首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
AIMS: To evaluate the diversity of the Lactobacillus group in breast milk and the vagina of healthy women and understand their potential role in the infant gut colonization using the 16S rRNA gene approaches. METHODS AND RESULTS: Samples of breast milk, vaginal swabs and infant faeces were aseptically collected from five mothers whose neonates were born by vaginal delivery and another five that had their babies by caesarean section. After polymerase chain reaction (PCR) amplification using Lactobacillus group-specific primers, amplicons were analysed by denaturing gradient gel electrophoresis (DGGE). Clone libraries were constructed to describe the Lactobacillus group diversity. DGGE fingerprints were not related to the delivery method. None of the species detected in vaginal samples were found in breast milk-derived libraries and only few were detected in infant faeces. CONCLUSIONS: The bacterial composition of breast milk and infant faeces is not related to the delivery method. SIGNIFICANCE AND IMPACT OF THE STUDY: It has been suggested that neonates acquire lactobacilli by oral contamination with vaginal strains during delivery; subsequently, newborns would transmit such bacteria to the breast during breastfeeding. However, our findings confirm, at the molecular level that in contrast to the maternal vagina, breast milk seems to constitute a good source of lactobacilli to the infant gut.  相似文献   

2.
A Lactobacillus group-specific PCR primer, S-G-Lab-0677-a-A-17, was developed to selectively amplify 16S ribosomal DNA (rDNA) from lactobacilli and related lactic acid bacteria, including members of the genera Leuconostoc, Pediococcus, and WEISSELLA: Amplicons generated by PCR from a variety of gastrointestinal (GI) tract samples, including those originating from feces and cecum, resulted predominantly in Lactobacillus-like sequences, of which ca. 28% were most similar to the 16S rDNA of Lactobacillus ruminis. Moreover, four sequences of Leuconostoc species were retrieved that, so far, have only been detected in environments other than the GI tract, such as fermented food products. The validity of the primer was further demonstrated by using Lactobacillus-specific PCR and denaturing gradient gel electrophoresis (DGGE) of the 16S rDNA amplicons of fecal and cecal origin from different age groups. The stability of the GI-tract bacterial community in different age groups over various time periods was studied. The Lactobacillus community in three adults over a 2-year period showed variation in composition and stability depending on the individual, while successional change of the Lactobacillus community was observed during the first 5 months of an infant's life. Furthermore, the specific PCR and DGGE approach was tested to study the retention in fecal samples of a Lactobacillus strain administered during a clinical trial. In conclusion, the combination of specific PCR and DGGE analysis of 16S rDNA amplicons allows the diversity of important groups of bacteria that are present in low numbers in specific ecosystems to be characterized, such as the lactobacilli in the human GI tract.  相似文献   

3.
The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA.  相似文献   

4.
The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA.  相似文献   

5.
Denaturing gradient gel electrophoresis (DGGE) of DNA fragments obtained by PCR amplification of the V2-V3 region of the 16S rRNA gene was used to detect the presence of Lactobacillus species in the stomach contents of mice. Lactobacillus isolates cultured from human and porcine gastrointestinal samples were identified to the species level by using a combination of DGGE and species-specific PCR primers that targeted 16S-23S rRNA intergenic spacer region or 16S rRNA gene sequences. The identifications obtained by this approach were confirmed by sequencing the V2-V3 region of the 16S rRNA gene and by a BLAST search of the GenBank database.  相似文献   

6.
Denaturing gradient gel electrophoresis (DGGE) of DNA fragments obtained by PCR amplification of the V2-V3 region of the 16S rRNA gene was used to detect the presence of Lactobacillus species in the stomach contents of mice. Lactobacillus isolates cultured from human and porcine gastrointestinal samples were identified to the species level by using a combination of DGGE and species-specific PCR primers that targeted 16S-23S rRNA intergenic spacer region or 16S rRNA gene sequences. The identifications obtained by this approach were confirmed by sequencing the V2-V3 region of the 16S rRNA gene and by a BLAST search of the GenBank database.  相似文献   

