首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cellobiase from Aspergillus niger was glycosylated by covalent coupling to cyanogen bromide activated dextran. The conjugated enzyme retained 62% of the original specific activity exhibited by the native cellobiase. The optimum pH as well as the pH stability of the conjugated form remain almost the same as for the native enzyme. Compared to the native enzyme, the conjugated form exhibited a higher optimal reaction temperature and energy of activation, a higher K(m) (Michaelis constant) and lower Vmax (maximal reaction rate), and improved thermal stability. The thermal deactivation of the native and conjugated cellobiase obeyed the first-order kinetics. The calculated half-life values of heat inactivation at 60, 70 and 80 degrees C was 10.7, 6.25, and 4.05 h, respectively, whereas at these temperatures the native enzyme was less stable (half-life of 3.5, 1.69, and 0.83 h, respectively). The deactivation rate constant at 80 degrees C for the conjugated cellobiase is about 7.9 x 10(-2) h-1, which is lower than that of the native enzyme (36.0 x 10(-2) h-1). The activation energy for denaturation of the native enzyme is about 10.58 kcal/mol, which is 7.25 kcal/mol lower than that of the conjugated enzyme. The effect of different surfactants and some metal ions on the activity of the conjugated cellobiase has been investigated.  相似文献   

2.
The thermal transition of RNase T1 was studied by two different methods; tryptophan residue fluorescence and circular dichroism. The fluorescence measurements provide information about the environment of the indole group and CD measurements on the gross conformation of the polypeptide chain. Both measurements at pH 5 gave the same transition temperature of 56 degrees C and the same thermodynamic quantities, delta Htr (= 120 kcal/mol) and delta Str (= 360 eu/mol), for the transition from the native state to the thermally denatured state, indicating simultaneous melting of the whole molecule including the hydrophobic region where the tryptophan residue is buried. Stabilization by salts was observed in the pH range from 2 to 10, since the presence of 0.5 m NaCL caused an increase of about 5 degrees C to 10 degrees C in the transition temperature, depending on the pH. The fluorescence measurements on the RNase T1 complexed with 2'-GMP showed a transition with delta Htr =167 kcal/mol and delta Str =497 eu/mol at a transition temperature about 6 degrees C higher than that for the free enzyme. The large value of delta Htr for RNase T1 indicates the highly cooperative nature of the thermal transition; this value is much higher than those of other globular proteins. Analysis of the CD spectrum of thermally denatured RNase T1 suggests that the denatured state is not completely random but retains some ordered structures.  相似文献   

3.
Dermal collagens have several fluorescent moieties in the UV and visible spectral regions that may serve as molecular probes of collagen. We studied the temperature-dependence of a commercial calf skin collagen and acid-extracted Skh-1 hairless mouse collagen at temperatures from 9 degrees C to 60 degrees C for excitation/emission wavelengths 270/305 nm (tyrosine), 270/360 nm (excimer-like aggregated species), 325/400 nm (dityrosine) and 370/450 nm (glycation adduct). L-tyrosine (1 x 10(-5) M in 0.5 M HOAc) acted as a "reference compound" devoid of any collagen structural effects. In general, the fluorescence efficiency of these fluorophores decreases with increasing temperature. Assuming that rate constant for fluorescence deactivation has the form k(d)(T) = k(d) degrees exp (-DeltaE/RT), an Arrhenius plot of log[(1/Phi) - 1] vs. 1/T affords a straight line whose (negative) slope is proportional to the activation energy, DeltaE, of the radiationless process(es) that compete with fluorescence. Because it is difficult to accurately measure Phi(f) for collagen-bound fluorophores, we derived an approximate formula for an activation parameter, DeltaE*, evaluated from an Arrhenius-like plot of log 1/I(N)vs. 1/T, (1/I(N)vs. is the reciprocal normalized fluorescence intensity). Tyrosine in dilute solution affords a linear Arrhenius plot in both of the above cases. Using the known value of Phi(f) = 0.21 for free tyrosine at room temperature, we determined that DeltaE* is accurate to approximately 25% in the present instance. Collagen curves are non-linear, but they are quasi-linear below approximately 20 degrees C, where the helical form predominates. Values of DeltaE* determined from the data at T < 20 degrees C ranged from 6.2-8.4 kJ mol(-1) (1.5-2.0 kcal mol(-1)) for mouse collagen and 10.3-11.4 kJ mol(-1) (2.5-2.7 kcal mol(-1)) for calf skin collagen, consistent with collisional deactivation of the fluorescent state via thermally enhanced molecular vibrations and rotations. Above 20 degrees C, log 1/I(N)vs. 1/T plots from Skh-1 hairless mouse collagen are concave-downward, suggesting that fluorescence deactivation from the denatured coil has a significant temperature-independent component. For calf skin collagen, these plots are concave-upward, suggesting an increase in activation energy above Tm. These results suggest that collagen backbone and supramolecular structure can influence the temperature dependence of the bound fluorophores, indicating the future possibility of using activation data as a probe of supramolecular structure and conformation.  相似文献   

