首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutual effect of three actin-binding proteins (alpha-actinin, calponin and filamin) on the binding to actin was analyzed by means of differential centrifugation and electron microscopy. In the absence of actin alpha-actinin, calponin and filamin do not interact with each other. Calponin and filamin do not interfere with each other in the binding to actin bundles. Slight interference was observed in the binding of alpha-actinin and calponin to actin bundles. Higher ability of calponin to depress alpha-actinin binding can be due to the higher stoichiometry calponin/actin in the complexes formed. The largest interference was observed in the pair filamin-alpha-actinin. These proteins interfere with each other in the binding to the bundled actin filaments; however, neither of them completely displaced another protein from its complexes with actin. The structure of actin bundles formed in the presence of any one actin-binding protein was different from that observed in the presence of binary mixtures of two actin-binding proteins. In the case of calponin or its binary mixtures with alpha-actinin or filamin the total stoichiometry actin-binding protein/actin was larger than 0.5. This means that alpha-actinin, calponin and filamin may coexist on actin filaments and more than mol of any actin-binding protein is bound per two actin monomers. This may be important for formation of different elements of cytoskeleton.  相似文献   

2.
Panasenko OO  Gusev NB 《IUBMB life》2000,49(4):277-282
Interaction of calponin and alpha-actinin with actin was analyzed by means of cosedimentation and electron microscopy. G-actin was polymerized in the presence of calponin, alpha-actinin, or both of these actin-binding proteins (ABPs). The single and bundled actin filaments were separated, and the stoichiometry of ABPs and actin in both types of filaments was determined. Binding of calponin to the single or bundled actin filaments was not dependent on the presence of alpha-actinin and did not displace alpha-actinin from actin. In the presence of calponin, however, less alpha-actinin was bound to the bundled actin filaments, and the binding of alpha-actinin was accompanied by a partial decrease in the calponin/actin stoichiometry in the bundles of actin filaments. Calponin had no influence on the binding of alpha-actinin to the single actin filaments. The structure of actin bundles formed in the presence of the two ABPs differed from that formed in the presence of either one singly. We conclude that calponin and alpha-actinin can coexist on actin and that nearly each actin monomer can bind one of these ABPs.  相似文献   

3.
The mutual effect of three actin-binding proteins (α-actinin, calponin and filamin) on the binding to actin was analyzed by means of differential centrifugation and electron microscopy. In the absence of actin α-actinin, calponin and filamin do not interact with each other. Calponin and filamin do not interfere with each other in the binding to actin bundles. Slight interference was observed in the binding of α-actinin and calponin to actin bundles. Higher ability of calponin to depress α-actinin binding can be due to the higher stoichiometry calponin/actin in the complexes formed. The largest interference was observed in the pair filamin–α-actinin. These proteins interfere with each other in the binding to the bundled actin filaments; however, neither of them completely displaced another protein from its complexes with actin. The structure of actin bundles formed in the presence of any one actin-binding protein was different from that observed in the presence of binary mixtures of two actin-binding proteins. In the case of calponin or its binary mixtures with α-actinin or filamin the total stoichiometry actin-binding protein/actin was larger than 0.5. This means that α-actinin, calponin and filamin may coexist on actin filaments and more than mol of any actin-binding protein is bound per two actin monomers. This may be important for formation of different elements of cytoskeleton.  相似文献   

4.
A method has been devised to study the influence of Ca2+ on the in vitro formation of actin gel networks. Under appropriate conditions low-Ca2+ cytosolic extracts (less than 1 nM) from macrophages rapidly formed a macromolecular complex composed of actin, filamin, alpha-actinin and two new proteins of 70 kDa and 55 kDa. [Pacaud, M. (1986) Eur. J. Biochem. 156, 521-530]. Increasing concentrations of free Ca2+ to 1-2 microM resulted in complete inhibition of the association of 70-kDa protein, a protein which associates actin filaments into parallel arrays. Concentrations of Ca2+ greater than 3 microM caused incorporation of two additional proteins, gelsolin and a 18-kDa polypeptide, with no change in either the actin or alpha-actinin content of the cytoskeletal structures. Use of a polyacrylamide gel overlay technique with 125I-calmodulin revealed that a high-Mr calmodulin-binding protein analogous to spectrin was also associated with these structures when micromolar Ca2+ was present. Similar assays with 45CaCl2 indicated that the 70-kDa protein binds Ca2+ with high affinity. It is thus suggested that Ca2+ might regulate the dynamic assembly of microfilaments through several target proteins, gelsolin, the 70-kDa protein and calmodulin.  相似文献   