7.
Using fluorescence in situ hybridization to detect bacterial groups has several inherent limitations. DNA probes are generally used, targeting sites on the 16S rRNA. However, much of the 16S rRNA is highly conserved, with variable regions often located in inaccessible areas where secondary structures can restrict probe access. Here, we describe the use of peptide nucleic acid (PNA) probes as a superior alternative to DNA probes, especially when used for environmental samples. A complex bacterial genus (Legionella) was studied, and two probes were designed, one to detect all species and one targeted to Legionella pneumophila. These probes were developed from existing sequences and are targeted to low-binding-affinity sites on the 16S rRNA. In total, 47 strains of Legionella were tested. In all cases, the Legionella spp. PNA probe labeled cells strongly but did not bind to any non-Legionella species. Likewise, the specific L. pneumophila PNA probe labeled only strains of L. pneumophila. By contrast, the equivalent DNA probes performed poorly. To assess the applicability of this method for use on environmental samples, drinking-water biofilms were spiked with a known concentration of L. pneumophila bacteria. Quantifications of the L. pneumophila bacteria were compared using PNA hybridization and standard culture methods. The culture method quantified only 10% of the number of L. pneumophila bacteria found by PNA hybridization. This illustrates the value of this method for use on complex environmental samples, especially where cells may be in a viable but noncultivable state.  相似文献   

8.
The distribution of mucosa-associated bacteria, bifidobacteria and lactobacilli and closely related lactic acid bacteria, in biopsy samples from the ascending, transverse, and descending parts of the colon from four individuals was investigated by denaturing gradient gel electrophoresis (DGGE). Bifidobacterial genus-specific, Lactobacillus group-specific, and universal bacterial primers were used in a nested PCR approach to amplify a fragment of the 16S rRNA gene. DGGE profiles of the bifidobacterial community were relatively simple, with one or two amplicons detected at most sampling sites in the colon. DGGE profiles obtained with Lactobacillus group-specific primers were complex and varied with host and sampling site in the colon. The overall bacterial community varied with host but not sampling site.  相似文献   

9.
目的对比细菌性阴道病及其合并盆腔炎患者与健康个体的阴道菌群,分析阴道菌群的结构,为确定该疾病的特征细菌及研究致病机制奠定基础。方法采用临床Amsel标准筛选的17例细菌性阴道病患者、13例细菌性阴道病合并盆腔炎患者和52例健康者,使用无菌拭子采集阴道后穹窿分泌物以提取细菌基因组DNA。采用PCR技术扩增上一步得到的16S rRNA片段,而后将扩增产物通过变形梯度凝胶电泳(DGGE)分离以得到阴道细菌种属结构图谱,应用Quantity One软件进行聚类分析,应用凝胶测序法进行特异条带分析。检测16S rRNA基因,具体研究样品中的物种分类。结果细菌性阴道病及其合并盆腔炎患者的阴道菌群的构成与健康者相比较具有显著性差异。其中,Firmicutes等菌门细菌减少,Actinobacteria等菌门细菌增多;G.vaginallis、P.vaginallis等厌氧菌数量均增加,L.crispatus、L.iners等益生菌数量均有减少。结论细菌性阴道病及其合并盆腔炎患者的生殖道内的合并感染改变了阴道内的原有微生态平衡。两组疾病组患者的阴道菌群构成相比于健康对照组变化明显。  相似文献   

10.
The distribution of mucosa-associated bacteria, bifidobacteria and lactobacilli and closely related lactic acid bacteria, in biopsy samples from the ascending, transverse, and descending parts of the colon from four individuals was investigated by denaturing gradient gel electrophoresis (DGGE). Bifidobacterial genus-specific, Lactobacillus group-specific, and universal bacterial primers were used in a nested PCR approach to amplify a fragment of the 16S rRNA gene. DGGE profiles of the bifidobacterial community were relatively simple, with one or two amplicons detected at most sampling sites in the colon. DGGE profiles obtained with Lactobacillus group-specific primers were complex and varied with host and sampling site in the colon. The overall bacterial community varied with host but not sampling site.  相似文献   

