首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Badre D  Wagner AD 《Neuron》2004,41(3):473-487
Prefrontal cortex (PFC) supports flexible behavior by mediating cognitive control, though the elemental forms of control supported by PFC remain a central debate. Dorsolateral PFC (DLPFC) is thought to guide response selection under conditions of response conflict or, alternatively, may refresh recently active representations within working memory. Lateral frontopolar cortex (FPC) may also adjudicate response conflict, though others propose that FPC supports higher order control processes such as subgoaling and integration. Anterior cingulate cortex (ACC) is hypothesized to upregulate response selection by detecting response conflict; it remains unclear whether ACC functions generalize beyond monitoring response conflict. The present fMRI experiment directly tested these competing theories regarding the functional roles of DLPFC, FPC, and ACC. Results reveal dissociable control processes in PFC, with mid-DLPFC selectively mediating resolution of response conflict and FPC further mediating subgoaling/integration. ACC demonstrated a broad sensitivity to control demands, suggesting a generalized role in modulating cognitive control.  相似文献   

2.

Background

EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown.

Methodology

In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5–7 Hz), alpha1 (8–10), alpha2 (10–12 Hz), beta1 (13–20), beta2 (20–30 Hz), and gamma (30–40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects.

Principal Findings

We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and—with one exception—beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects.

Conclusions

We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM.  相似文献   

3.
Social anxiety is characterized by an excessive fear of being embarrassed in social interactions or social performance situations. Emotional support can help to decrease or diminish social distress. Such support may play an important role at different points of social interaction. However, it is unclear how the beneficial effects of social support are represented in the brains of socially anxious individuals. To explore this, we used the same paradigm previously used to examine the effects of emotional support on social pain caused by exclusion. Undergraduates (n = 46) showing a wide range of social anxiety scores underwent functional magnetic resonance imaging (fMRI) while participating in a Cyberball game. Participants were initially included and later excluded from the game. In the latter half of the session in which participants were excluded, they were provided with supportive messages. In line with our previous work, we found that social exclusion led to increased anterior cingulate cortex (ACC) activity, whereas emotional support led to increased left dorsolateral prefrontal cortex (DLPFC) activity. Despite validation of the paradigm, social anxiety was not associated with increased ACC activity during social exclusion, or during perceived emotional support. Instead, fear of negative evaluation as assessed by the Brief Fear of Negative Evaluation (BFNE) scale showed positive associations with left DLPFC activation while receiving emotional support, compared to while being socially excluded. The more socially anxious an individual was, the greater was the left DLPFC activity increased during receipt of messages. This suggests that highly socially anxious people still have the ability to perceive social support, but that they are nevertheless susceptible to negative evaluation by others.  相似文献   

4.
Chiew KS  Braver TS 《PloS one》2011,6(3):e17635

Background

Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality.

Methodology/Principal Findings

Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC.

Conclusions/Significance

These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference.  相似文献   

5.
Prior neuroimaging evidence indicates that decision conflict activates medial and lateral prefrontal and parietal cortices. Theoretical accounts of cognitive control highlight anterior cingulate cortex (ACC) as a central node in this network. However, a better understanding of the relative primacy and functional contributions of these areas to decision conflict requires insight into the neural dynamics of successive processing stages including conflict detection, response selection and execution. Moderate alcohol intoxication impairs cognitive control as it interferes with the ability to inhibit dominant, prepotent responses when they are no longer correct. To examine the effects of moderate intoxication on successive processing stages during cognitive control, spatio-temporal changes in total event-related theta power were measured during Stroop-induced conflict. Healthy social drinkers served as their own controls by participating in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg women) and placebo conditions in a counterbalanced design. Anatomically-constrained magnetoencephalography (aMEG) approach was applied to complex power spectra for theta (4-7 Hz) frequencies. The principal generator of event-related theta power to conflict was estimated to ACC, with contributions from fronto-parietal areas. The ACC was uniquely sensitive to conflict during both early conflict detection, and later response selection and execution stages. Alcohol attenuated theta power to conflict across successive processing stages, suggesting that alcohol-induced deficits in cognitive control may result from theta suppression in the executive network. Slower RTs were associated with attenuated theta power estimated to ACC, indicating that alcohol impairs motor preparation and execution subserved by the ACC. In addition to their relevance for the currently prevailing accounts of cognitive control, our results suggest that alcohol-induced impairment of top-down strategic processing underlies poor self-control and inability to refrain from drinking.  相似文献   

