首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulations of functioning of water soluble and membrane forms of enzymes in the systems of reversed micelles of surfactants in organic solvents are compared. By an examples of gamma-glutamyltransferase (in AOT reversed micelles in octane) and amino-peptidase (in Brij 96 reversed micelles in cyclohexane) the principal difference in the catalytic activity regulation of water soluble and membrane forms is demonstrated. The catalytic activity of the membrane form depends largely on the surfactant concentration at the constant hydration degree, whereas the activity of the water soluble form is constant under these conditions. The catalytic activity dependence on the surfactant concentration is regarded as a "test for the enzyme's membrane activity".  相似文献   

2.
Properties of the membrane and soluble forms of somatic angiotensin-converting enzyme (ACE) were studied in the system of hydrated reversed micelles of aerosol OT (AOT) in octane. The membrane enzyme with a hydrophobic peptide anchor was more sensitive to anions and to changes in pH and composition of the medium than the soluble enzyme without anchor. The activity of both forms of the enzyme in the reversed micelles significantly depended on the molarity of the buffer added to the medium (Mes-Tris-buffer, 50 mM NaCl). The maximum activity of the soluble ACE was recorded at buffer concentration of 20-50 mM, whereas the membrane enzyme was most active at 2-10 mM buffer. At buffer concentrations above 20 mM, the rate of hydrolysis of the substrate furylacryloyl-L-phenylalanyl-glycylglycine by both ACE forms was maximal at pH 7.5 both in the reversed micelles and in aqueous solutions. However, at lower concentrations of the buffer (2-10 mM), the membrane enzyme had activity optimum at pH 5.5. Therefore, it is suggested that two conformers of the membrane ACE with differing pH optima for activity and limiting values of catalytic constants should exist in the reversed micelle system with various medium compositions. The data suggest that the activity of the membrane-bound somatic ACE can be regulated by changes in the microenvironment.  相似文献   

3.
The catalytic activity and quaternary structure of soluble (s) and membrane (m) forms of angiotensin-converting enzyme (ACE) were studied in reversed micelles of ternary system Aerosol OT--water--octane. The profile of the dependence of the catalytic activity of the two enzyme forms on the degree of surfactant hydration (micellar size) had several optima corresponding to the function of various active oligomeric enzyme forms; the curves for the s- and m-forms of ACE were different. Data of sedimentation analysis prove that in reversed micelles, s-ACE can exist as monomers, dimers, or tetramers depending on the hydration degree, and the m-form is present as dimers and tetramers only. The values of the kinetic parameters for the hydrolysis of the substrate furylacryloyl-Phe-Gly-Gly by all the enzyme forms were determined, and the data indicate that the activity of the m-form is enhanced by oligomerization. The ACE activity strongly depends on the medium; it is higher when ACE is in contact with matrix or other enzyme molecules.  相似文献   

4.
A new microheterogeneous non-aqueous medium for enzymatic reactions, based on reversed micelles of a polymeric surfactant, was suggested. The surfactant termed CEPEI, was synthesized by successive alkylation of poly(ethyleneimine) with cetyl bromide and ethyl bromide and was found to be able to solubilize considerable amounts of water in benzene/n-butanol mixtures. The hydrodynamic radius of polymeric-reversed micelles was estimated to be in the range 22-51 nm, depending on the water content of the system, as determined by means of the quasi-elastic laser-light scattering. Polymeric reversed micelles were capable of solubilizing enzymes (alpha-chymotrypsin and laccase) in nonpolar solvents with retention of catalytic activity. Due to the strong buffering properties of CEPEI over a wide pH range, it could maintain any adjusted pH inside hydrated reversed micelles. It was found that catalytic behavior of enzymes entrapped in polymeric reversed micelles was rather insensitive to the pH of the buffer solution introduced into the system as an aqueous component, but determined mostly by acid-base properties of the polymeric surfactant itself. Both catalytic activity and stability of entrapped alpha-chymotrypsin and laccase were found to increase with increasing water content of the system. Under certain conditions, the entrapment of alpha-chymotrypsin into CEPEI reversed micelles resulted in a considerable increase in catalytic activity and stability as compared to aqueous solution. CEPEI reversed micelles were demonstrated to be promising enzyme carriers for use in membrane reactors. Owing to the large dimensions of CEPEI reversed micelles, they are effectively kept back by a semipermeable membrane, thus allowing an easy separation of the reaction product and convenient recovery of the enzyme.  相似文献   

