首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Activated hepatic stellate cells (HSCs) are the main producers of extracellular matrix in the fibrotic liver and contribute to hepatic inflammation through the secretion of chemokines and the recruitment of leukocytes. This study assesses the function of CD40 on human HSCS: Activated human HSCs express CD40 in culture and in fibrotic liver, as determined by flow cytometry, RT-PCR, and immunohistochemistry. CD40 expression is strongly enhanced by IFN-gamma. Stimulation of CD40 with CD40 ligand (CD40L)-transfected baby hamster kidney cells induces NF-kappaB, as demonstrated by the activation of I-kappaB kinase (IKK), increased NF-kappaB DNA binding, and p65 nuclear translocation. CD40-activated IKK also phosphorylates a GST-p65 substrate at serine 536 in the transactivation domain 1. Concomitant with the activation of IKK, CD40L-transfected baby hamster kidney cell treatment strongly activates c-Jun N-terminal kinase. CD40 activation increases the secretion of IL-8 and monocyte chemoattractant protein-1 by HSCs 10- and 2-fold, respectively. Adenovirally delivered dominant negative (dn) IKK2 and TNFR-associated factor 2dn inhibit IKK-mediated GST-I-kappaB and GST-p65 phosphorylation, NF-kappaB binding, and IL-8 secretion, whereas IKK1dn and NF-kappaB-inducing kinase dominant negative do not have inhibitory effects. We conclude that the CD40-CD40L receptor-ligand pair is involved in a cross-talk between HSCs and immune effector cells that contributes to the perpetuation of HSC activation in liver fibrosis through TNFR-associated factor 2- and IKK2-dependent pathways.  相似文献   

3.
In the rat passive Heymann nephritis model of membranous nephropathy, complement C5b-9 induces sublethal glomerular epithelial cell (GEC) injury and proteinuria. C5b-9 activates cytosolic phospholipase A(2) (cPLA(2)), and products of cPLA(2)-mediated phospholipid hydrolysis modulate GEC injury and proteinuria. In the present study, we demonstrate that C5b-9 activates c-Jun N-terminal kinase (JNK) in cultured rat GECs and that JNK activity is increased in glomeruli isolated from proteinuric rats with passive Heymann nephritis, as compared with control rats. Stable overexpression of cPLA(2) in GECs amplified complement-induced release of arachidonic acid (AA) and JNK activity, as compared with neo (control) GECs. Activation of JNK was not affected by indomethacin. Incubation of GECs with complement stimulated production of superoxide, and pretreatment with the antioxidants, N-acetylcysteine, glutathione, and alpha-tocopherol as well as with diphenylene iodonium, an inhibitor of the NADPH oxidase, inhibited complement-induced JNK activation. Conversely, H(2)O(2) activated JNK, whereas exogenously added AA stimulated both superoxide production and JNK activity. Overexpression of a dominant-inhibitory JNK mutant or treatment with diphenylene iodonium exacerbated complement-dependent GEC injury. Thus, activation of cPLA(2) and release of AA facilitate complement-induced JNK activation. AA may activate the NADPH oxidase, leading to production of reactive oxygen species, which in turn mediate the activation of JNK. The functional role of JNK activation is to limit or protect GECs from complement attack.  相似文献   

4.
5.
6.
Leflunomide is a pyrimidine biosynthesis inhibitor that has recently been approved for treatment of rheumatoid arthritis. However, the mechanism of leflunomide's antiarthritis activity and is not fully understood. The critical role that TNF plays in rheumatoid arthritis led us to postulate that leflunomide blocks TNF signaling. Previously, we have demonstrated that leflunomide inhibits TNF-induced NF-kappaB activation by suppressing I-kappaBalpha (inhibitory subunit of NF-kappaB) degradation. We in this study show that leflunomide also blocks NF-kappaB reporter gene expression induced by TNFR1, TNFR-associated factor 2, and NF-kappaB-inducing kinase (NIK), but not that activated by the p65 subunit of NF-kappaB, suggesting that leflunomide acts downstream of NIK. Leflunomide suppressed TNF-induced phosphorylation of I-kappaBalpha, as well as activation of I-kappaBalpha kinase-beta located downstream to NIK. Leflunomide also inhibited TNF-induced activation of AP-1 and the c-Jun N-terminal protein kinase activation. TNF-mediated cytotoxicity and caspase-induced poly(ADP-ribose) polymerase cleavage were also completely abrogated by treatment of Jurkat T cells with leflunomide. Leflunomide suppressed TNF-induced reactive oxygen intermediate generation and lipid peroxidation, which may explain most of its effects on TNF signaling. The suppressive effects of leflunomide on TNF signaling were completely reversible by uridine, indicating a critical role for pyrimidine biosynthesis in TNF-mediated cellular responses. Overall, our results suggest that suppression of TNF signaling is one of the possible mechanisms for inhibitory activity of leflunomide against rheumatoid arthritis.  相似文献   

