首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g., MLH1) in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and, more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for the presence of “vulnerable” crossover configurations in the fetal oocyte, consistent with the idea that these are subsequently translated into nondisjunctional events in the adult oocyte.  相似文献   

3.
4.
Strategies for genetic mapping of categorical traits   总被引:3,自引:0,他引:3  
Shaoqi Rao  Xia Li 《Genetica》2000,109(3):183-197
The search for efficient and powerful statistical methods and optimal mapping strategies for categorical traits under various experimental designs continues to be one of the main tasks in genetic mapping studies. Methodologies for genetic mapping of categorical traits can generally be classified into two groups, linear and non-linear models. We develop a method based on a threshold model, termed mixture threshold model to handle ordinal (or binary) data from multiple families. Monte Carlo simulations are done to compare its statistical efficiencies and properties of the proposed non-linear model with a linear model for genetic mapping of categorical traits using multiple families. The mixture threshold model has notably higher statistical power than linear models. There may be an optimal sampling strategy (family size vs number of families) in which genetic mapping reaches its maximal power and minimal estimation errors. A single large-sibship family does not necessarily produce the maximal power for detection of quantitative trait loci (QTL) due to genetic sampling of QTL alleles. The QTL allelic model has a marked impact on efficiency of genetic mapping of categorical traits in terms of statistical power and QTL parameter estimation. Compared with a fixed number of QTL alleles (two or four), the model with an infinite number of QTL alleles and normally distributed allelic effects results in loss of statistical power. The results imply that inbred designs (e.g. F2 or four-way crosses) with a few QTL alleles segregating or reducing number of QTL alleles (e.g. by selection) in outbred populations are desirable in genetic mapping of categorical traits using data from multiple families. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
In the regulation of chemical substances, it is generally agreed that there are no thresholds for genotoxic effects of chemicals, i.e. , that there are no doses without genotoxic effects. When classifying and labelling chemicals, dangerous properties of chemicals are to be identified. In this context, in general, the mode of action (threshold or not) is not considered for genotoxic substances. In the process of quantitative risk assessment, however, determination of the type of dose-effect relationships is decisive for the outcome and the type of risk management. The presence of a threshold must be justified specifically in each individual case. Inter alia, the following aspects may be discussed in this respect: aneugenic activity, indirect modes of action, extremely steep dose-effect relationships in combination with strong toxicity, specific toxicokinetic conditions which may lead to 'metabolic protection' prior to an attack of DNA. In the practice of the regulation of chemical substances with respect to their genotoxic effects, the discussion of thresholds has played a minor role. For notified new substances, there are, in general, no data available that would allow a reasonable discussion. Concerning substances out of the European programme on existing substances, so far 29 have been assessed in our institute with respect to genetic toxicity. Eight out of these have shown considerable evidence for genotoxicity. For two of them, a possible threshold is discussed: one substance is an aneugen, the other one is metabolised to an endogenic compound with genotoxic potential. In the practice of risk assessment of genotoxic substances, the discussion of the mode of action for genotoxicity is frequently associated with the evaluation of potential carcinogenic effects. Here, tissue-specific genotoxic effects in target organs for carcinogenicity are to be discussed. Moreover, the contribution of genotoxicity to the multifactorial process of tumour development should be assessed.  相似文献   