6.
The posterior parietal cortex (PPC) is understood to be active when observers perceive three-dimensional (3D) structure. However, it is not clear how central this activity is in the construction of 3D spatial representations. Here, we examine whether PPC is essential for two aspects of visual depth perception by testing patients with lesions affecting this region. First, we measured subjects'' ability to discriminate depth structure in various 3D surfaces and objects using binocular disparity. Patients with lesions to right PPC (N = 3) exhibited marked perceptual deficits on these tasks, whereas those with left hemisphere lesions (N = 2) were able to reliably discriminate depth as accurately as control subjects. Second, we presented an ambiguous 3D stimulus defined by structure from motion to determine whether PPC lesions influence the rate of bistable perceptual alternations. Patients'' percept durations for the 3D stimulus were generally within a normal range, although the two patients with bilateral PPC lesions showed the fastest perceptual alternation rates in our sample. Intermittent stimulus presentation reduced the reversal rate similarly across subjects. Together, the results suggest that PPC plays a causal role in both inferring and maintaining the perception of 3D structure with stereopsis supported primarily by the right hemisphere, but do not lend support to the view that PPC is a critical contributor to bistable perceptual alternations.This article is part of the themed issue ‘Vision in our three-dimensional world’.  相似文献   

7.
A neural network reflecting decisions about human faces.   总被引:6,自引:0,他引:6  
T J Druzgal  M D'Esposito 《Neuron》2001,32(5):947-955
Anatomic structures have been linked to the mnemonic component of working memory, but the neural network underlying associated decision processes remains elusive. Here we present an event-related functional magnetic resonance imaging study that measured activity during the decision period of a delayed face recognition task. A double dissociation of activity between anterior cingulate cortex (ACC), and a network including left fusiform face area (FFA) and left dorsolateral prefrontal cortex (DLPFC), reflected whether a probe face matched the remembered face at the time of decision. Greater activity in the left FFA and left DLPFC correlated with probe faces that matched the remembered face; in contrast, activity in ACC was greater when the probe face did not match the remembered face. These results support a model where frontal regions act in concert with stimulus-specific temporal structures to make recognition decisions about visual stimuli.  相似文献   

8.

Background

Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson''s disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA).

Methodology/Principal Findings

Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [11C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [11C]FLB 457 BP following right DLPFC rTMS.

Conclusions/Significance

To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.  相似文献   

9.
Perception of a moving visual stimulus can be suppressed or enhanced by surrounding context in adjacent parts of the visual field. We studied the neural processes underlying such contextual modulation with fMRI. We selected motion selective regions of interest (ROI) in the occipital and parietal lobes with sufficiently well defined topography to preclude direct activation by the surround. BOLD signal in the ROIs was suppressed when surround motion direction matched central stimulus direction, and increased when it was opposite. With the exception of hMT+/V5, inserting a gap between the stimulus and the surround abolished surround modulation. This dissociation between hMT+/V5 and other motion selective regions prompted us to ask whether motion perception is closely linked to processing in hMT+/V5, or reflects the net activity across all motion selective cortex. The motion aftereffect (MAE) provided a measure of motion perception, and the same stimulus configurations that were used in the fMRI experiments served as adapters. Using a linear model, we found that the MAE was predicted more accurately by the BOLD signal in hMT+/V5 than it was by the BOLD signal in other motion selective regions. However, a substantial improvement in prediction accuracy could be achieved by using the net activity across all motion selective cortex as a predictor, suggesting the overall conclusion that visual motion perception depends upon the integration of activity across different areas of visual cortex.  相似文献   