4.
States of tryptophyl residues and stability of human matrilysin were studied. The activation energy for the thermal inactivation of matrilysin was determined to be 237 kJ/mol, and 50% of the activity was lost upon incubation at 69 degrees C for 10 min. The activity was increased by adding NaCl, and was doubled with 3 M NaCl. Denaturation of matrilysin by guanidine hydrochloride (GdnHCl) and urea was monitored by fluorescence change of tryptophyl residues. Half of the change was observed at 2.2-2.7 M GdnHCl, whereas no change was observed even with 8 M urea. Half of the inactivation was induced at 0.8 M GndHCl and at 2 M urea. The presence of an inactive intermediate with the same fluorescence spectrum as the native enzyme was suggested in the denaturation. Matrilysin contains four tryptophyls, and their states were examined by fluorescence-quenching with iodide and cesium ions and acrylamide. No tryptophyls in the native enzyme were accessible to I(-) and Cs(+), and 2.4 residues were accessible to acrylamide. Based on the crystallographic study, Trp154 is water-accessible, but it should be in a crevice not to contact with I(-) and Cs(+). All tryptophyls in the GdnHCl-denatured enzyme were exposed to the quenchers, while a considerable part was inaccessible in the urea-denatured one.  相似文献   

5.
The structural stability of phaseolin was determined by using absorbance, circular dichroism (CD), fluorescence emission, and fluorescence polarization anisotropy to monitor denaturation induced by urea, guanidinium chloride (GdmCl),pH changes, increasing temperature, or a combination thereof. Initial results indicated that phaseolin remained folded to a similar extent in the presence or absence of 6.0 M urea or GdmCl at room temperature. In 6.0 M GdmCl, phaseolin denatures at approximately 65°C when probed with absorbance, CD, and fluorescence polarization anisotropy. The transition occurs at lower temperatures by decreasingpH. Kinetic measurements of denaturation using CD indicated that the denaturation is slow below 55°C and is associated with an activation energy of 52 kcal/mol in 6.0 M GdmCl. In addition, kinetic measurement using fluorescence emission indicated that the single tryptophan residue was sensitive to at least two steps of the denaturation process. The fluorescence emission appeared to reflect some other structural perturbation than protein denaturation, as fluorescence inflection occurred approximately 5°C prior to the changes observed in absorbance, CD, and fluorescence polarization anisotropy.  相似文献   

6.
The structural stability of phaseolin was determined by using absorbance, circular dichroism (CD), fluorescence emission, and fluorescence polarization anisotropy to monitor denaturation induced by urea, guanidinium chloride (GdmCl),pH changes, increasing temperature, or a combination thereof. Initial results indicated that phaseolin remained folded to a similar extent in the presence or absence of 6.0 M urea or GdmCl at room temperature. In 6.0 M GdmCl, phaseolin denatures at approximately 65°C when probed with absorbance, CD, and fluorescence polarization anisotropy. The transition occurs at lower temperatures by decreasingpH. Kinetic measurements of denaturation using CD indicated that the denaturation is slow below 55°C and is associated with an activation energy of 52 kcal/mol in 6.0 M GdmCl. In addition, kinetic measurement using fluorescence emission indicated that the single tryptophan residue was sensitive to at least two steps of the denaturation process. The fluorescence emission appeared to reflect some other structural perturbation than protein denaturation, as fluorescence inflection occurred approximately 5°C prior to the changes observed in absorbance, CD, and fluorescence polarization anisotropy.  相似文献   