6.
Recognition that children are a potentially susceptible subpopulation has led to the development of child-specific sensitivity factors. Establishing reliable sensitivity factors in support of risk assessment of early-life stage exposures can be aided by evaluating studies that enhance our understanding both of the biological basis of disease processes and the potential role of environmental exposures in disease etiology. For these reasons, we evaluated childhood acute lymphocytic leukemia (ALL) studies from the point of view of mechanism and etiology. ALL is the most common form of childhood cancer proposed to result from a prenatal primary event and a postnatal second event. This multi-stage model is supported by the observation that chromosomal translocations/fusion genes (e.g., TEL-AML1) involved in producing ALL are detected at birth (prenatal event), and a postnatal event (e.g., TEL deletion) is required for disease manifestation. It appears that a proportion of ALL cases are the result of environmental exposures, in which case preconceptional, prenatal, and postnatal stages are likely to be critical exposure windows. To this end, we recognized postnatal infection-related risk factors as potential candidates associated with the ALL second event. Additionally, we discuss use of ALL-associated fusion genes and genetic polymorphisms, together or separately, as indicators of ALL susceptibility and increased risk. The possibility of using fusion genes alone as biomarkers of response is also discussed because they can serve as predictors of key events in the development of a mode of action (a sequence of key events, starting with interaction of an agent with a cell, ultimately resulting in cancer formation) for particular environmental exposures. Furthermore, we discuss use of an initiated animal model for ALL, namely transgenic mice with TEL-AML1 expression, for exploring mechanisms by which different classes of environmental exposures could be involved in inducing the postnatal step in ALL formation.  相似文献   

7.
Estimates of genetic risks of radiation exposure of humans are traditionally expressed as expected increases in the frequencies of genetic diseases (single-gene, chromosomal and multifactorial) over and above those of naturally-occurring ones in the population. An important assumption in expressing risks in this manner is that gonadal radiation exposures can cause an increase in the frequency of mutations and that this would result in an increase in the frequency of genetic diseases under study. However, despite compelling evidence for radiation-induced mutations in experimental systems, no increases in the frequencies of genetic diseases of concern or other adverse effects (i.e., those which are not formally classified as genetic diseases), have been found in human studies involving parents who have sustained radiation exposures. The known differences between spontaneous mutations that underlie naturally-occurring single-gene diseases and radiation-induced mutations studied in experimental systems now permit us to address and resolve these issues to some extent. The fact that spontaneous mutations (among which are point mutations and DNA deletions generally restricted to the gene) originate through a number of different mechanisms and that the latter are intimately related to the DNA organization of the genes, are now well-documented. Further, spontaneous mutations include those that cause diseases through loss of function as well as gain of function of genes. In contrast, most radiation-induced mutations studied in experimental systems (although identified through the phenotypes of the marker genes) are predominantly multigene deletions which cause loss of function; the recoverability of an induced deletion in a livebirth seems dependent on whether the gene and the genomic region in which it is located can tolerate heterozygosity for the deletion and yet be compatible with viability. In retrospect, the successful mutation test systems (such as the mouse specific locus test) used in radiation studies have involved genes which are non-essential for survival and are also located in genomic regions, likewise non-essential for survival. In contrast, most of the human genes at which induced mutations have been looked for, do not seem to have these attributes. The inference therefore is that the failure to find induced germline mutations in humans is not due to the resistance of human genes to induced mutations but due to the structural and functional constraints associated with their recoverability in livebirths. Since the risk of inducible genetic diseases in humans is estimated using rates of "recovered" mutations in mice, there is a need to introduce appropriate correction factors to bridge the gap between these rates and the rates at which mutations causing diseases are potentially recoverable in humans. Since the whole genome is the "target" for radiation-induced genetic damage, the failure to find increases in the frequencies of specific single-gene diseases of societal concern does not imply that there are no genetic risks of radiation exposures: the problem lies in delineating the phenotypes of recoverable genetic damage that are recognizable in livebirths. Data from studies of naturally-occurring microdeletion syndromes in humans and those from mouse radiation studies are instructive in this regard. They (i) support the view that growth retardation, mental retardation and multisystem developmental abnormalities are likely to be among the quantitatively more important adverse effects of radiation-induced genetic damage than mutations in a few selected genes and (ii) underscore the need to expand the focus in risk estimation from known genetic diseases (as has been the case thus far) to include these induced adverse developmental effects although most of these are not formally classified as "genetic diseases". (ABSTRACT TRUNCATED)  相似文献   