5.
Reconstituted actin filament networks have been used extensively to understand the mechanics of the actin cortex and decipher the role of actin cross-linking proteins in the maintenance and deformation of cell shape. However, studies of the mechanical role of the F-actin cross-linking protein filamin have led to seemingly contradictory conclusions, in part due to the use of ill-defined mechanical assays. Using quantitative rheological methods that avoid the pitfalls of previous studies, we systematically tested the complex mechanical response of reconstituted actin filament networks containing a wide range of filamin concentrations and compared the mechanical function of filamin with that of the cross-linking/bundling proteins alpha-actinin and fascin. At steady state and within a well defined linear regime of small non-destructive deformations, F-actin solutions behave as highly dynamic networks (actin polymers are still sufficiently mobile to relax the stress) below the cross-linking-to-bundling threshold filamin concentration, and they behave as covalently cross-linked gels above that threshold. Under large deformations, F-actin networks soften at low filamin concentrations and strain-harden at high filamin concentrations. Filamin cross-links F-actin into networks that are more resilient, stiffer, more solid-like, and less dynamic than alpha-actinin and fascin. These results resolve the controversy by showing that F-actin/filamin networks can adopt diametrically opposed rheological behaviors depending on the concentration in cross-linking proteins.  相似文献   

6.
The actin-binding domains of many proteins consist of a canonical type 1/type 2 arrangement of the structurally conserved calponin homology domain. Using the actin-binding domain of alpha-actinin-1 as a scaffold we have generated synthetic actin-binding domains by altering position and composition of the calponin homology domains. We show that the presence of two calponin homology domains alone and in the context of an actin-binding domain is not sufficient for actin-binding, and that both single and homotypic type 2 calponin homology domain tandems fail to bind to actin in vitro and in transfected cells. In contrast, single and tandem type 1 calponin homology domain arrays bind actin directly but result in defective turnover rates on actin filaments, and in aberrant actin bundling when introduced into the full-length alpha-actinin molecule. An actin-binding domain harboring the calponin homology domains in an inverted position, however, functions both in isolation and in the context of the dimeric alpha-actinin molecule. Our data demonstrate that the dynamics and specificity of actin-binding via actin-binding domains requires both the filament binding properties of the type 1, and regulation by type 2 calponin homology domains, and appear independent of their position.  相似文献   

7.
Formins are multidomain proteins that regulate actin filament dynamics and are defined by the formin homology 2 domain. Biochemical assays suggest that mammalian formins display actin-filament nucleation, severing, and bundling activities. Whether formins can cross-link actin filaments into viscoelastic arrays and the effectiveness of formins' bundling activity compared with that of important filamentous actin (F-actin) cross-linking/bundling proteins are unknown. Here, we used rigorous in vitro rheologic assays to deconvolve the dynamic cross-linking activity from the bundling activity of formin FRL1 and the closely related mDia1 and mDia2. In addition, we compared these formins with the canonical F-actin bundling protein fascin and cross-linking/bundling proteins alpha-actinin and filamin. We found that FRL1 and mDia2, but not mDia1, can help F-actin form highly elastic networks. FRL1 and mDia2 mediate the formation of highly elastic F-actin networks as effectively and rapidly as alpha-actinin and filamin but only past a relatively high actin-to-formin molar ratio of 50:1. Past that threshold molar ratio, the mechanical properties of F-actin/formin networks are independent of formin concentration, similar to fascin. Moreover, unlike those for alpha-actinin and filamin but similar to those for fascin, F-actin/formin networks show no strain-induced hardening. mDia1 cannot bundle F-actin but can weakly cross-link filaments at high concentrations. Point mutagenesis reveals that reducing the barbed-end binding activity of FRL1 and mDia2 greatly enhances the rate of formation of F-actin gels but does not significantly affect the mechanical properties of the resulting networks at steady state. Together, these results suggest that the mechanical behaviors of FRL1 and mDia2 are fundamentally different from those of cross-linking/bundling proteins alpha-actinin and filamin but qualitatively similar to the mechanical behavior of the bundling protein fascin, albeit with a dramatically increased (>10-fold) threshold concentration for transition to bundling, which nevertheless leads to much stiffer F-actin networks than fascin.  相似文献   