7.
8.
9.
Oxalate, a metabolic end product, is an important factor in the pathogenesis of renal stone disease. Oxalate exposure to renal epithelial cells results in re-initiation of the DNA synthesis, altered gene expression, and apoptosis, but the signaling pathways involved in these diverse effects have not been evaluated. The effects of oxalate on mitogen- and stress-activated protein kinase signaling pathways were studied in LLC-PK1 cells. Exposure to oxalate (1 mM) rapidly stimulated robust phosphorylation and activation of p38 MAPK. Oxalate exposure also induced modest activation of JNK, as monitored by phosphorylation of c-Jun. In contrast, oxalate exposure had no effect on phosphorylation and enzyme activity of p42/44 MAPK. We also show that specific inhibition of p38 MAPK by 4(4-(fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)imidazole (SB203580) or by overexpression of a kinase-dead dominant negative mutant of p38 MAPK abolishes oxalate induced re-initiation of DNA synthesis in LLC-PK1 cells. The inhibition is dose-dependent and correlates with in situ activity of native p38 MAP kinase, determined as MAPK-activated protein kinase-2 activity in cell extracts. Thus, this study not only provides the first demonstration of selective activation of p38 MAPK and JNK signaling pathways by oxalate but also suggests that p38 MAPK activity is essential for the effects of oxalate on re-initiation of DNA synthesis.  相似文献   

10.
NF-kappa B activates the HIV promoter in neurons.   总被引:5,自引:0,他引:5       下载免费PDF全文
A Rattner  M Korner  M D Walker    Y Citri 《The EMBO journal》1993,12(11):4261-4267
  相似文献   

11.
12.
13.
14.
BCMA (B cell maturation) is a nonglycosylated integral membrane type I protein that is preferentially expressed in mature B lymphocytes. Previously, we reported in a human malignant myeloma cell line that BCMA is not primarily present on the cell surface but lies in a perinuclear structure that partially overlaps the Golgi apparatus. We now show that in transiently or stably transfected cells, BCMA is located on the cell surface, as well as in a perinulear Golgi-like structure. We also show that overexpression of BCMA in 293 cells activates NF-kappa B, Elk-1, the c-Jun N-terminal kinase, and the p38 mitogen-activated protein kinase. Coimmunoprecipitation experiments performed in transfected cells showed that BCMA associates with TNFR-associated factor (TRAF) 1, TRAF2, and TRAF3 adaptor proteins. Analysis of deletion mutants of the intracytoplasmic tail of BCMA showed that the 25-aa protein segment, from position 119 to 143, conserved between mouse and human BCMA, is essential for its association with the TRAFs and the activation of NF-kappa B, Elk-1, and c-Jun N-terminal kinase. BCMA belongs structurally to the TNFR family. Its unique TNFR motif corresponds to a variant motif present in the fourth repeat of the TNFRI molecule. This study confirms that BCMA is a functional member of the TNFR superfamily. Furthermore, as BCMA is lacking a "death domain" and its overexpression activates NF-kappa B and c-Jun N-terminal kinase, we can reasonably hypothesize that upon binding of its corresponding ligand BCMA transduces signals for cell survival and proliferation.  相似文献   

15.
16.
Antigen receptor signaling is known to activate NF-kappaB in lymphocytes. While T-cell-receptor-induced NF-kappaB activation critically depends on novel protein kinase C theta (PKCtheta), the role of novel PKCs in B-cell stimulation has not been elucidated. In primary murine splenic B cells, we found high expression of the novel PKCs delta and epsilon but only weak expression of the theta isoform. Rottlerin blocks phorbol ester (phorbol myristate acetate [PMA])- or B-cell receptor (BCR)-mediated NF-kappaB and c-Jun N-terminal kinase (JNK) activation in primary B and T cells to a similar extent, suggesting that novel PKCs are positive regulators of signaling in hematopoietic cells. Mouse 70Z/3 pre-B cells have been widely used as a model for NF-kappaB activation in B cells. Similar to the situation in splenic B cells, rottlerin inhibits BCR and PMA stimulation of NF-kappaB in 70Z/3 cells. A derivative of 70Z/3 cells, 1.3E2 cells, are defective in NF-kappaB activation due to the lack of the IkappaB kinase (IKKgamma) protein. Ectopic expression of IKKgamma can rescue NF-kappaB activation in response to lipopolysaccharides (LPS) and interleukin-1beta (IL-1beta), but not to PMA. In addition, PMA-induced activation of the mitogen-activated protein kinase JNK is blocked in 1.3E2 cells, suggesting that an upstream component common to both pathways is either missing or mutated. Analysis of various PKC isoforms revealed that exclusively PKCtheta was absent in 1.3E2 cells while it was expressed in 70Z/3 cells. Stable expression of either novel PKCtheta or -delta but not classical PKCbetaII in 1.3E2 IKKgamma-expressing cells rescues PMA activation of NF-kappaB and JNK signaling, demonstrating a critical role of novel PKCs for B-cell activation.  相似文献   

17.
18.
The influenza A virus nonstructural NS1 protein is known to modulate host cell gene expression and to inhibit double-stranded RNA (dsRNA)-mediated antiviral responses. Here we identify NS1 as the first viral protein that antagonizes virus- and dsRNA-induced activation of the stress response-signaling pathway mediated through Jun N-terminal kinase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号