5.
Enzymes suspended in organic solvents represent a versatile system for studying the involvement of water in catalytic properties and their flexibility in adapting to different environmental conditions. The extremely halophilic alkaline p-nitrophenylphosphate phosphatase from the archaeon Halobacterium salinarum was solubilized in an organic medium consisting of reversed micelles of hexadecyltrimethylammoniumbromide in cyclohexane, with 1-butanol as cosurfactant. Hydrolysis of p-nitrophenylphosphate was nonlinear with time when the enzyme was microinjected into reversed micelles that contained substrate. These data are consistent with a kinetic model in which the enzyme is irreversibly converted from an initial form to a final stable form during the first seconds of the encapsulation process. The model features a rate constant (k) for that transition and separate hydrolysis rates, v(1) and v(2), for the two forms of the enzyme. The enzyme conversion may be governed by the encapsulation process.  相似文献   

6.
The influence of micelle hydration degree (w0) and AOT concentration on fluorescence, circular dichroism (CD), catalytic activity, and stability of catalase in Aerosol OT (AOT) reversed micelles in heptane was investigated. The quantitative parameters--differential fluorescence of catalase (DeltaI), protein molar ellipticity ([theta]lambda), initial rate of catalytic reaction, catalase efficiency (kcat/Km), and rate constant of enzyme inactivation (kin, sec-1)--decreased with increasing AOT concentration in micellar systems, reflecting the interaction of solubilized catalase with the AOT micellar aggregates in heptane. The dependences of all these parameters on increasing hydration degree of micelles (w0) were characterized by the appearance of maxima at w0 of 8, 15-18, and 26-30. These maxima are suggested to reflect three different states of catalase in the micellar system, distinguished by their conformations and catalytic activity, which is determined by the micellar microenvironment of the enzyme.  相似文献   

7.
Soybean lipoxygenase (EC 1.13.11.12) incorporated into the reversed micelles of aerosol OT in octane has been studied for its catalytic properties. The enzyme is shown to preserve up to 10% activity as compared with the activity in the aqueous solution. In this case Km of lipoxygenase for linoleic acid increases from 10(-5) M to 5 X 10(-4) M. The activity of lipoxygenase is maximal, the aerosol OT concentration being 0.03 M and a degree of reversed micelle hydratation 40. Cationic detergents of the cetyltrimethyl ammonium bromide type are not good to form reversed micelles of lipoxygenase, since they inhibit the latter with IC50 = (4 divided by 6) x 10(-4) M. The lipoxygenase preparations in reversed micelles of aerosol OT in octane may be used to synthesize natural metabolites of polyunsaturated fatty acids, for instance of eicosanoids.  相似文献   

8.
The catalytic function of catalase and its peroxidatic activity during tetramethylbenzidine (TMB) oxidation by cumene hydroperoxide were studied in reversed micelles of Aerosol OT (AOT) in octane relative to the [H2O]/[AOT] ratio and the initial catalase concentration. The optimum conditions permitting to retain the catalytic activity of the enzyme and its ability to induce peroxidation of TMB, were found. The catalytic function of the enzyme was shown to be dependent on its concentration in AOT micelles. The catalase stability monitored by the catalytic reaction and the decrease of the Soret band were analyzed. Both processes have two phases differing by the rate constants of the pseudo-first order. The catalase inserted into AOT micelles is characterized by the high stability as compared to other hemoproteins (cytochrome P-450, myoglobin, hemoglobin, peroxidase) under identical conditions.  相似文献   

9.
Regulation of the membrane active properties of alkaline phosphatase from calf intestinal mucosa in reversed micelles of Aerosol OT (AOT) in octane was studied. The dependence of the catalytic activity on the surfactant concentration at the constant hydration degree, which characterises the membrane activity of enzymes, is modulated through pH variation. The variation may cause conformational changes of the protein molecule, resulting in exposition of anchor groups which provide the interaction of the enzyme with the micellar matrix.  相似文献   