8.
Interaction of alpha-actinin, filamin and tropomyosin with F-actin   总被引:5,自引:0,他引:5  
The abilities of alpha-actinin, filamin and tropomyosin to bind F-actin were examined by cosedimentation experiments. Results indicated that smooth muscle alpha-actinin and filamin can bind to actin filaments simultaneously with little evidence of competition. In contrast, tropomyosin exhibits marked competition with either filamin or alpha-actinin for sites on actin filaments.  相似文献   

9.
To study the morphogenesis of cells caused by the organization of their internal cytoskeletal network, we characterized the transformation of liposomes encapsulating actin and its crosslinking proteins, fascin, alpha-actinin, or filamin, using real-time high-intensity dark-field microscopy. With increasing temperature, the encapsulated G-actin polymerized into actin filaments and formed bundles or gels, depending on the type of actin-crosslinking protein that was co-encapsulated, causing various morphological changes of liposomes. The differences in morphology among transformed liposomes indicate that actin-crosslinking proteins determine liposome shape by organizing their specific actin networks. Morphological analysis reveals that the crosslinking manner, i.e. distance and angular flexibility between adjacent crosslinked actin filaments, is essential for the morphogenesis rather than their binding affinity and stoichiometry to actin filaments.  相似文献   

10.
To study how contractile proteins become organized into sarcomeric units in striated muscle, we have exposed glycerinated myofibrils to fluorescently labeled actin, alpha-actinin, and tropomyosin. In this in vitro system, alpha-actinin bound to the Z-bands and the binding could not be saturated by prior addition of excess unlabeled alpha-actinin. Conditions known to prevent self-association of alpha-actinin, however, blocked the binding of fluorescently labeled alpha-actinin to Z-bands. When tropomyosin was removed from the myofibrils, alpha-actinin then added to the thin filaments as well as the Z-bands. Actin bound in a doublet pattern to the regions of the myosin filaments where there were free cross-bridges i.e., in that part of the A-band free of interdigitating native thin filaments but not in the center of the A- band which lacks cross-bridges. In the presence of 0.1-0.2 mM ATP, no actin binding occurred. When unlabeled alpha-actinin was added first to myofibrils and then labeled actin was added fluorescence occurred not in a doublet pattern but along the entire length of the myofibril. Tropomyosin did not bind to myofibrils unless the existing tropomyosin was first removed, in which case it added to the thin filaments in the l-band. Tropomyosin did bind, however, to the exogenously added tropomyosin-free actin that localizes as a doublet in the A-band. These results indicate that the alpha-actinin present in Z-bands of myofibrils is fully complexed with actin, but can bind exogenous alpha- actinin and, if actin is added subsequently, the exogenous alpha- actinin in the Z-band will bind the newly formed fluorescent actin filaments. Myofibrillar actin filaments did not increase in length when G-actin was present under polymerizing conditions, nor did they bind any added tropomyosin. These observations are discussed in terms of the structure and in vivo assembly of myofibrils.  相似文献   

