首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different Cd(2+) uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn(2+) uptake system which also takes up Cd(2+) and is induced by Mn(2+) starvation. The calculated K(m) and V(max) are 0.26 microM and 3.6 micromol g of dry cell(-1) min(-1), respectively. Unlike Mn(2+) uptake, which is facilitated by citrate and related tricarboxylic acids, Cd(2+) uptake is weakly inhibited by citrate. Cd(2+) and Mn(2+) are competitive inhibitors of each other, and the affinity of the system for Cd(2+) is higher than that for Mn(2+). The other Cd(2+) uptake system is expressed in Mn(2+)-sufficient cells, and no K(m) can be calculated for it because uptake is nonsaturable. Mn(2+) does not compete for transport through this system, nor does any other tested cation, i.e., Zn(2+), Cu(2+), Co(2+), Mg(2+), Ca(2+), Fe(2+), or Ni(2+). Both systems require energy, since uncouplers completely inhibit their activities. Two Mn(2+)-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn(2+) for growth as the parental strain. Mn(2+) starvation-induced Cd(2+) uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn(2+) or Cd(2+) accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn(2+) and Cd(2+) uptake system.  相似文献   

2.
Calcineurin (CN) is a Ca(2+)/calmodulin (CaM)-dependent protein serine/threonine phosphatase that contains Zn(2+) in its catalytic domain and can be stimulated by divalent ions such as Mn(2+) and Ni(2+). In this study, the role of exogenous Zn(2+) in the regulation of CN activity and its relevance to the role of Ni(2+) was investigated. Zn(2+) at a concentration range of 10nM-10 micro M inhibited Ni(2+)-stimulated CN-activity in vitro in a dose-dependent manner and approximately 50% inhibition was attained with 0.25 micro M Zn(2+). Kinetic analysis showed that Zn(2+) inhibited the activity of CN by competing with Ni(2+). Interaction of CN and CaM was not inhibited with Zn(2+) at 10 micro M. Zn(2+) never affected the activity of cAMP phosphodiesterase 1 or myosin light-chain kinase (CaM-dependent enzymes) and rather activated alkaline phosphatase. The present results indicate that Zn(2+) should be a potent inhibitor for CN activity although this ion is essential for CN.  相似文献   

3.
4.
To examine the interaction of human arginase II (EC 3.5.3.1) with substrate and manganese ions, the His120Asn, His145Asn and Asn149Asp mutations were introduced separately. About 53% and 95% of wild-type arginase activity were expressed by fully manganese activated species of the His120Asn and His145Asn variants, respectively. The K(m) for arginine (1.4-1.6 mM) was not altered and the wild-type and mutant enzymes were essentially inactive on agmatine. In contrast, the Asn149Asp mutant expressed almost undetectable activity on arginine, but significant activity on agmatine. The agmatinase activity of Asn149Asp (K(m) = 2.5 +/- 0.2 mM) was markedly resistant to inhibition by arginine. After dialysis against EDTA, the His120Asn variant was totally inactive in the absence of added Mn(2+) and contained < 0.1 Mn(2+).subunit(-1), whereas wild-type and His145Asn enzymes were half active and contained 1.1 +/- 0.1 Mn(2+).subunit(-1) and 1.3 +/- 0.1 Mn(2+).subunit(-1), respectively. Manganese reactivation of metal-free to half active species followed hyperbolic kinetics with K(d) of 1.8 +/- 0.2 x 10(-8) M for the wild-type and His145Asn enzymes and 16.2 +/- 0.5 x 10(-8) m for the His120Asn variant. Upon mutation, the chromatographic behavior, tryptophan fluorescence properties (lambda(max) = 338-339 nm) and sensitivity to thermal inactivation were not altered. The Asn149-->Asp mutation is proposed to generate a conformational change responsible for the altered substrate specificity of arginase II. We also conclude that, in contrast with arginase I, Mn(2+) (A) is the more tightly bound metal ion in arginase II.  相似文献   