10.
Spectral and catalytic parameters of peroxidase solubilized in the aerosol OT-water-octane system have been studied. The spectrum of peroxidase solubilized in octane with AOT reversed micelles, a degree of surfactant hydration being above 12, is actually identical to that of the enzyme aqueous solution. On the other hand, significant spectral changes have been detected when transferring the enzyme from water to the reversed micelle medium at low degrees of surfactant hydration, precisely [H2O]/[AOT] less than 12. The reversed micelle-entrapped peroxidase catalyses the oxidation of pyrogallol with hydrogen peroxide much more actively (at [H2O]/[surfactant] approximately 13) than that in aqueous solution. The entrapment of peroxidase into surfactant reversed micelles increases precisely the catalytic constant of the reaction, i.e. the virtual reactivity of the enzyme increases ten and hundred times depending on degrees of surfactant hydration and concentration. The systems of reversed micelles may be considered as models of biomembranes. Our findings hence show that enzymes in vivo can be much more catalytically active then it appears possible to reveal in conventional experiments in vitro in aqueous solutions.  相似文献   

11.
The size of the inner water cavity of reversed micelles formed in a triple system 'water-surfactant-organic solvent' can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of proteins. Using ultracentrifugation analysis, it has been demonstrated that the oligomeric composition of various enzymes (ketoglutarate dehydrogenase, alkaline phosphatase, lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase) solubilized in reversed micelles of Aerosol OT [sodium bis(2-ethylehexyl)sulfosuccinate] in octane changes upon variation of the degree of hydration. An oligomeric complex forms under conditions when the radius of the micelle inner cavity is big enough to incorporate this complex as a whole. At lower degrees of hydration the micelles 'uncouple' such complexes to their components. The catalytic properties of various oligomeric complexes have been studied. Possibilities of using reversed micelles for the separation of subunits of oligomeric enzymes under non-denaturating conditions have been demonstrated. In particular, the isolated subunits of alkaline phosphatase, lactic dehydrogenase and glyceraldehyde-3-phosphate have been found to be active in Aerosol OT reversed micelles. The dependences of the catalytic activity of oligomeric enzymes represent saw-like curves. The maxima of the catalytic activity observed at these curves relate to the functioning of various oligomeric forms of an enzyme. The radii of the micelle inner cavity under conditions when these maxima are observed correlate with the linear dimensions of the enzyme oligomeric forms. Correlation of the position of a maximum with the shape of an oligomeric complex is discussed.  相似文献   

12.
The kinetics of palmitoyl-CoA hydrolase were influenced by both the availability of the substrate and formation of micelles. At palmitoyl-CoA concentrations below the critical micelle concentration, addition of non-ionic detergent increased the activity until the critical micelle concentration of the mixed micelles was reached. At palmitoyl-CoA concentrations above the critical micelle concentration, inhibitor of the activity was observed, but addition of detergents of the Triton X series reversed the inhibition. Maximum palmitoyl-CoA hydrolase activity was found when the ratios (w/v) of palmitoyl-CoA: Triton X-100 and palmitoyl-CoA: Triton X-405 were approximately 0.35 and 0.05, respectively. At these above the mixed critical micelle concentration. The results indicate that monomer palmitoyl-CoA is the substrate and that monomer forms of the non-ionic detergents of the Triton X series activate the enzyme. Isolated microsomal lipids activated the microsomal palmitoyl-CoA hydrolase, suggesting that a hydrophobic environment is advantageous for interaction between enzyme and substrate in vivo. The maximum activity in the presence of mixed micelles is discussed in relation to a model where mixed micelles are regarded as artificial membranes to which the enzyme may adhere in an equilibrium with the monomer substrate and detergent in the monomer form. It is suggested that intracellular membranes may resemble mixed micelles in equilibrium with detergent-active substrates such as palmitoyl-CoA.  相似文献   