11.
A Lactobacillus group-specific PCR primer, S-G-Lab-0677-a-A-17, was developed to selectively amplify 16S ribosomal DNA (rDNA) from lactobacilli and related lactic acid bacteria, including members of the genera Leuconostoc, Pediococcus, and Weissella. Amplicons generated by PCR from a variety of gastrointestinal (GI) tract samples, including those originating from feces and cecum, resulted predominantly in Lactobacillus-like sequences, of which ca. 28% were most similar to the 16S rDNA of Lactobacillus ruminis. Moreover, four sequences of Leuconostoc species were retrieved that, so far, have only been detected in environments other than the GI tract, such as fermented food products. The validity of the primer was further demonstrated by using Lactobacillus-specific PCR and denaturing gradient gel electrophoresis (DGGE) of the 16S rDNA amplicons of fecal and cecal origin from different age groups. The stability of the GI-tract bacterial community in different age groups over various time periods was studied. The Lactobacillus community in three adults over a 2-year period showed variation in composition and stability depending on the individual, while successional change of the Lactobacillus community was observed during the first 5 months of an infant’s life. Furthermore, the specific PCR and DGGE approach was tested to study the retention in fecal samples of a Lactobacillus strain administered during a clinical trial. In conclusion, the combination of specific PCR and DGGE analysis of 16S rDNA amplicons allows the diversity of important groups of bacteria that are present in low numbers in specific ecosystems to be characterized, such as the lactobacilli in the human GI tract.  相似文献   

12.
We have used heterotrophic plate counts, together with live-dead direct staining and denaturing gradient gel electrophoresis (DGGE), to characterize the eubacterial communities that had formed as biofilms within domestic sink drain outlets. Laboratory microcosms of these environments were established using excised biofilms from two separate drain biofilm samples to inoculate constant-depth film fermentors (CDFFs). Drain biofilms harbored 9.8 to 11.3 log(10) cells of viable enteric species and pseudomonads/g, while CDFF-grown biofilms harbored 10.6 to 11.4 log(10) cells/g. Since live-dead direct staining revealed various efficiencies of recovery by culture, samples were analyzed by DGGE, utilizing primers specific for the V2-V3 region of eubacterial 16S rDNA. These analyses showed that the major PCR amplicons from in situ material were represented in the microcosms and maintained there over extended periods. Sequencing of amplicons resolved by DGGE revealed that the biofilms were dominated by a small number of genera, which were also isolated by culture. One drain sample harbored the protozoan Colpoda maupasi, together with rhabtidid nematodes and bdelloid rotifers. The microcosm enables the maintenance of stable drain-type bacterial communities and represents a useful tool for the modeling of this ecosystem.  相似文献   

13.
This investigation provides molecular analyses of the periodontal microbiota in health and disease. Subgingival samples from 47 volunteers with healthy gingivae or clinically diagnosed chronic periodontitis were characterized by PCR-denaturing gradient gel electrophoresis (DGGE) with primers specific for the V2-V3 region of the eubacterial 16S rRNA gene. A hierarchical dendrogram was constructed from band patterns. All unique PCR amplicons (DGGE bands) were sequenced for identity. Samples were also analyzed for the presence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythensis by multiplex PCR. Associations of patient age, gender, and smoking status together with the presence of each unique band and putative periodontal pathogens with disease were assessed by logistic regression. Periodontal pockets were colonized by complex eubacterial communities (10 to 40 distinct DGGE bands) with substantial individual variation in the community profile. Species diversity in health and disease was determined by the Shannon-Weaver index of diversity and compared by the Mann-Whitney U test. Sequence analyses of DGGE amplicons indicated the occurrence of many nontypical oral species and eubacteria previously associated with this environment. With the exception of T. forsythensis, the putative pathogens were not detected by DGGE. Multiplex PCR, however, detected T. forsythensis, A. actinomycetemcomitans, and P. gingivalis in 9% 16%, and 29% of the patients with disease, respectively. The presence of A. actinomycetemcomitans was significantly associated with disease (P < 0.01). Statistical analyses indicated that the presence of Treponema socranskii and Pseudomonas sp. was a significant predictor of disease (P < 0.05) and that there was no significant difference (P > 0.05) in terms of eubacterial species diversity between health and disease.  相似文献   