7.
We have characterized the stability and folding behavior of the isolated extrinsic PsbQ protein of photosystem II (PSII) from a higher plant, Spinacia oleracea, using intrinsic protein fluorescence emission and near- and far-UV circular dichroism (CD) spectroscopy in combination with differential scanning calorimetry (DSC). Experimental results reveal that both chemical denaturation using guanidine hydrochloride (GdnHCl) and thermal unfolding of PsbQ proceed as a two-state reversible process. The denaturation free-energy changes (DeltaG(D)) at 20 degrees C extrapolated from GdnHCl (4.0 +/- 0.6 kcal mol(-1)) or thermal unfolding (4.4 +/- 0.8 kcal mol(-1)) are very close. Moreover, the far-UV CD spectra of the denatured PsbQ registered at 90 degrees C in the absence and presence of 6.0 M GdnHCl superimpose, leading us to conclude that both denatured states of PsbQ are structurally and energetically similar. The thermal unfolding of PsbQ has been also characterized by CD and DSC over a wide pH range. The stability of PsbQ is at its maximum at pH comprised between 5 and 8, being wider than the optimal pH for oxygen evolution in the lumen of thylakoid membranes. In addition, no significant structural changes were detected in PsbQ between 50 and 55 degrees C in the pH range of 3-8, suggesting that PsbQ behaves as a soluble and stable particle in the lumen when it detaches from PSII under physiological stress conditions such as high temperature (45-50 degrees C) or low pH (<5.0). Sedimentation experiments showed that, in solution at 20 degrees C, the PsbQ protein is a monomer with an elongated shape.  相似文献   

8.
The thermodynamic and spectroscopic properties of a cysteine-free variant of Escherichia coli dihydrofolate reductase (AS-DHFR) were investigated using the combined effects of urea and temperature as denaturing agents. Circular dichroism (CD), absorption, and fluorescence spectra were recorded during temperature-induced unfolding at different urea concentrations and during urea-induced unfolding at different temperatures. The first three vectors obtained by singular-value decomposition of each set of unfolding spectra were incorporated into a global analysis of a unique thermodynamic model. Although individual unfolding profiles can be described as a two-state process, a simultaneous fit of 99 vectors requires a three-state model as the minimal scheme to describe the unfolding reaction along both perturbation axes. The model, which involves native (N), intermediate (I), and unfolded (U) states, predicts a maximum apparent stability, DeltaG degrees (NU), of 6 kcal mol(-)(1) at 15 degrees C, an apparent m(NU) value of 2 kcal mol(-)(1) M(-)(1), and an apparent heat capacity change, DeltaC(p)()(-NU), of 2.5 kcal mol(-)(1) K(-)(1). The intermediate species has a maximum stability of approximately 2 kcal mol(-)(1) and a compactness closer to that of the native than to that of the unfolded state. The population of the intermediate is maximal ( approximately 70%) around 50 degrees C and falls below the limits of detection of > or =2 M urea or at temperatures of <35 or >65 degrees C. The fluorescence properties of the equilibrium intermediate resemble those of a transient intermediate detected during refolding from the urea-denatured state, suggesting that a tryptophan-containing hydrophobic cluster in the adenosine-binding domain plays a key role in both the equilibrium and kinetic reactions. The CD spectroscopic properties of the native state reveal the presence of two principal isoforms that differ in ligand binding affinities and in the packing of the adenosine-binding domain. The relative populations of these species change slightly with temperature and do not depend on the urea concentration, implying that the two native isoforms are well-structured and compact. Global analysis of data from multiple spectroscopic probes and several methods of unfolding is a powerful tool for revealing structural and thermodynamic properties of partially and fully folded forms of DHFR.  相似文献   

9.
The conformational and thermal stability of full-length hemagglutinin (HA) of influenza virus (strain X31) has been investigated using a combination of differential scanning calorimetry (DSC), analytical ultracentrifugation, fluorescence, and circular dichroism (CD) spectroscopy as a function of pH. HA sediments as a rosette comprised of 5-6 trimers (31-35 S) over the pH range of 7.4-5.4. The DSC profile of HA in the native state at pH 7.4 is characterized by a single cooperative endotherm with a transition temperature (Tm) of 66 degrees C and unfolding enthalpy (DeltaH(cal)) of 800 kcal x (mol of trimer)(-1). Upon acidification to pH 5.4, there is a significant decrease in the transition temperature (from 66 to 45 degrees C), unfolding enthalpy [from 800 to 260 kcal x (mol of trimer)(-1)], and DeltaH(cal)/DeltaH(vH) ratio (from 3.0 to approximately 1.3). Whereas the far- and near-UV ellipticities are maintained over this pH range, there is an acid-induced increase in surface hydrophobicity and decrease in intrinsic tryptophanyl fluorescence. The major contribution to the DSC endotherm arises from unfolding HA1 domains. The relationship between acid-induced changes in thermal stability and the fusion activity of HA has been examined by evaluating the kinetics and extent of fusion of influenza virus with erythrocytes over the temperature and pH range of the DSC measurements. Surprisingly, X31 influenza virus retains its fusion activity at acidic pH and temperatures significantly below the unfolding transition of HA. This finding is consistent with the notion that the fusion activity of influenza virus may involve structural changes of only a small fraction of HA molecules.  相似文献   