13.
The alterations in the catalytic activity of the horseradish peroxidase after its interaction with antibodies against this enzyme have been studied in buffered solution and in reversed Aerosol OT (AOT) micelles in heptane. The antibodies were obtained by immunizing the rabbits with electrophoretically homogeneous enzyme and were purified by affinity chromatography. In the AOT micelles and mixed micelles containing AOT and Triton X-45, the enzyme interacted with antibodies very rapidly (in less than 5 min), i.e. the micelles did not hinder effective interaction between the enzyme and antibodies. The decrease in the peroxidase catalytic activity upon its interaction with antibodies in a micellar medium was determined by [H2O]/[AOT] ratio, pH and molarity of polar nucleus, as well as by the initial concentration of antibody. In buffered solutions, the decrease n the peroxidase activity of the enzyme--antibody complex was only weakly dependent on pH and molarity of a buffer solution.  相似文献   

14.
Tyrosinase activity in reversed micelles   总被引:1,自引:0,他引:1  
The hydroxylase and oxidase activities of mushroom tyrosinase were studied in both sodium di-2-ethylhexylsulfosuccinate (AOT)/isooctane and cetyltrimethylammonium bromide (CTAB)/hexane/chloroform reversed micelles. The enzyme presented its highest activity when the water to surfactant molar ratio (W 0) was 20 for both systems. When entrapped in the AOT reversed micelles, the enzyme activity decreased with the increase in AOT concentration at a constant W 0, and the enzyme not only presented a higher reaction rate related to its oxidase activity but also a shorter lag period related to its hydroxylase activity. The relation between water activity and W 0 revealed that enzyme activity in reversed micelles was more related to the size of the micelles which was determined by W 0 and less to the water activity. Tyrosinase in CTAB reversed micelles showed potential for the analysis of o-diphenols.  相似文献   

15.
The enzymatic conversion of cholesterol to cholestenone by cholesterol oxidase (Brevibacterium sp.)in reversed micelles in a system composed of AOT/isooctane/water/cholesterol has been examined. The catalytic activity of the enzyme was correlated with the physicochemical properties of water in water-in-oil (w/o) microemulsion systems. In a system consisting of 3 wt % AOT in isooctane, reversed micelles started to form as the [H(2)O]/[AOT] (e.g., the w(0)) ratio increased above 4-5. The formation of reversed micelles with a core of neat (bulk) water was verified from determinations of both the partial molar volume of water and the scissors vibration of water [with Fourier transform infrared (FTIR) spectroscopy] in the w/o microemulsion systems. A plot of enzyme activity vs. w(0) indicated that the hydration of enzyme molecules per se was not sufficient to give rise to catalytic activity. Instead, it appeared that the formation of an aqueous micellar core was necessary for full activation of the enzyme. Based on micelle size distribution analysis, it was estimated that about one micelle per one thousand contained an enzyme molecule. Since the apparent reaction rate could be markedly enhanced by increasing the enzyme/water ratio, we conclude that the number of enzyme-containing micelles was an important rate-limiting factor in the system.  相似文献   

16.
反相胶束体系中辣根过氧化物酶的活力和动力学性质   总被引:6,自引:2,他引:4  
本文系统研究辣根过氧化物酶在CTAB/H2O/CHC.3-isooctane(1∶1,V/V)反相胶束体系中的催化行为。在一定条件下酶反符合Michaelis-Menten动力学。研究水含量、底物浓度、PH、温度、表面活性剂的浓度等对酶反应的影响,结果表明表面活性剂对酶表现非竞争性抑制作用,高浓度的过氧化氢抑制酶活,最适PH为7.0。在低水含量(W0<5)的胶束体系中保温后,酶的活力发生不可逆的改  相似文献   