11.
The content and state of actin in baby hamster kidney (BHK) cells before and after transformation with polyoma virus were examined by deoxyribonuclease assay and gel electrophoresis followed by dye elution. The actin content of the transformed cells, relative to total cell protein, was lower than that of the normal cells by 30-50%. In both the normal and transformed cells the greater part of the total actin was found on lysis to be in the monomeric state. Cytoplasmic and membrane fractions of the two cell lines were, in qualitative terms, very similar in their protein compositions. The plasma membrane isolated from the transformed cells was richer in actin than that from the untransformed, and both membrane fractions contained proteins corresponding to myosin, filamin and alpha-actinin on SDS-polyacrylamide gels. The cell extract from both the normal and transformed lines formed an actin-based gel on incubation at 30 degrees C, although the amount of the cross-linked actin was much smaller in the latter. This was a consequence not only of the lower concentration of total actin in the cell, but also, presumably, of a gross relative deficiency in the concentration or activity of filament cross-linking protein(s) in the cytoplasm. Thus, small aliquots of cytoplasmic fractions from transformed cells, when added to an excess of exogenous F-actin, were able to cross-link the filaments to a much smaller extent than those from the normal cells. A similar range of proteins was found to be associated with the actin gels formed from both cell extracts. One conspicuous difference was that a species migrating in SDS-gel electrophoresis as a doublet with a subunit molecular weight of about 58,000, and tentatively identified as intermediate filament protein, was replaced in the transformed cells by a single band. Filament cross-linking activity of the cytoplasmic fractions was enhanced by addition of Triton extracts of crude membranes, although the latter were not capable of cross-linking exogenous F-actin on their own. The effect of Triton extracts was much greater in the case of membranes from the transformed cells. The cytoplasmic fractions of BHK cells contain capping protein(s) and/or complexes of such proteins with actin; these reveal themselves by the propensity of the extracts to nucleate polymerization of exogenous G-actin. This activity was more abundant in transformed cells, despite their lower actin content. Their membranes were also more effective in nucleating G-actin polymerization, indicating the presence of a greater number of filament ends.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The high molecular weight actin-binding protein filamin is located at the periphery of the Z disk in the fast adult chicken pectoral muscle (Gomer, R. H., and E. Lazarides, 1981, Cell, 23: 524-532). In contrast, we have found that in the slow anterior latissimus dorsi (ALD) muscle, filamin was additionally located throughout the l band as judged by immunofluorescence with affinity-purified antibodies on myofibrils and cryosections. The Z line proteins desmin and alpha-actinin, however, had the same distribution in ALD as they do in pectoral muscle. Quantitation of filamin and actin from the two muscle types showed that there was approximately 10 times as much filamin per actin in ALD myofibrils as in pectoral myofibrils. Filamin immunoprecipitated from ALD had an electrophoretic mobility in SDS polyacrylamide gels identical to that of pectoral myofibril filamin and slightly greater than that of chicken gizzard filamin. Two-dimensional peptide maps of filamin immunoprecipitated and labeled with 125I showed that ALD myofibril filamin was virtually identical to pectoral myofibril filamin and was distinct from chicken gizzard filamin.  相似文献   

13.
Proteins that cross-link actin filaments can either form bundles of parallel filaments or isotropic networks of individual filaments. We have found that mixtures of actin filaments with alpha-actinin purified from either Acanthamoeba castellanii or chicken smooth muscle can form bundles or isotropic networks depending on their concentration. Low concentrations of alpha-actinin and actin filaments form networks indistinguishable in electron micrographs from gels of actin alone. Higher concentrations of alpha-actinin and actin filaments form bundles. The threshold for bundling depends on the affinity of the alpha-actinin for actin. The complex of Acanthamoeba alpha-actinin with actin filaments has a Kd of 4.7 microM and a bundling threshold of 0.1 microM; chicken smooth muscle has a Kd of 0.6 microM and a bundling threshold of 1 microM. The physical properties of isotropic networks of cross-linked actin filaments are very different from a gel of bundles: the network behaves like a solid because each actin filament is part of a single structure that encompasses all the filaments. Bundles of filaments behave more like a very viscous fluid because each bundle, while very long and stiff, can slip past other bundles. We have developed a computer model that predicts the bundling threshold based on four variables: the length of the actin filaments, the affinity of the alpha-actinin for actin, and the concentrations of actin and alpha-actinin.  相似文献   

14.
Proteins which bind to actin filaments in macrophages were investigated by developing a procedure for the isolation of cytoplasmic gels. The gels were found to consist of five major constituents: actin, filamin and the 105-kDa, 70-kDa and 55-kDa components. Prolonged exposure of this macromolecular complex to high-ionic-strength buffer solubilized almost all the proteins, leaving behind the 55-kDa component along with a large amount of actin. Gel filtration of the solubilized extract led to the isolation of five constituents comprising actin, filamin, the 105-kDa and 70-kDa polypeptides, plus a molecular species which eluted at the position of a 280-kDa globular protein. The biochemical and immunological properties of the 105-kDa component were analogous to those of alpha-actinin. Although several attempts were made to correlate the three other constituents (280-kDa, 70-kDa and 55-kDa) with known cytoskeletal proteins, their identity remains to be established. alpha-Actinin, and the 280-kDa and 70-kDa species all exhibited the ability to co-sediment with F-actin and to pack actin filaments into bundles. The bundling activity of the 70-kDa protein was significantly decreased in the presence of micromolar concentrations of calcium, while the activity of the 280-kDa protein was not. Such a Ca2+-sensitive protein could be very important in controlling the local cytoplasmic viscosity.  相似文献   