10.
The KM+ lectin exhibits a novel and unusual circular dichroism (CD) spectrum that could be explained by a high proline content that would be inducing deformation of the beta-structure and/or unusual turns. KM+ was shown to be a very rigid lectin, which was very stable under a broad variety of conditions (urea, guanidine, hydrolysis, pH, etc.). Only incubation for 60 min at 333-338 K and extreme basic pH were able to induce conformational changes which could be observed by CD and fluorescence measurements. Data from CD are typical for protein denaturing associated with changes in the overall secondary structure. Data from high-performance size exclusion chromatography (SEC) showed that the denatured forms produced at pH 12.0 are eluted in clusters that co-elute with the native forms. A significant contribution from the tyrosines to the fluorescence emission upon denaturation was observed above 328 K. In fact at 328 K some broadening of the emission spectrum takes place followed by the appearance of a shoulder (approx. 305 nm) at 333 K and above. The sensitivity of tryptophan fluorescence to the addition of sugar suggests a close proximity of the tryptophan residues to the sugar binding site, K(a)=(2.9+/-0.6)x10(3) M(-1). The fraction of chromophore accessible to the quencher obtained is f(a)=0.43+/-0.08, suggesting that approximately 50% of the tryptophan residues are not accessible to quenching by d-mannose. KM+ thermal denaturation was found to be irreversible and was analyzed using a two-state model (N-->D). The results obtained for the activation energy and transition temperature from the equilibrium CD studies were: activation energy, E(a)=134+/-11 kJ/mol and transition temperature, T(m)=339+/-1 K, and from the fluorescence data: E(a)=179+/-18 kJ/mol and T(m)=337+/-1 K. Kinetic studies gave the following values: E(a)=108+/-18 kJ/mol and E(a)=167+/-12 kJ/mol for CD and fluorescence data, respectively.  相似文献   

11.
We have used electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and fluorescence spectroscopy to investigate the secondary and tertiary structural consequences that result from oxidative modification of methionine residues in wheat germ calmodulin (CaM), and prevent activation of the plasma membrane Ca-ATPase. Using ESI-MS, we have measured rates of modification and molecular mass distributions of oxidatively modified CaM species (CaMox) resulting from exposure to H2O2. From these rates, we find that oxidative modification of methionine to the corresponding methionine sulfoxide does not predispose CaM to further oxidative modification. These results indicate that methionine oxidation results in no large-scale alterations in the tertiary structure of CaMox, because the rates of oxidative modification of individual methionines are directly related to their solvent exposure. Likewise, CD measurements indicate that methionine oxidation results in little change in the apparent alpha-helical content at 28 degrees C, and only a small (0.3 +/- 0.1 kcal mol(-1)) decrease in thermal stability, suggesting the disruption of a limited number of specific noncovalent interactions. Fluorescence lifetime, anisotropy, and quenching measurements of N-(1-pyrenyl)-maleimide (PMal) covalently bound to Cys26 indicate local structural changes around PMal in the amino-terminal domain in response to oxidative modification of methionine residues in the carboxyl-terminal domain. Because the opposing globular domains remain spatially distant in both native and oxidatively modified CaM, the oxidative modification of methionines in the carboxyl-terminal domain are suggested to modify the conformation of the amino-terminal domain through alterations in the structural features involving the interdomain central helix. The structural basis for the linkage between oxidative modification and these global conformational changes is discussed in terms of possible alterations in specific noncovalent interactions that have previously been suggested to stabilize the central helix in CaM.  相似文献   