17.
Phospholipase C catalyzed hydrolysis of dimyristoyl phosphatidylcholine (DMPC) in phospholipid-bile salt mixed micelles was studied with particular attention on the relationship between interfacial enzyme activity and the physicochemical properties of substrate aggregates. Steady state kinetics is observed and it is argued that conditions for steady state exist because the enzyme encounters a steady supply of substrate by hopping between micelles at a rate faster than the chemical reaction rate. An existing kinetic model is reformulated to a more usable form. This presents a new approach to treating the kinetic data and allows extraction of the kinetic parameters of the model from the activity dependence on micellar lipid substrate surface concentration. The kinetic parameters were found to depend on the physicochemical properties of substrate aggregates, but remain constant over a range of lipid and bile salt concentrations. The substrate aggregates were characterized by time-resolved fluorescence quenching (TRFQ). The activity values and the micelle sizes group into two sets: (i) larger micelles for bile salt/lipid 5 with lower activity and longer steady state ( approximately 10 min). At least two sets of parameters, for bile salt/lipid 5, characterize the kinetics. Higher enzyme-micelle dissociation constant and lower catalytic rate are found for the group of smaller micelles. An explanation supporting our finding is that as micelles become smaller the overlap area for enzyme-micelle binding decreases, leading to weaker binding. Consequently the enzyme dissociation constant increases. Extension of the present approach to other phospholipases and substrates to establish its generality and correlation between micelle size and the catalytic rate are areas for future investigations.  相似文献   

18.
1. The pH dependencies of the apparent Michaelis constant for oxidized glutathione and the apparent turnover number of yeast glutathione reductase (EC 1.6.4.2) have been determined at a fixed concentration of 0.1 mM NADPH in the range pH 4.5--8.0. Between pH 5.5 and 7.6, both of these parameters are relatively constant. The principal effect of low pH on the kinetics of the enzyme-catalyzed reaction is the observation of a pH-dependent substrate inhibition by oxidized glutathione at pH less than or equal 7, which is shown to correlate with the binding of oxidized glutathione to the oxidized form of the enzyme. 2. The catalytic activity of yeast glutathione reductase at pH 5.5 is affected by the sodium acetate buffer concentration. The stability of the oxidized and reduced forms of the enzyme at pH 5.5 and 25 degrees C in the absence of bovine serum albumin was studied as a function of sodium acetate concentration. The results show that activation of the catalytic activity of the enzyme at low sodium acetate concentration correlates with an effect of sodium acetate on a reduced form of the enzyme. In contrast, inhibition of the catalytic activity of the enzyme at high sodium acetate concentration correlates with an effect of sodium acetate on the oxidized form of the enzyme.  相似文献   

19.
Comparative studies were carried out in the catalytic activity regulation of native alpha-chymotrypsin and its artificially produced hexameric form as an example of non-dissociating oligomeric enzyme (covalently cross-linked by means of succinimidyl-3-(2-pyridylthiopropionate] in the Aerosol OT reversed micelles in octane. Native (monomeric) alpha-chymotrypsin exhibits maximal catalytic activity in the reversed micelles at the hydration degree w0 = 10, when the radius of the micelle inner cavity is equal to the radius of the alpha-chymotrypsin globule. For the alpha-chymotrypsin hexamer, optimum is observed at w0 = 45, with the inner micellar cavity radius (r = 68 A) being approximately equal to the radius of the sphere surrounding the octahedral combination of the six monomeric alpha-chymotrypsin molecules (r = 61 A). Thus, construction of the corresponding oligomeric structures is made easy, with the optimal catalytic activity in a preset range of the hydration degrees.  相似文献   

20.
Sorbitan trioleate (Span 85) modified by Cibacron Blue F-3GA (CB) was prepared and used as an affinity surfactant to formulate a reversed micellar system for Candida rugosa lipase (CRL) solubilization. The system was characterized and evaluated by employing CRL-catalyzed hydrolysis of olive oil as a model reaction. The micellar hydrodynamic radius results reflected, to some extent, the redistribution of surfactant and water after enzyme addition, and the correlation between surfactant formulation, water content (W0), micellar size, and enzyme activity. An adequate modification density of CB was found to be important for the reversed micelles to retain enough hydration capacity and achieve high enzyme activity. Compared with the results in AOT-based reversed micelles, CRL in this micellar system exhibited a different activity behavior versus W0. The optimal pH and temperature of the encapsulated lipase remained unchanged, but the apparent activity was significantly higher than that of the native enzyme in bulk solution. Kinetic studies indicated that the encapsulated lipase in the reversed micelles of CB-formulated Span 85 followed the Michaelis-Menten equation. The Michaelis constant was found to decrease with increasing surfactant concentration, suggesting an increase of the enzyme affinity for the substrate. Stability of the lipase in the reversed micelles was negatively correlated to W0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号