8.
This report summarizes the proceedings of the September 9-10, 2005 meeting of the Expert Working Group on Hazard Identification and Risk Assessment in Relation to In Vitro Testing, part of an initiative on genetic toxicology. The objective of the Working Group was to develop recommendations for interpretation of results from tests commonly included in regulatory genetic toxicology test batteries, and to propose an appropriate strategy for follow-up testing when positive in vitro results were obtained in these assays. The Group noted the high frequency of positive in vitro findings in the genotoxicity test batteries with agents found not to be carcinogenic and thought not to pose a carcinogenic health hazard to humans. The Group agreed that a set of consensus principles for appropriate interpretation and follow-up testing when initial in vitro tests are positive was needed. Current differences in emphasis and policy among different regulatory agencies were recognized as a basis of this need. Using a consensus process among a balanced group of recognized international authorities from industry, government, and academia, it was agreed that a strategy based on these principles should include guidance on: (1) interpretation of initial results in the "core" test battery; (2) criteria for determining when follow-up testing is needed; (3) criteria for selecting appropriate follow-up tests; (4) definition of when the evidence is sufficient to define the mode of action and the relevance to human exposure; and (5) definition of approaches to evaluate the degree of health risk under conditions of exposure of the species of concern (generally the human). A framework for addressing these issues was discussed, and a general "decision tree" was developed that included criteria for assessing the need for further testing, selecting appropriate follow-up tests, and determining a sufficient weight of evidence to attribute a level of risk and stop testing. The discussion included case studies based on actual test results that illustrated common situations encountered, and consensus opinions were developed based on group analysis of these cases. The Working Group defined circumstances in which the pattern and magnitude of positive results was such that there was very low or no concern (e.g., non-reproducible or marginal responses), and no further testing would be needed. This included a discussion of the importance of the use of historical control data. The criteria for determining when follow-up testing is needed included factors, such as evidence of reproducibility, level of cytotoxicity at which an increased DNA damage or mutation frequency is observed, relationship of results to the historical control range of values, and total weight of evidence across assays. When the initial battery is negative, further testing might be required based on information from the published literature, structure activity considerations, or the potential for significant human metabolites not generated in the test systems. Additional testing might also be needed retrospectively when increase in tumors or evidence of pre-neoplastic change is seen. When follow-up testing is needed, it should be based on knowledge about the mode of action, based on reports in the literature or learned from the nature of the responses observed in the initial tests. The initial findings, and available information about the biochemical and pharmacological nature of the agent, are generally sufficient to conclude that the responses observed are consistent with certain molecular mechanisms and inconsistent with others. Follow-up tests should be sensitive to the types of genetic damage known to be capable of inducing the response observed initially. It was recognized that genotoxic events might arise from processes other than direct reactivity with DNA, that these mechanisms may have a non-linear, or threshold, dose-response relationship, and that in such cases it may be possible to determine an exposure level below which there is negligible concern about an effect due to human exposures. When a test result is clearly positive, consideration of relevance to human health includes whether other assays for the same endpoint support the results observed, whether the mode or mechanism of action is relevant to the human, and - most importantly - whether the effect observed is likely to occur in vivo at concentrations expected as a result of human exposure. Although general principles were agreed upon, time did not permit the development of recommendations for the selection of specific tests beyond those commonly employed in initial test batteries.  相似文献   

9.
With advances in determining the entire DNA sequence of the human genome, it is now critical to systematically identify the function of a number of genes in the human genome. These biological challenges, especially those in human diseases, should be addressed in human cells in which conventional (e.g. genetic) approaches have been extremely difficult to implement. To overcome this, several approaches have been initiated. This review will focus on the development of a novel "chemical genetic/genomic approach" that uses small molecules to "probe and identify" the function of genes in specific biological processes or pathways in human cells. Due to the close relationship of small molecules with drugs, these systematic and integrative studies will lead to the "medicinal systems biology approach" which is critical to "formulate and modulate" complex biological (disease) networks by small molecules (drugs) in human bio-systems.  相似文献   