12.
Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the effect of increasing chain-unsaturation on the structure and properties of the hydrated cerebrosides N-stearoyl, -oleoyl, and -linoleoyl galactosylsphingosine (NSGS, NOGS, and NLnGS, respectively). DSC of hydrated (70 wt% water) NSGS shows an endothermic transition at 85 degrees C (delta H = 18.0 kcal/mol NSGS) and a broad exothermic transition at 40-60 degrees C, the latter being dependent upon the previous cooling rate. X-Ray diffraction patterns recorded at 21, 61, and 86 degrees C provide evidence for interconversions between metastable and stable crystalline NSGS bilayer phases. The properties of the unsaturated-chain cerebrosides are more complex. Hydrated NOGS shows a single endothermic transition at 44.8 degrees C (delta H = 11.5 kcal/mol NOGS). However, incubation of NOGS at 49 degrees C for 24 h results in a second transition at 55.5 degrees C. By cycling NOGS between 0 and 49 degrees C complete conversion into this higher melting phase (delta H = 12.1 kcal/mol NOGS) is achieved. X-ray diffraction confirms a bilayer phase at all temperatures and delineates the conversions between a crystalline phase at 21 degrees C (bilayer period d = 56.5A), a second crystalline phase at 47 degrees C (d = 69.9A), and a liquid crystalline phase at 59 degrees C (d = 52.0A). The more unsaturated NLnGS shows two transitions, a sharp transition at 28 degrees C (delta H = 8.0 kcal/mol NLGS) and a broad, low-enthalpy transition at 42 degrees C (delta H = 0.4 kcal/mol NLGS). Again, incubation between the two transitions leads to a single transition at 44 degrees C (delta H = 9.3 kcal/mol NLGS). X-ray diffraction demonstrates conversions between two crystalline bilayer phases (d = 55.2A and d = 68.4A), and a liquid crystalline bilayer phase (d = 51.8A). Thus, increased unsaturation in the amide-linked fatty acyl chain of cerebrosides results in decreased chain-melting temperatures (NSGS greater than NOGS greater than NLnGS) and has marked effects on their structural properties.  相似文献   

13.
Cystatins, a family of structurally related cysteine proteinase inhibitors, have proved to be useful model system to study amyloidogenesis. We have extended previous studies of the kinetics of amyloid-fibril formation by human stefin B (cystatin B) and some of its mutants, and proposed an improved model for the reaction. Overall, the observed kinetics follow the nucleation and growth behavior observed for many other amyloidogenic proteins. The minimal kinetic scheme that best fits measurements of changes in CD and thioflavin T fluorescence as a function of protein concentration and temperature includes nucleation (modeled as N(I) irreversible transitions with equivalent rates (k(I)), which fitted with N(I) = 64), fibril growth and nonproductive oligomerization, best explained by an off-pathway state with a rate-limiting escape rate. Three energies of activation were derived from global fitting to the minimal kinetic scheme, and independently through the fitting of the individual component rates. Nucleation was found to be a first-order process within an oligomeric species with an enthalpy of activation of 55 +/- 4 kcal mol(-1). Fibril growth was a second-order process with an enthalpy of activation (27 +/- 5 kcal mol(-1)), which is indistinguishable from that of tetramer formation by cystatins, which involves limited conformational changes including proline trans to cis isomerization. The highest enthalpy of activation (95 +/- 5 kcal mol(-1) at 35 degrees C), characteristic of a substantial degree of unfolding as observed prior to domain-swapping reactions, equated with the escape rate of the off-pathway oligomeric state.  相似文献   

14.
Chromaffin cell membranes from the bovine adrenal medulla were labelled with the hydrophobic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene, and the fluorescence polarization (P) of the membrane suspensions was measured as a function of temperature. The P versus t profiles, between 20 and 37 degrees C, showed two linear regions separated by a break in the vicinity of 30 degrees C, reflecting a change in the phase behaviour of the constitutent lipids. Decreases in P values at higher temperature indicated progressive fluidization of the lipid bilayer. Previous incubation with either acetylcholine (0.5 mM) or nicotine (50 microM) produced further fluidization, the extent of which depended on the presence of added Ca2+ (2.2 mM). Thus, the flow activation energy, delta E, between approx. 30 and 37 degrees C was 9.1 kcal/mol for acetylcholine and 8.8 kcal/mol for acetylcholine plus Ca2+, as compared to 7.9 kcal/mol in the absence of acetylcholine and Ca2+. In the presence of nicotine, delta E was 11.4 kcal/mol when Ca2+ was absent and 9.5 kcal/mol when it was present. The cholinergic blocker, hexamethonium (0.5 mM), abolished the acetylcholine- or nicotine-induced changes. 65 mM K+ produced a similar fluidization, which was reversed by addition of Ca2+. An additive effect was observed when the membranes were incubated with both nicotine and K+, with delta E = 16.6 kcal/mol in the presence of Cas2+. These results indicate a receptor-mediated modulation of the lipid distribution between rigid and fluid regions in the membrane, which could be of importance for stimulated catecholamine secretion in the intact cell.  相似文献   