5.
The photoreceptor cGMP phosphodiesterase (PDE6) plays a key role in vertebrate vision, but its enzymatic mechanism and the roles of metal ion co-factors have yet to be determined. We have determined the amount of endogenous Zn(2+) in rod PDE6 and established a requirement for tightly bound Zn(2+) in catalysis. Purified PDE6 contained 3-4-g atoms of zinc/mole, consistent with an initial content of two tightly bound Zn(2+)/catalytic subunit. PDE with only tightly bound Zn(2+) and no free metal ions was inactive, but activity was fully restored by Mg(2+), Mn(2+), Co(2+), or Zn(2+). Mn(2+), Co(2+), and Zn(2+) also induced aggregation and inactivation at higher concentrations and longer times. Removal of 93% of the tightly bound Zn(2+) by treatment with dipicolinic acid and EDTA at pH 6.0 resulted in almost complete loss of activity in the presence of Mg(2+). This activity loss was blocked almost completely by Zn(2+), less potently by Co(2+) and almost not at all by Mg(2+), Mn(2+), or Cu(2+). The lost activity was restored by the addition of Zn(2+), but Co(2+) restored only 13% as much activity, and other metals even less. Thus tightly bound Zn(2+) is required for catalysis but could also play a role in stabilizing the structure of PDE6, whereas distinct sites where Zn(2+) is rapidly exchanged are likely occupied by Mg(2+) under physiological conditions.  相似文献   

6.
Trace metals are required for many cellular processes. The acquisition of trace elements from the environment includes a rapid adsorption of metals to the cell surface, followed by a slower internalization. We investigated the uptake of the trace elements Co(2+), Cu(2+), Mn(2+), Ni(2+), and Zn(2+) and the non-essential divalent cation Cd(2+) in the cyanobacterium Nostoc punctiforme. For each metal, a dose response study based on cell viability showed that the highest non-toxic concentrations were: 0.5?μM Cd(2+), 2?μM Co(2+), 0.5?μM Cu(2+), 500?μM Mn(2+), 1?μM Ni(2+), and 18?μM Zn(2+). Cells exposed to these non-toxic concentrations with combinations of Zn(2+) and Cd(2+), Zn(2+) and Co(2+), Zn(2+) and Cu(2+) or Zn(2+) and Ni(2+), had reduced growth in comparison to controls. Cells exposed to metal combinations with the addition of 500?μM Mn(2+) showed similar growth compared to the untreated controls. Metal levels were measured after one and 72?h for whole cells and absorbed (EDTA-resistant) fractions and used to calculate differential uptake rates for each metal. The differences in binding and internalisation between different metals indicate different uptake processes exist for each metal. For each metal, competitive uptake experiments using (65)Zn showed that after 72?h of exposure Zn(2+) uptake was reduced by most metals particularly 0.5?μM Cd(2+), while 2?μM Co(2+) increased Zn(2+) uptake. This study demonstrates that N. punctiforme discriminates between different metals and favourably substitutes their uptake to avoid the toxic effects of particular metals.  相似文献   

7.
The influence of divalent metal ions on the intrinsic and kirromycin-stimulated GTPase activity in the absence of programmed ribosomes and on nucleotide binding affinity of elongation factor Tu (EF-Tu) from Thermus thermophilus prepared as the nucleotide- and Mg(2+)-free protein has been investigated. The intrinsic GTPase activity under single turnover conditions varied according to the series: Mn(2+) (0.069 min(-1)) > Mg(2+) (0.037 min(-1)) approximately no Me(2+) (0.034 min(-1)) > VO(2+) (0.014 min(-1)). The kirromycin-stimulated activity showed a parallel variation. Under multiple turnover conditions (GTP/EF-Tu ratio of 10:1), Mg(2+) retarded the rate of hydrolysis in comparison to that in the absence of divalent metal ions, an effect ascribed to kinetics of nucleotide exchange. In the absence of added divalent metal ions, GDP and GTP were bound with equal affinity (K(d) approximately 10(-7) m). In the presence of added divalent metal ions, GDP affinity increased by up to two orders of magnitude according to the series: no Me(2+) < VO(2+) < Mn(2+) approximately Mg(2+) whereas the binding affinity of GTP increased by one order of magnitude: no Me(2+) < Mg(2+) < VO(2+) < Mn(2+). Estimates of equilibrium (dissociation) binding constants for GDP and GTP by EF-Tu on the basis of Scatchard plot analysis, together with thermodynamic data for hydrolysis of triphosphate nucleotides (Phillips, R. C., George, P., and Rutman, R. J. (1969) J. Biol. Chem. 244, 3330-3342), showed that divalent metal ions stabilize the EF-Tu.Me(2+).GDP complex over the protein-free Me(2+).GDP complex in solution, with the effect greatest in the presence of Mg(2+) by approximately 10 kJ/mol. These combined results show that Mg(2+) is not a catalytically obligatory cofactor in intrinsic and kirromycin-stimulated GTPase action of EF-Tu in the absence of programmed ribosomes, which highlights the differential role of Mg(2+) in EF-Tu function.  相似文献   