15.
Dictyostelium discoideum alpha-actinin (D.d. alpha-actinin) is a calcium and pH-regulated actin-binding protein that can cross-link F-actin into a gel at a submicromolar free calcium concentration and a pH less than 7 [Fechheimer, et al., 1982]. We examined mixtures of actin and D.d. alpha-actinin at four pH and calcium concentrations that exhibited various degrees of gelation or solation. The macroscopic viscosities of these mixtures were measured by falling ball viscometry (FBV) and compared to the translational diffusion coefficients measured by gaussian spot and periodic-pattern fluorescence photobleaching recovery (FPR) of both the actin filaments and D.d. alpha-actinin. A homogeneous, macroscopic gel was not composed of a static actin network. Instead, the filament diffusion coefficient decreased to approximately 65% of the control value. If the D.d. alpha-actinin concentration was increased, the solution became inhomogeneous, consisting of domains of higher actin concentration. These domains were often composed of a static actin network. The mobility of D.d. alpha-actinin consisted of a major fraction that freely diffused and a minor fraction that appeared immobile under the conditions employed. This suggested that D.d. alpha-actinin binding to the actin filaments was static over the time course of measurement (approximately 5 sec). Under solation conditions, there was no apparent interaction of actin with D.d. alpha-actinin. These results demonstrate that 1) actin filaments need not be cross-linked into an immobile, static array in order to have macroscopic properties of a gel; 2) interpretation of the rheological properties of actin:alpha-actinin gels are complicated by spatial heterogeneity of the filament concentration and mobility; and 3) a fraction of D.d. alpha-actinin binds statically to actin in undisturbed gels. The implications of these results are discussed in relation to cytoplasmic structure and contractility.  相似文献   

16.
Phorbol ester induces actin cytoskeleton rearrangements in cultured vascular smooth muscle cells. Calponin and SM22 alpha are major components of differentiated smooth muscle and potential regulators of actin cytoskeleton interactions. Here we show that actin fibers decorated with h1 CaP remain stable, whereas SM22 alpha-decorated actin bundles undergo rapid reorganization into podosomes within 30 min of PDBu exposure. Ectopic expression of GFP alpha-actinin had no effect on the stability of the actin cytoskeleton and alpha-actinin was transported rapidly into PDBu-induced podosomes. Our results demonstrate the involvement of CaP and SM22 alpha in coordinating the balance between stabilization and dynamics of the actin cytoskeleton in mammalian smooth muscle. We provide evidence for the existence of two functionally distinct actin filament populations and introduce a molecular mechanism for the stabilization of the actin cytoskeleton by the unique actin-binding interface formed by calponin family-specific CLIK23 repeats.  相似文献   

17.
The Caenorhabditis elegans unc-87 gene product is essential for the maintenance of the nematode body wall muscle where it is found colocalized with actin in the I band. The molecular domain structure of the protein reveals similarity to the C-terminal repeat region of the smooth muscle actin-binding protein calponin. In this study we investigated the in vitro function of UNC-87 using both the full-length recombinant molecule and several truncated mutants. According to analytical ultracentrifugation UNC-87 occurs as a monomer in solution. UNC-87 cosedimented with both smooth and skeletal muscle F-actin, but not with monomeric G-actin, and exhibited potent actin filament bundling activity. Actin binding was independent of the presence of tropomyosin and the actin cross-linking proteins filamin and alpha-actinin. Consistent with its actin bundling activity in vitro, UNC-87 tagged with green fluorescent protein associated with and promoted the formation of actin stress fiber bundles in living cells. These data identify UNC-87 as an actin-bundling protein and highlight the calponin-like repeats as a novel actin-binding module.  相似文献   