10.
Zelano C  Mohanty A  Gottfried JA 《Neuron》2011,72(1):178-187
Neuroscientific models of sensory perception suggest that the brain utilizes predictive codes in advance of a stimulus encounter, enabling organisms to infer forthcoming sensory events. However, it is poorly understood how such mechanisms are implemented in the olfactory system. Combining high-resolution functional magnetic resonance imaging with multivariate (pattern-based) analyses, we examined the spatiotemporal evolution of odor perception in the human brain during an olfactory search task. Ensemble activity patterns in anterior piriform cortex (APC) and orbitofrontal cortex (OFC) reflected the attended odor target both before and after stimulus onset. In contrast, prestimulus ensemble representations of the odor target in posterior piriform cortex (PPC) gave way to poststimulus representations of the odor itself. Critically, the robustness of target-related patterns in PPC predicted subsequent behavioral performance. Our findings directly show that the brain generates predictive templates or "search images" in PPC, with physical correspondence to odor-specific pattern representations, to augment olfactory perception.  相似文献   

11.

Background

The anterior cingulate cortex (ACC) is thought to be overacting in patients with Obsessive Compulsive Disorder (OCD) reflecting an enhanced action monitoring system. However, influences of conflict and error-likelihood have not been explored. Here, the error-related negativity (ERN) originating in ACC served as a measure of conflict and error-likelihood during memory recognition following different learning modes. Errorless learning prevents the generation of false memory candidates and has been shown to be superior to trial-and-error-learning. The latter, errorful learning, introduces false memory candidates which interfere with correct information in later recognition leading to enhanced conflict processing.

Methodology/Principal Findings

Sixteen OCD patients according to DSM-IV criteria and 16 closely matched healthy controls participated voluntarily in the event-related potential study. Both, OCD- and control group showed enhanced memory performance following errorless compared to errorful learning. Nevertheless, response-locked data showed clear modulations of the ERN amplitude. OCD patients compared to controls showed an increased error-likelihood effect after errorless learning. However, with increased conflict after errorful learning, OCD patients showed a reduced error-likelihood effect in contrast to controls who showed an increase.

Conclusion/Significance

The increase of the errorlikelihood effect for OCD patients within low conflict situations (recognition after errorless learning) might be conceptualized as a hyperactive monitoring system. However, within high conflict situations (recognition after EF-learning) the opposite effect was observed: whereas the control group showed an increased error-likelihood effect, the OCD group showed a reduction of the error-likelihood effect based on altered ACC learning rates in response to errors. These findings support theoretical frameworks explaining differences in ACC activity on the basis of conflict and perceived error-likelihood as influenced by individual error learning rate.  相似文献   

12.

Background

Patients with bipolar disorder experience cognitive and emotional impairment that may persist even during the euthymic state of the disease. These persistent symptoms in bipolar patients (BP) may be characterized by disturbances of emotion regulation and related fronto-limbic brain circuitry. The present study aims to investigate the modulation of fronto-limbic activity and connectivity in BP by the processing of emotional conflict.

Methods

Fourteen euthymic BP and 13 matched healthy subjects (HS) underwent functional magnetic resonance imaging (fMRI) while performing a word-face emotional Stroop task designed to dissociate the monitoring/generation of emotional conflict from its resolution. Functional connectivity was determined by means of psychophysiological interaction (PPI) approach.

Results

Relative to HS, BP were slower to process incongruent stimuli, reflecting higher amount of behavioral interference during emotional Stroop. Furthermore, BP showed decreased activation of the right dorsolateral prefrontal cortex (DLPFC) during the monitoring and a lack of bilateral amygdala deactivation during the resolution of the emotional conflict. In addition, during conflict monitoring, BP showed abnormal positive connectivity between the right DLPFC and several regions of the default mode network.