8.
9.
Zn(2+) at 10(-3)m has been found to block the formation of mating pairs between Hfr and F(-) strains of Escherichia coli as observed both by light microscopy and by Coulter counter measurements. Kinetic studies show that Zn(2+) reduces the fertility of the male and that its effect disappears within 2 min after Zn(2+) has been removed from the medium. Short treatments of female cells with Zn(2+) have no detectable effect on their ability to form mating pairs. Later steps in the mating process such as mobilization of the male chromosome, transfer of the chromosome to the female, or its integration into the female chromosome seem not to be affected by 10(-3)m Zn(2+).  相似文献   

10.
11.
1. The properties of fructose diphosphatase from the liver of rainbow trout (Salmo gairdnerii) were examined over the physiological temperature range of the organism. 2. Saturation curves for substrate (fructose 1,6-diphosphate) and a cofactor (Mg(2+)) are sigmoidal, and Hill plots of the results suggest a minimum of two interacting fructose 1,6-diphosphate sites and two interacting Mg(2+) sites per molecule of enzyme. 3. Mn(2+)-saturation curves are hyperbolic, and the K(a) for Mn(2+), which inhibits the enzyme at high concentrations, is 50-100-fold lower than the K(a) for Mg(2+). 4. Fructose diphosphatase is inhibited by low concentrations of AMP; this inhibition appears to be decreased and reversed by increasing the concentrations of Mg(2+) and Mn(2+). Higher concentrations of AMP are required to inhibit the trout fructose diphosphatase in the presence of Mn(2+). 5. The affinities of fructose diphosphatase for fructose diphosphate and Mn(2+) appear to be temperature-independent, whereas the affinities for Mg(2+) and AMP are highly temperature-dependent. 6. The pH optimum of the enzyme depends on the concentrations of Mg(2+) and Mn(2+). In addition, pH determines the K(a) for Mg(2+); at high pH, K(a) for Mg(2+) is lowered. 7. The enzyme is inhibited by Ca(2+) and Zn(2+), and the inhibition is competitive with respect to both cations. 8. The possible roles of these ions and AMP in the modulation of fructose diphosphatase and gluconeogenic activity are discussed in relation to temperature adaptation.  相似文献   

12.
Zinc potentiation of androgen receptor binding to nuclei in vitro   总被引:1,自引:0,他引:1  
D S Colvard  E M Wilson 《Biochemistry》1984,23(15):3471-3478
Zn2+ potentiates binding of the 4.5S [3H]dihydrotestosterone-receptor complex to isolated rat prostate Dunning tumor nuclei in vitro when assayed in the presence of 300 microM ZnCl2, 3 mM MgCl2, 0.25 M sucrose, 5 mM mercaptoethanol, 0.15 M KCl, and 50 mM tris(hydroxymethyl)aminomethane, pH 7.5. In the presence of 5 mM mercaptoethanol, the concentration of 50 microM total Zn2+ required to promote half-maximal receptor binding to nuclei corresponds to a free Zn2+ concentration of 50 nM. The receptor-nuclear interaction appears to be selective for Zn2+; other divalent cations when added at a concentration of 1 mM to a buffer containing 5 mM mercaptoethanol are less effective (Ni2+) or have essentially no effect (Ca2+, Mg2+, Mn2+, Co2+, Cu2+, and Cd2+). Zn2+ does not alter the sedimentation rate of the 4.5S [3H]dihydrotestosterone receptor in the presence of mercaptoethanol; however, in the absence of mercaptoethanol, Zn2+ causes the receptor to aggregate. Zn2+-dependent nuclear binding of the 4.5S [3H]dihydrotestosterone receptor is saturable at 1.4 X 10(-13) mol of receptor sites/mg of DNA, corresponding to approximately 1150 sites/nucleus. In the presence of excess nuclei, up to 60% of added receptor is nuclear bound. An apparent binding constant for the receptor-nuclear interaction of 10(13) M-1 was approximated. Pyridoxal 5'-phosphate (less than or equal to 10 mM), but not 0.4 M KCl, inhibits Zn2+-dependent nuclear binding of the [3H]dihydrotestosterone receptor. Up to 66% of nuclear-bound receptor can be extracted in buffer containing 3 mM ethylenediaminetetraacetic acid plus either 0.4 M KCl or 10 mM pyridoxal 5'-phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