18.
Filamin and vinculin from chicken gizzards were significantly phosphorylated in vitro by casein kinases 1 and 2, but not by alpha-actinin. Antisera raised against these actin-binding proteins immunoprecipitated the phosphorylated proteins corresponding to filamin and vinculin, but no phosphoprotein corresponding to alpha-actinin was detected. These results suggest that filamin and vinculin are phosphorylated in vivo but alpha-actinin is not.  相似文献   

19.
The kinetic parameters and some enzymatic characteristics of human platelet and chicken gizzard transglutaminases were determined. Activity of the transglutaminases was regulated by calmodulin. These enzymes co-isolated with alpha-actinin and were dissociated from alpha-actinin by gel filtration and absorption onto a calmodulin affinity column. Silver-stained polyacrylamide gels showed that the protein peak eluted by EGTA from this column contained polypeptides of Mr approximately 58,000 and 63,000. The transglutaminases required Ca2+ for incorporation of monodansylcadaverine into casein and actin substrates. Activity was enhanced 3-fold by calmodulin with a biphasic effect, showing stimulation at 10-200 nM and inhibition at concentrations higher than 300 nM. In the presence of 200 nM calmodulin, half-maximal transglutaminase stimulation was obtained with 2.5 microM free [Ca2+]. Chlorpromazine inhibited calmodulin enhancement of the transglutaminases. Activity of the transglutaminases was independent of proteolytic activation, since inhibitors for Ca2+-dependent proteases failed to inhibit filamin cross-linking. For comparison, factor XIIa, a plasma and platelet transglutaminase, required both Ca2+ and thrombin for activation and was insensitive to calmodulin. The cross-linking pattern of fibrin, fibrin monomers, and fibrinogen by the calmodulin-regulated transglutaminases showed, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, disappearance of fibrinogen alpha-chains with no decrease of beta- and gamma-chains or formation of gamma-gamma dimers. By autoradiography, cross-linked products of 125I-fibrinogen revealed heavily labeled high molecular weight polymers and polypeptides of Mr 98,000, 116,000, and 148,000; the latter appeared to be a transient species. However, when fibrin, fibrin monomers, and fibrinogen were used as factor XIIIa substrates, gamma-gamma dimers and alpha-polymers were formed. Formation of gamma-gamma dimers was slower with fibrinogen than with fibrin. Iodoacetamide blocked activity of factor XIIIa but not of the calmodulin-regulated transglutaminases.  相似文献   

20.
We have previously established [Cortese and Frieden, J. Cell Biol. 107:1477-1487, 1988] that actin gels formed under shear are microheterogeneous. In this study, the effect of cross-linking (by chicken gizzard filamin), severing (by plasma gelsolin), and shear on actin microheterogeneity are investigated using fluorescence photobleaching recovery and video microscopy. We find that filamin and shear form microheterogeneous F-actin:gelsolin gels by different mechanisms. Bundling of actin:gelsolin filaments by filamin can be explained by an increase in the apparent length of the filaments due to interfilament binding, resulting in a decrease of the polymer number concentration at which filaments organize into anisotropic phases. Some intrafilament binding of filamin to actin filaments may also be present, and those filaments coated with filamin immobilize more slowly than actin under the same polymerization conditions. The length of F-actin/gelsolin filaments seems to be a major factor in controlling the extent of bundling relative to network formation. In contrast, the effect of shear on the microheterogeneity of actin:gelsolin filaments is consistent with our previous proposal that shear aligns actin filaments, allowing filament-filament interactions and phase formation to occur. Short filaments are unable to organize into branched actin networks, but they can create large aggregates under low shear. Longer actin filaments will exist as networks with variable levels of branching and are less sensitive to shear. The effect of the intensity of a shear field on the spatial distribution of actin may involve a progressively more random orientation of actin molecules and bundles. A regular pattern develops across the sample at low shear rates (0.04-1.39 s-1), and becomes very irregular at higher shear rates (greater than 10 s-1). We suggest here that actin-binding proteins and shear can control the transition between isotropic networks and anisotropic phases by their effect on apparent length and local filament concentration, and also that this transition can have substantial effects on the resistance of cells to mechanical stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号