAN1, affects other cellular functions, including many of those regulated by the mating-type locus (MAT) in heterothallic Saccharomyces cerevisiae. The recessive umr7–1 allele, mapping approximately 20 cM distal to thr4 on chromosome III, causes clumpy growth in both a and α cells and has no apparent effect on a mating functions. However, α umr7 meiotic segregants fail to express several α-specific functions (e.g., high-frequency conjugation with a strains, secretion of the hormone α-factor and response to the hormone a-factor). In addition, α umr7 cells exhibit some a-specific characteristics, such as the barrier phenotype (Bar+) that prevents diffusion of α-factor and an increased mating frequency with α strains. The most striking property of α umr7 strains is their altered morphology, in which mitotic cells develop an asymmetric pear shape, like that of normal a cells induced to form "shmoos" by interaction with α-factor. Some a/α-specific diploid functions are also affected by umr7; instead of polar budding patterns, aumr7/umr7 diploids have medial budding like a/a, α/α and haploid strains. Moreover, aumr7/umr7 diploids have lost the ability to sporulate and are Bar+ like a or a/a strains. Revertant studies indicate that umr7–1 is a single point mutation. The umr7 mutant fails to complement mutants of both tup1 (selected for deoxythymidine monophosphate utilization) and cyc9 (selected for high iso-2-cytochrome c levels), and all three isolates have similar genetic and phenotypic properties. It is suggested that the product of this gene plays some common central role in the complex regulation of the expression of both MAT-dependent and MAT-independent functions.  相似文献   

19.
20.
 Inheritance of low-molecular-weight glutenin subunits (LMW GS) and gliadins was studied in the segregating progeny from several crosses between common wheat genotypes. The occurrence of a few recombinants in the F2 grains of the cross Skorospelka Uluchshennaya×Kharkovskaya 6 could be accounted for by assuming that the short arm of chromosome 1D contains two tightly linked loci each coding for at least one gliadin plus one C-type LMW GS. These loci were found to recombine at a frequency of about 2%, and to be linked to the Glu-D3 locus coding for B-type LMW GS. Some proteins showing biochemical characteristics of D-type or C-type LMW GS were found to be encoded by the Gli-B1 and Gli-B2 loci, respectively. Strongly stained B-type LMW GS in cvs Skorospelka Uluchshennaya and Richelle were assigned to the Glu-B3 locus, but recombination between this locus and Gli-B1 was not found. Analogously, in the cross Bezostaya 1×Anda, no recombination was found between Gli-A1 and Glu-A3, suggesting the maximum genetic distance between these loci to be 0.97% (P=0.05). A B-type LMW GS in cv Kharkovskaya 6 was assigned to the Glu-B2 locus, with about 25% recombination from the Gli-B1 locus. The present results suggested that alleles at Gli loci may relate to dough quality and serve as genetic markers of certain LMW GS affecting breadmaking quality. Received: 9 July 1996/Accepted: 15 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号