14.
Extracts of a multiply peptidase-deficient (pepNABDPQTE iadA iaaA) Salmonella enterica serovar Typhimurium strain contain an aspartyl dipeptidase activity that is dependent on Mn(2+). Purification of this activity followed by N-terminal sequencing of the protein suggested that the Mn(2+)-dependent peptidase is DapE (N-succinyl-L,L-diaminopimelate desuccinylase). A dapE chromosomal disruption was constructed and transduced into a multiply peptidase-deficient (MPD) strain. Crude extracts of this strain showed no aspartyl peptidase activity, and the strain failed to utilize Asp-Leu as a leucine source. The dapE gene was cloned into expression vectors in order to overproduce either the native protein (DapE) or a hexahistidine fusion protein (DapE-His(6)). Extracts of a strain carrying the plasmid overexpresssing native DapE in the MPD dapE background showed a 3,200-fold elevation of Mn(2+)-dependent aspartyl peptidase activity relative to the MPD dapE(+) strain. In addition, purified DapE-His(6) exhibited Mn(2+)-dependent peptidase activity toward aspartyl dipeptides. Growth of the MPD strain carrying a single genomic copy of dapE on Asp-Leu as a Leu source was slow but detectable. Overproduction of DapE in the MPD dapE strain allowed growth on Asp-Leu at a much faster rate. DapE was found to be specific for N-terminal aspartyl dipeptides: no N-terminal Glu, Met, or Leu peptides were hydrolyzed, nor were any peptides containing more than two amino acids. DapE is known to bind two divalent cations: one with high affinity and the other with lower affinity. Our data indicate that the form of DapE active as a peptidase contains Zn(2+) in the high-affinity site and Mn(2+) in the low-affinity site.  相似文献   

15.
All DNA polymerases require a divalent cation for catalytic activity. It is generally assumed that Mg(2+) is the physiological cofactor for replicative DNA polymerases in vivo. However, recent studies suggest that certain repair polymerases, such as pol lambda, may preferentially utilize Mn(2+) in vitro. Here we report on the effects of Mn(2+) and Mg(2+) on the enzymatic properties of human DNA polymerase iota (pol iota). pol iota exhibited the greatest activity in the presence of low levels of Mn(2+) (0.05-0.25 mm). Peak activity in the presence of Mg(2+) was observed in the range of 0.1-0.5 mm and was significantly reduced at concentrations >2 mm. Steady-state kinetic analyses revealed that Mn(2+) increases the catalytic activity of pol iota by approximately 30-60,000-fold through a dramatic decrease in the K(m) value for nucleotide incorporation. Interestingly, whereas pol iota preferentially misinserts G opposite T by a factor of approximately 1.4-2.5-fold over the correct base A in the presence of 0.25 and 5 mm Mg(2+), respectively, the correct insertion of A is actually favored 2-fold over the misincorporation of G in the presence of 0.075 mm Mn(2+). Low levels of Mn(2+) also dramatically increased the ability of pol iota to traverse a variety of DNA lesions in vitro. Titration experiments revealed a strong preference of pol iota for Mn(2+) even when Mg(2+) is present in a >10-fold excess. Our observations therefore raise the intriguing possibility that the cation utilized by pol iota in vivo may actually be Mn(2+) rather than Mg(2+), as tacitly assumed.  相似文献   