Conclusions

Overall, our results highlighted dysfunctional processing of the emotion conflict in euthymic BP that may be subtended by abnormal activity and connectivity of the DLPFC during the conflict monitoring, which, in turn, leads to failure of amygdala deactivation during the resolution of the conflict. Emotional dysregulation in BP may be underpinned by a lack of top-down cognitive control and a difficulty to focus on the task due to persistent self-oriented attention.  相似文献   

13.
A potentially powerful predictor for the course of drug (ab)use is the approach-bias, that is, the pre-reflective tendency to approach rather than avoid drug-related stimuli. Here we investigated the neural underpinnings of cannabis approach and avoidance tendencies. By elucidating the predictive power of neural approach-bias activations for future cannabis use and problem severity, we aimed at identifying new intervention targets. Using functional Magnetic Resonance Imaging (fMRI), neural approach-bias activations were measured with a Stimulus Response Compatibility task (SRC) and compared between 33 heavy cannabis users and 36 matched controls. In addition, associations were examined between approach-bias activations and cannabis use and problem severity at baseline and at six-month follow-up. Approach-bias activations did not differ between heavy cannabis users and controls. However, within the group of heavy cannabis users, a positive relation was observed between total lifetime cannabis use and approach-bias activations in various fronto-limbic areas. Moreover, approach-bias activations in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) independently predicted cannabis problem severity after six months over and beyond session-induced subjective measures of craving. Higher DLPFC/ACC activity during cannabis approach trials, but lower activity during cannabis avoidance trials were associated with decreases in cannabis problem severity. These findings suggest that cannabis users with deficient control over cannabis action tendencies are more likely to develop cannabis related problems. Moreover, the balance between cannabis approach and avoidance responses in the DLPFC and ACC may help identify individuals at-risk for cannabis use disorders and may be new targets for prevention and treatment.  相似文献   

14.
神经性厌食(Anorexia Nervosa,AN)是一种病因未明的心理行为综合症,社会文化及生物学因素间的交互作用被认为是该病的病因,脑成像体现出一些病理相关改变,但国内尚未见针对此病的成像报道。为给临床辅助诊断AN提供依据,采用经济、易获得的脑功能显像技术——单光子发射计算机断层显像(Single Photon Emission Computed Tomography,SPECT),扫描3位典型青年女性AN患者的大脑。通过统计参数图(Statistical Parametric Mapping,SPM2),基于体素的局部脑血流灌注分析,与25名正常青年女性脑图相比较发现,患者的前扣带和前额内侧、双侧额叶背外侧、后顶叶、颞叶中上部和小脑血流灌注降低,下丘脑、双侧颞叶中下部血流灌注增高,可能与神经递质回路有关,提示社会学因素可能只是该病的诱因,而生物学人格易感性才是该病的主要原因,同时说明SPECT脑血流成像有助于AN的临床辅助诊断。  相似文献   

15.
Posterior parietal cortex encodes autonomously selected motor plans   总被引:1,自引:0,他引:1  
Cui H  Andersen RA 《Neuron》2007,56(3):552-559
The posterior parietal cortex (PPC) of rhesus monkeys has been found to encode the behavioral meaning of categories of sensory stimuli. When animals are instructed with sensory cues to make either eye or hand movements to a target, PPC cells also show specificity depending on which effector (eye or hand) is instructed for the movement. To determine whether this selectivity retrospectively reflects the behavioral meaning of the cue or prospectively encodes the movement plan, we trained monkeys to autonomously choose to acquire a target in the absence of direct instructions specifying which effector to use. Activity in PPC showed strong specificity for effector choice, with cells in the lateral intraparietal area selective for saccades and cells in the parietal reach region selective for reaches. Such differential activity associated with effector choice under identical stimulus conditions provides definitive evidence that the PPC is prospectively involved in action selection and movement preparation.  相似文献   