10.
Studies of gene-environment interactions aim to describe how genetic and environmental factors jointly influence the risk of developing a human disease. Gene-environment interactions can be described by using several models, which take into account the various ways in which genetic effects can be modified by environmental exposures, the number of levels of these exposures and the model on which the genetic effects are based. Choice of study design, sample size and genotyping technology influence the analysis and interpretation of observed gene-environment interactions. Current systems for reporting epidemiological studies make it difficult to assess whether the observed interactions are reproducible, so suggestions are made for improvements in this area.  相似文献   

11.
The genetic toxicity of human carcinogens and its implications   总被引:9,自引:0,他引:9  
23 chemicals and chemical combinations have been designated by the International Agency for Research on Cancer (IARC) as causally associated with cancer in humans. The literature was searched for reports of their activity in the Salmonella mutagenicity assay and for evidence of their ability to induce chromosome aberrations or micronuclei in the bone marrow of mice or rats. In addition, the chemical structures of these carcinogens were assessed for the presence of electrophilic substituents that might be associated with their mutagenicity and carcinogenicity. The purpose of this study was to determine which human carcinogens exhibit genetic toxicity in vitro and in vivo and to what extent they can be detected using these two widely employed short-term tests for genetic toxicity. The results of this study revealed 20 of the 23 carcinogens to be active in one or both short-term tests. Treosulphan, for which short-term test results are not available, is predicted to be active based on its structure. The remaining two agents, asbestos and conjugated estrogens, are not mutagenic to Salmonella; asbestos is not likely to induce cytogenetic effects in the bone marrow and the potential activity of conjugated estrogens in the bone marrow is difficult to anticipate. These findings show that genetic toxicity is characteristic of the majority of IARC Group 1 human carcinogens. If these chemicals are considered representative of human carcinogens, then two short-term tests may serve as an effective primary screen for chemicals that present a carcinogenic hazard to humans.  相似文献   

12.
Pfeifer GP 《Mutation research》2000,450(1-2):155-166
The occurrence of tumor-specific mutational spectra in the p53 mutation database provides indirect evidence that implicates certain exogenous and possibly endogenous mutagenic events in human carcinogenesis. In some cases, the distribution of DNA damage along the p53 gene caused by environmental carcinogens can be correlated with the mutational spectra, i.e. hotspots and types of mutations of certain cancers, most notably for nonmelanoma skin cancers and lung cancers in smokers. This concept has been validated by experiments with sunlight and cigarette smoke components representing the polycyclic aromatic hydrocarbon class of carcinogens. A disproportionally high number of mutations in p53 (and other genes) are found at methylated CpG dinucleotides. These sequences are particularly prone to mutagenesis involving endogenous events as well as modification by exogenous carcinogens.  相似文献   

13.
DNA polymorphisms as modulators of genotoxicity and cancer   总被引:4,自引:0,他引:4  
Cancer arises as a result of several factors, including multiple genes and environmental exposures. It is generally accepted that genetic polymorphisms are associated with most common disorders like cancer. The majority of polymorphisms are single nucleotide polymorphisms (SNPs) which occur with a frequency of 10(-6). Susceptibility-conferring alleles are not sufficient to cause disease, but modulate the risk in combination with other alleles and environmental exposures, except in the extreme case of Mendelian cancer syndromes (e.g. FAP, HNPCC, Rb). The Environmental Genome Project identifies, among others, two lines of research along which we have been working and are the topic of the present paper, namely (i) allele-disease associations and (ii) functional studies of allelic variants. Case-control association studies conducted by us and others showed that polymorphism at a single site could increase risk-predictability by a factor < 2. It is known, however, that the individual risk predictability increases by associating multiple genetic polymorphisms as was demonstrated for breast, renal and thyroid cancer. Functional genomics of the putative susceptibility-alleles involved in cancers can improve substantially the strength of association studies. This calls for cell-systems capable of tracking different gene activities, which may clarify the possible role of allelic variants in certain cancers. This endeavour is likely to be met by the bacterial tester strain, MTC, described here.  相似文献   