16.
To achieve cellular iron deprivation by chelation, it is important to develop chelators with selective metal-binding properties. Selectivity for iron has long been the province of certain oxygen-donor chelators such as desferrioxamine, which target Fe(III) and exploit the strength of a relatively ionic Fe(III)-O interaction. We have been studying novel chelators that possess mechanisms to selectively chelate +2 biometals, particularly tachpyr [N,N',N"-tris(2-pyridylmethyl)-1,3,5-cis,cis-triaminocyclohexane] and derivatives from N,N',N"-trialkylation and pyridine ring alkylation. Metal-exchange and metal-binding competition reactions have been conducted at pH 7.4, 37 degrees C and time periods until no further change was observed (generally 24-48 h). Under anaerobic conditions, tachpyr is strongly selective for iron, binding 95+/-5% Fe(II) versus 5+/-5% Zn(II) in the forms [Fe(tachpyr)](2+) and [Zn(tachpyr)](2+) respectively. Under aerobic conditions, tachpyr complexes Fe(II) more effectively than Fe(III), forming iminopyridyl complexes [Fe(tachpyr-ox-n)](2+) (n=2, 4) by O(2)-induced and iron-mediated oxidative dehydrogenation. Complexes [Fe(tachpyr-ox-n)](2+) are also strongly bound forms of iron that are unaffected by an excess of Zn(II) (75 mol zinc:1 mol iron complex). The preference of tachpyr for iron over zinc under aerobic conditions appears to be hindered by oxidation of Fe(II) to Fe(III), such that the proportions bound are 44+/-10% Fe(II) versus 56+/-10% Zn(II), in the respective forms [Fe(tachpyr-ox-n)](2+) and [Zn(tachpyr)](2+). However, upon addition of the reducing agent Na(2)S(2)O(4) that converts Fe(III) to Fe(II), the binding proportions shift to 76+/-10% Fe(II) versus 24+/-10% Zn(II), demonstrating a clear preference of tachpyr for Fe(II) over Zn(II). Iron(II) is in the low-spin state in [Fe(tachpyr)](2+) and [Fe(tachpyr-ox-n)](2+) (n=2, 4), which is a likely cause of the observed selectivity. N-methylation of tachpyr [giving (N-methyl)(3)tachpyr] results in the loss of selectivity for Fe(II), which is attributed to the steric effect of the methyl groups and a resulting high-spin state of Fe(II) in [Fe(N-methyl)(3)tachpyr)](2+). The relationship of chelator selectivity to cytotoxicity in the tach family will be discussed.  相似文献   

17.
FT Senguen  Z Grabarek 《Biochemistry》2012,51(31):6182-6194
Calmodulin (CaM), a member of the EF-hand superfamily, regulates many aspects of cell function by responding specifically to micromolar concentrations of Ca(2+) in the presence of an ~1000-fold higher concentration of cellular Mg(2+). To explain the structural basis of metal ion binding specificity, we have determined the X-ray structures of the N-terminal domain of calmodulin (N-CaM) in complexes with Mg(2+), Mn(2+), and Zn(2+). In contrast to Ca(2+), which induces domain opening in CaM, octahedrally coordinated Mg(2+) and Mn(2+) stabilize the closed-domain, apo-like conformation, while tetrahedrally coordinated Zn(2+) ions bind at the protein surface and do not compete with Ca(2+). The relative positions of bound Mg(2+) and Mn(2+) within the EF-hand loops are similar to those of Ca(2+); however, the Glu side chain at position 12 of the loop, whose bidentate interaction with Ca(2+) is critical for domain opening, does not bind directly to either Mn(2+) or Mg(2+), and the vacant ligand position is occupied by a water molecule. We conclude that this critical interaction is prevented by specific stereochemical constraints imposed on the ligands by the EF-hand β-scaffold. The structures suggest that Mg(2+) contributes to the switching off of calmodulin activity and possibly other EF-hand proteins at the resting levels of Ca(2+). The Mg(2+)-bound N-CaM structure also provides a unique view of a transiently bound hydrated metal ion and suggests a role for the hydration water in the metal-induced conformational change.  相似文献   