15.
Stabilization of restriction endonuclease Bam HI by cross-linking reagents   总被引:1,自引:0,他引:1  
Bacillus amyloliquefaciens H produces a restriction endonuclease enzyme BamHl which is heat labile even at low temperatures. Studies were conducted to enhance thermal stability of BamHl using cross-linking reagents, namely, glutaraldehyde, dimethyl adipimidate (DMA), dimethyl suberimidate (DMS), and dimethyl 3,3'-dithiobispropionimidate (DTBP). Reaction with glutaraldehyde did not result in a preparation with enhanced thermal stability. However, the DMA-, DMS-, and DTBP-cross-linked preparations of BamHI exhibited significant improvement in thermal stability. Studies on thermal denaturation of the cross-linked enzyme preparations revealed that these do not follow a true first-order kinetics A possible deactivation scheme has been proposed in which the enzyme has been envisaged to go through a fully active but more susceptible transient state which, on prolonged heat exposure, exhibits a first-order decay kinetics. At 35 degrees C, which is close to the optimum reaction temperature of 37 degrees C for BamHl activity, the half-line of DMA-, DMS-, and DTBP-cross-linked preparations were 4.0, 5.25, and 5.5 h, respectively, whereas the native enzyme exhibited a half-line of 1.2 h only. The apparent values of deactivation rate constants for native, DMA-, DMS-, and DTBP-cross-linked BamHl were 1.13, 0.39, 0.29, and 0.26 h(-1), respectively, at the same temperature, and the apparent values of activation energies for denaturation of native, DMA-, DMS-, and DTBP-cross-linked BamHl were 2.63, 5.24, 6.55, and 9.2 kcal/mol, respectively. The DTBP-cross-linked Bam HI was, therefore, the best heat-stable preparation among those tested. The unusually low values of activation energies for denaturation of Bam Hl represent their highly thermolabile nature compared to other commonly encountered enzymes such as trypsin, having activation energies of more than 40 kcal/mol for their denaturation.  相似文献   

16.
Thermal stability of Escherichia coli Fpg protein was studied using far-UV circular dichroism and intrinsic fluorescence. Experimental data indicate that Fpg irreversibly aggregates under heating above 35 degrees C. Heat aggregation is preceded by tertiary conformational changes of Fpg. However, the secondary structure of the fraction that does not aggregate remains unchanged up to approximately 60 degrees C. The kinetics of heat aggregation occurs with an activation enthalpy of approximately 21 kcal/mol. The fraction of monomers forming aggregates decreases with increasing urea concentration, with essentially no aggregation observed above approximately 3 M urea, suggesting that heat aggregation results from hydrophobic association of partially unfolded proteins. With increasing urea concentration, Fpg unfolds in a two-state reversible transition, with a stability of approximately 3.6 kcal/mol at 25 degrees C. An excellent correlation is observed between the unfolded fraction and loss of activity of Fpg. A simple kinetic scheme that describes both the rates and the extent of aggregation at each temperature is presented.  相似文献   

17.
We have used whole-cell patch clamp to determine the temperature dependence of the conductance and gating kinetics of the voltage-gated potassium channel in quiescent, human peripheral blood T lymphocytes. Threshold for activation, steady-state inactivation, and the reversal potential are the same at 22 degrees and 37 degrees C. However, the time-constants for activation, inactivation, deactivation, and release from inactivation are quite sensitive to temperature, changing by at least a factor of five in each case over this range of temperatures. The onset of cumulative inactivation at 22 degrees and 37 degrees C reflects the time-course of deactivation. Peak outward current is approximately twofold greater at 37 degrees C than at 22 degrees C; this increase is also manifest at the single channel level. Energies of activation for conductance, activation, inactivation, deactivation, and release from inactivation are 8.2, 22.1, 25.0, 36.2, and 42.2 kcal/mol, respectively. No new channels were observed at 37 degrees C, and there was no evidence for alteration of the K+ conductance by putative modulators at 22 or 37 degrees C.  相似文献   