14.
The formation of micronuclei (MN) is extensively used in molecular epidemiology as a biomarker of chromosomal damage, genome instability, and eventually of cancer risk. The occurrence of MN represents an integrated response to chromosome-instability phenotypes and altered cellular viabilities caused by genetic defects and/or exogenous exposures to genotoxic agents. The present article reviews human population studies addressing the relationship between genetic polymorphisms and MN formation, and provides insight into how genetic variants could modulate the effect of environmental exposures to genotoxic agents, host factors (gender, age), lifestyle characteristics (smoking, alcohol, folate), and diseases (coronary artery disease, cancer). Seventy-two studies measuring MN frequency either in peripheral blood lymphocytes or exfoliated cells were retrieved after an extensive search of the MedLine/PubMed database. The effect of genetic polymorphisms on MN formation is complex, influenced to a different extent by several polymorphisms of proteins or enzymes involved in xenobiotic metabolism, DNA repair proteins, and folate-metabolism enzymes. This heterogeneity reflects the presence of multiple external and internal exposures, and the large number of chromosomal alterations eventually resulting in MN formation. Polymorphisms of EPHX, GSTT1, and GSTM1 are of special importance in modulating the frequency of chromosomal damage in individuals exposed to genotoxic agents and in unexposed populations. Variants of ALDH2 genes are consistently associated with MN formation induced by alcohol drinking. Carriers of BRCA1 and BRCA2 mutations (with or without breast cancer) show enhanced sensitivity to clastogens. Some evidence further suggests that DNA repair (XRCC1 and XRCC3) and folate-metabolism genes (MTHFR) also influence MN formation. As some of the findings are based on relatively small numbers of subjects, larger scale studies are required that include scoring of additional endpoints (e.g., MN in combination with fluorescent in situ hybridization, analysis of nucleoplasmic bridges and nuclear buds), and address gene-gene interactions.  相似文献   

15.
Cancer is an inheritable disorder of somatic cells. Environment and heredity both operate in the origins of human cancer. These environmental and genetic determinants of cancer can be classified into four groups designated "Oncodemes" [1].Oncodeme 1 is the irreducible "background" level of cancer due to spontaneous mutagenesis. Oncodeme 2 is "environmentally induced" cancer, whose causative agents are chemical carcinogens, radiation and viruses. Oncodeme 3 is basically "environmentally induced" cancer, but there are genetically determined differences among persons, e.g. the activation or inactivation of carcinogenes. Most human cancers are believed to belong to Oncodemes 2 and/or 3 (about 80%), for which the probability of the occurrence of the initial carcinogenic step(s) is increased, although the number of steps is not decreased. Oncodeme 1 would contain the approximately 20% that would remain if "environmentally induced" cancers (Oncodeme 2 and/or 3) were prevented. Lastly, Oncodeme 4 is "hereditary" cancer. Hereditary cancers could prove valuable in elucidating carcinogenesis, even though only a small proportion of cancers belong to this group. Here, we present a unique animal model of Oncodeme 4 for the study of problems in carcinogenesis; e.g. cell stage and tissue/cell-type-specific tumorigenesis, multistep carcinogenesis, species-specific differences in tumorigenesis, modifier gene(s) in renal carcinogenesis and cancer prevention.  相似文献   

16.
R Bremner  A Balmain 《Cell》1990,61(3):407-417
Initiation of tumorigenesis in mouse skin can be accomplished by mutagenesis of the H-ras gene by treatment with chemical carcinogens. A mouse model system has been developed to study the additional genetic events that take place during tumor progression. Skin carcinomas were induced in F1 hybrid mice exhibiting restriction fragment length polymorphisms at multiple chromosomal loci. Analysis of loss of heterozygosity in such tumors showed that imbalance of alleles on mouse chromosome 7, on which the H-ras gene is located, occurs very frequently in skin carcinomas. The chromosomal alterations detected, which included both nondisjunction and mitotic recombination events, were only seen in tumors that have activated ras genes. We conclude that gross chromosomal alterations that elevate the copy number of mutant H-ras and/or lead to loss of normal H-ras are a consistent feature of mouse skin tumor development.  相似文献   