16.
Johnston K  Levin HM  Koval MJ  Everling S 《Neuron》2007,53(3):453-462
The prefrontal cortex (PFC) and anterior cingulate cortex (ACC) have both been implicated in cognitive control, but their relative roles remain unclear. Here we recorded the activity of single neurons in both areas while monkeys performed a task that required them to switch between trials in which they had to look toward a flashed stimulus (prosaccades) and trials in which they had to look away from the stimulus (antisaccades). We found that ACC neurons had a higher level of task selectivity than PFC neurons during the preparatory period on trials immediately following a task switch. In ACC neurons, task selectivity was strongest after the task switch and declined throughout the task block, whereas task selectivity remained constant in the PFC. These results demonstrate that the ACC is recruited when cognitive demands increase and suggest a role for both areas in task maintenance and the implementation of top-down control.  相似文献   

17.
Processing of motion and pattern has been extensively studied in the visual domain, but much less in the somatosensory system. Here, we used ultra-high-field functional magnetic resonance imaging (fMRI) at 7 Tesla to investigate the neuronal correlates of tactile motion and pattern processing in humans under tightly controlled stimulation conditions. Different types of dynamic stimuli created the sensation of moving or stationary bar patterns during passive touch. Activity in somatosensory cortex was increased during both motion and pattern processing and modulated by motion directionality in primary and secondary somatosensory cortices (SI and SII) as well as by pattern orientation in the anterior intraparietal sulcus. Furthermore, tactile motion and pattern processing induced activity in the middle temporal cortex (hMT+/V5) and in the inferior parietal cortex (IPC), involving parts of the supramarginal und angular gyri. These responses covaried with subjects' individual perceptual performance, suggesting that hMT+/V5 and IPC contribute to conscious perception of specific tactile stimulus features. In addition, an analysis of effective connectivity using psychophysiological interactions (PPI) revealed increased functional coupling between SI and hMT+/V5 during motion processing, as well as between SI and IPC during pattern processing. This connectivity pattern provides evidence for the direct engagement of these specialized cortical areas in tactile processing during somesthesis.  相似文献   

18.
Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.  相似文献   

19.
Ebner M 《Biological cybernetics》2011,105(5-6):319-330
A series of experiments with human subjects have shown that color constancy improves when an object moves. It has been hypothesized that this effect is due to some kind of influence of high-level motion processing. We have built a computational model for color perception which replicates the results qualitatively which have been obtained with human subjects. We show that input from high-level motion processing is not required. In our model, the dependence is an effect of eye movement in combination with neural processing. Depending on the type of stimulus used, the eye either tracks the object or the background. When the object moves but is tracked by the observer, the background appears to move when considering the stimulus with respect to eye coordinates. Hence, the retinal input is different for the two conditions leading to a difference in color constancy performance.  相似文献   

20.
Abundant behavioral evidence suggests that the ability to self-control is limited, and that any exertion of self-control will increase the likelihood of subsequent self-control failures. Here we investigated the neural correlates underlying the aftereffects of self-control on future control processes using functional magnetic resonance imaging (fMRI). An initial act of self-control (suppressing emotions) impaired subsequent performance in a second task requiring control (Stroop task). On the neural level, increased activity during emotion suppression was followed by a relative decrease in activity during the Stroop task in a cluster in the right lateral prefrontal cortex (PFC) including the dorsolateral prefrontal cortex (DLPFC), an area engaged in the effortful implementation of control. There was no reliable evidence for reduced activity in the medial frontal cortex (MFC) including the anterior cingulate cortex (ACC), which is involved in conflict detection processes and has previously also been implicated in self-control. Follow-up analyses showed that the detected cluster in the right lateral PFC and an area in the MFC were involved in both the emotion suppression task and the Stroop task, but only the cluster in the right lateral PFC showed reduced activation after emotion suppression during the Stroop task. Reduced activity in lateral prefrontal areas relevant for the implementation of control may be a critical consequence of prior self-control exertion if the respective areas are involved in both self-control tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号