18.
Fenton AW  Reinhart GD 《Biochemistry》2002,41(45):13410-13416
Escherichia coli phosphofructokinase 1 (EcPFK) is a homotetramer with four active and four allosteric sites. Understanding of the structural basis of allosteric activation of EcPFK by MgADP is complicated by the multiplicity of binding sites. To isolate a single heterotropic allosteric interaction, hybrid tetramers were formed between wild-type and mutant EcPFK subunits in which the binding sites of the mutant subunits have decreased affinity for their respective ligands. The 1:3 (wild-type:mutant) hybrid that contained only one native active site and one native allosteric site was isolated. The affinity for the substrate fructose-6-phosphate (Fru-6-P) of a single wild-type active site is greatly decreased over that displayed by the wild-type tetramer due to the lack of homotropic activation. The free energy of activation by MgADP for this heterotropic interaction is -0.58 kcal/mol at 8.5 degrees C. This compares to -2.87 kcal/mol for a hybrid with no homotropic coupling but all four unique heterotropic interactions. Therefore, the isolated interaction contributes 20% of the total heterotropic coupling. By comparison, wild-type EcPFK exhibits a coupling free energy between Fru-6-P and MgADP of -1.56 kcal/mol under these conditions, indicating that the effects of MgADP are diminished by a homotropic activation equal to -1.3 kcal/mol. These data are not consistent with a concerted allosteric mechanism.  相似文献   

19.
Acidic fibroblast growth factor (aFGF) is unstable at physiological temperatures in the absence of polyanions such as heparin. Therefore, the effect of temperature on the kinetics of refolding of aFGF has been examined in the presence and absence of several polyanions. The protein folds into its native state at temperatures up to 30 degrees C without polyanions with an activation energy of approximately 14 kcal/mol, but does not acquire native structure above this temperature. When heparin, inositol hexasulfate, or sulfate ion are present, aFGF refolds below 30 degrees C with a slightly reduced activation energy (10-11 kcal/mol). In addition, the protein now also renatures between 30 and 50 degrees C with activation energies of 1-2 (heparin), 16 (inositol hexasulfate), and 7 (sulfate) kcal/mol. Trace heavy metals appear to inhibit the refolding process, but a molecular chaperone (bovine 70-kDa heat shock cognate protein) and a peptidylprolyl isomerase (the FK506-binding protein) have no effect. It is concluded that the rate of refolding of aFGF at physiological temperatures is probably controlled by the interaction of a native-like state of the protein with an unknown polyanionic species.  相似文献   

20.
The urea and guanidine hydrochloride (GdnHCl)-induced denaturation of tetrameric concanavalin A (ConA) at pH 7.2 has been studied by using intrinsic fluorescence, 8-anilino-1-naphthalenesulfonate (ANS) binding, far-UV circular dichroism (CD), and size-exclusion chromatography. The equilibrium denaturation pathway of ConA, as monitored by steady state fluorescence, exhibits a three-state mechanism involving an intermediate state, which has been characterized as a structured monomer of the protein by ANS binding, far-UV CD and gel filtration size analysis. The three-state equilibrium is analyzed in terms of two distinct and separate dissociation (native tetramer<-->structured monomer) and unfolding (structured monomer<-->unfolded monomer) reaction steps, with the apparent transition midpoints (C(m)), respectively, at 1.4 and 4.5 M in urea, and at 0.8 and 2.4 M in GdnHCl. The results show that the free energy of stabilization of structured monomer relative to the unfolded state (-DeltaG(unf, aq)), is 4.4-5.5 kcal mol(-1), and that of native tetramer relative to structured monomer (-DeltaG(dis, aq)) is 7.2-7.4 kcal mol(-1), giving an overall free energy of stabilization (-DeltaG(dis&unf, aq)) of 11.6-12.9 kcal mol(-1) (monomer mass) for the native protein. However, the free energy preference at the level of quaternary tetrameric structure is found to be far greater than that at the tertiary monomeric level, which reveals that the structural stability of ConA is maintained mostly by subunit association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号