17.
We have formulated a very general mathematical model to analyze the evolution of transposable genetic elements in prokaryotic populations. Transposable genetic elements are DNA sequences able to replicate and insert copies of themselves at new locations in the genome. This work characterizes the equilibrium distribution of copy number under the influence of copy number-dependent selection, transposition and deletion. Our principal results concern the equilibrium distribution of copy number in response to various selective regimes. For particular transposition patterns (e.g. unregulated transposition or copy number-dependent transposition), equilibrium distributions are calculated numerically for a variety of specific selection patterns. Selection is quantified through specification of the expected number of offspring for individuals of each type, which is generally a non-increasing function of copy number, in accord with the usual evolutionary speculations.  相似文献   

18.
C Ramel 《Mutation research》1986,168(3):327-342
The deployment of short-term assays for the detection of carcinogens inevitably has to be based on the genetic alterations actually involved in carcinogenesis. This paper gives an overview of oncogene activation and other mutagenic events connected with cancer induction. It is emphasized that there are indications of DNA alterations in carcinogenicity, which are not in accordance with "conventional" mutations and mutation frequencies, as measured by short-term assays of point mutations, chromosome aberrations and numerical chromosome changes. This discrepancy between DNA alterations in carcinogenicity and the endpoints of short-term assays in current use include transpositions, insertion mutations, polygene mutations, gene amplifications and DNA methylations. Furthermore, tumourigenicity may imply an induction of a genetic instability, followed by a cascade of genetic alterations. The evaluation of short-term assays for carcinogenesis mostly involves two correlations that is, between mutation and animal cancer data on the one hand and between animal cancer data and human carcinogenicity on the other. It should be stressed that animal bioassays for cancer in general imply tests specifically for the property of chemicals to function as complete carcinogens, which may be a rather poor reflection of the actual situation in human populations. The primary aim of short-term mutagenicity assays is to provide evidence as to whether a compound can be expected to cause mutations in humans, and such evidence has to be considered seriously even against a background of negative cancer data. For the evaluation of data from short-term assays the massive amount of empirical data from different assays should be used and new computer systems in that direction can be expected to provide improved predictions of carcinogenicity.  相似文献   

19.
To test whether the induction of two-hit events plays a role in the induction of disomic gametes by exposure to X-rays of the oocytes of females carrying compound second chromosomes, exposures of 1000 R, 2000 R or 3000 R were given as an acute dose or as two equal fractions separated by a 3-h interval. The dose-effect relationship for acute exposure is linear over this exposure range (1000–3000 R) and the yields obtained are remarkebly similar to those recorded in an earlier study by Clark and Sobels. At 3000 R a significant reduction in yield was observed after exposure fractionation. At exposure levels of 2000 and 1000 R, however exposure fractionation tends to enhance the yield od disomics.The dose-effect relationship study was then extended to 125, 250 and 500 R. After an exposure of 125 R the induced frequency of disomics was significantly higher than control, but not different from the frequencies induced by 250, 500 and 1000 R. There is no obvious explanation for this plateau which, together with the linear increase from 1000–3000 R, provide an indication that there may be several mechanisms involved in the induction of disomic gemetes.Treatment with ethyl methanesulfonate (EMS) and ageing of the females for a week did not affect the yield of disomic progeny.  相似文献   

20.
Although the existence of a threshold in the dose effect relationship is well documented for many, if not most, types of toxicological effects the existence of a threshold for the mutagenic effects of ionising radiation and of certain chemicals has been questioned since the middle of the century and only recently the question of thresholds for radiation and chemical carcinogenesis has been addressed. The essential facts for the interpretation of threshold dose-response curves are common to all type of effects and are: (i) the number and the identity of the target; (ii) the type and sensitivity of the endpoint used to quantify the effect. We therefore will first try to model the type of interactions which may be expected between a mutagen and its target and define from this whether a threshold dose-effect can be expected; in a second step the concept will be extended to heritable mutations and carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号