18.
Five metallic cations (Fe(3+), Cr(3+), Ca(2+), Mg(2+), Mn(2+); concentration range, 1.85 x 10(-4) to 37 x 10(-4)m) were incorporated individually as chlorides into nutrient broth and agar media used for the recovery of phenol-treated Escherichia coli. The effects observed varied with the concentration and the ionic species. In nutrient agar, Fe(3+) and Cr(3+) were generally beneficial but were toxic at 37 x 10(-4)m. Of the divalent ions tested, Ca(2+) and Mg(2+) usually gave higher counts in nutrient broth, except at a concentration of 9.25 x 10(-4)m, whereas the effect of Mn(2+) was rather variable. Two possible explanations are suggested to explain these effects. Toxic materials may be removed from the media by the precipitates formed on the addition of Fe(3+) or Cr(3+), or, in the case of the divalent ions, the integrity of the bacterial cell membranes may be maintained.  相似文献   

19.
A phosphatase specific for the hydrolysis of 3-deoxy-d-manno-octulosonate (KDO)-8-phosphate was purified approximately 400-fold from crude extracts of Escherichia coli B. The hydrolysis of KDO-8-phosphate to KDO and inorganic phosphate in crude extracts of E. coli B, grown in phosphate-containing minimal medium, could be accounted for by the enzymatic activity of this specific phosphatase. No other sugar phosphate tested was an alternate substrate or inhibitor of the purified enzyme. KDO-8-phosphate phosphatase was stimulated three- to fourfold by the addition of 1.0 mM Co(+) or Mg(2+) and to a lesser extent by 1.0 mM Ba(2+), Zn(2+), and Mn(2+). The activity was inhibited by the addition of 1.0 mM ethylenediaminetetraacetic acid, Cu(2+), Ca(2+), Cd(2+), Hg(2+), and chloride ions (50% at 0.1 M). The pH optimum was determined to be 5.5 to 6.5 in both tris(hydroxymethyl)aminomethane-acetate and HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer. This specific phosphatase had an isoelectric point of 4.7 to 4.8 and a molecular weight of 80,000 +/- 6,000 as determined by molecular sieving and Ferguson analysis. The enzyme appeared to be composed of two identical subunits of 40,000 to 43,000 molecular weight. The apparent K(m) for KDO-8-phosphate was determined to be 5.8 +/- 0.9 x 10(-5) M in the presence of 1.0 mM Co(2+), 9.1 +/- 1 x 10(-5) M in the presence of 1.0 mM Mg(2+), and 1.0 +/- 0.2 x 10(-4) M in the absence of added Co(2+) or Mg(2+).  相似文献   

20.
Escherichia coli oligoribonuclease (EcoORN), encoded by the orn gene, is a 3'-5' exonuclease that degrades short single-stranded oligoribonucleotides to rNMPs in the final step of RNA degradation. The orn gene is essential in E. coli, but not in higher organisms, and close homologues are present in other genomes from the beta and gamma subdivisions of the Protobacteriaceae, including many pathogenic species. We report here the expression in E. coli of orn and homologues from Mycobacterium smegmatis and human, and large-scale purification of the three enzymes. All three were found to promote the hydrolysis of the 5'-p-nitrophenyl ester of TMP (pNP-TMP) with similar values of Michaelis-Menten parameters (k(cat)=100-650 min(-1), K(M)=0.4-2.0 mM, at pH 8.00 and 25 degrees C, with 1 mM Mn(2+)). Hydrolysis by pNP-TMP by all three enzymes depended on a divalent metal ion, with Mn(2+) being preferred over Mg(2+) as cofactor, and was inhibited by Ni(2+). The concentration dependency of Mn(2+) was examined, giving K(Mn) values of 0.2-0.6 mM. The availability of large amounts of the purified enzymes and a simple spectrophotometric assay for ORN activity should facilitate large-scale screening for new inhibitors of bacterial oligoribonucleases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号