14.
Using fluorescence in situ hybridization to detect bacterial groups has several inherent limitations. DNA probes are generally used, targeting sites on the 16S rRNA. However, much of the 16S rRNA is highly conserved, with variable regions often located in inaccessible areas where secondary structures can restrict probe access. Here, we describe the use of peptide nucleic acid (PNA) probes as a superior alternative to DNA probes, especially when used for environmental samples. A complex bacterial genus (Legionella) was studied, and two probes were designed, one to detect all species and one targeted to Legionella pneumophila. These probes were developed from existing sequences and are targeted to low-binding-affinity sites on the 16S rRNA. In total, 47 strains of Legionella were tested. In all cases, the Legionella spp. PNA probe labeled cells strongly but did not bind to any non-Legionella species. Likewise, the specific L. pneumophila PNA probe labeled only strains of L. pneumophila. By contrast, the equivalent DNA probes performed poorly. To assess the applicability of this method for use on environmental samples, drinking-water biofilms were spiked with a known concentration of L. pneumophila bacteria. Quantifications of the L. pneumophila bacteria were compared using PNA hybridization and standard culture methods. The culture method quantified only 10% of the number of L. pneumophila bacteria found by PNA hybridization. This illustrates the value of this method for use on complex environmental samples, especially where cells may be in a viable but noncultivable state.  相似文献   

15.
The vaginal bacterial microbiota of 19 premenopausal women was examined by PCR-denaturing gradient gel electrophoresis (DGGE) and sequencing of the V2-V3 region of the 16S rRNA gene. Ten of the women were studied further to investigate the effect and persistence of vaginally inserted capsules containing viable lactobacilli. PCR-DGGE indicated that most subjects had a microbiota represented by one to three dominant DNA fragments. Analysis of these fragments revealed that 79% of the women possessed sequences with high levels of similarity to Lactobacillus species sequences. Sequences homologous to Lactobacillus iners sequences were the most common and were detected in 42% of the women tested. Alteration of the vaginal microbiota could be detected by PCR-DGGE in several women after the instillation of lactobacilli. Additionally, randomly amplified polymorphic DNA analysis of lactobacilli isolated from selective media demonstrated that the exogenous strains could be detected for up to 21 days in some subjects. This study demonstrates that non-culture-based techniques, such as PCR-DGGE, are useful adjuncts for studies of the vaginal microbiota.  相似文献   

16.
Aims: To identify and compare microbiota in Chinese liquor Daqu, which were produced in the different regions using different production process. Methods and Results: The DNA exacted from Daqu samples was used as a template for PCR with universal primers of 16S rRNA, 26S rRNA and 18S rRNA, respectively. The amplicons were analysed using denaturing gradient gel electrophoresis (DGGE). It was observed that the bacterial DGGE profile indicated high diversity and predominance of lactic acid bacteria. The results showed that Saccharomycopsis fibuligera and Pichia anomal were dominant yeast species and that several non‐Saccharomyces yeasts including Hanseniaspora guilliermondii, Debaryomyces hansenii, Issatchenkia orientalis and Trichosporon asahii were also detected. As for fungal DGGE, Aspergillus oryzae and Absidia blakesleeana were the most common species amongst different samples. Based on the DGGE analysis, a few differences in community structure were found between Daqu samples. Conclusions: A variety of bacteria, yeast and moulds were identified in Daqu samples, in addition to the present knowledge obtained mainly through the traditional culture‐dependent methods. Moreover, production temperature played a more decisive role on the formation of micro‐organism composition in Daqu than geographical region. Significance and Impact of the Study: PCR–DGGE technique was used in this study to fully observe and asses all microbial community (including bacteria, yeast and mould) in Chinese liquor Daqu for the first time and proved to be effective in profiling Daqu microbial diversity.  相似文献   

17.
Efficient profiling of eubacterial diversity within complex communities requires that primers are specific for eubacterial 16S rRNA. Specificity of published primers against eubacterial and archaeal 16S rRNA as well as protozoal and fungal 18S rRNA was assessed in silico. The specificity and sensitivity of the V3 and V6–V8 (F968gc and R1401) Denaturing Gradient Gel Electrophoresis (DGGE) primers was subsequently verified using rumen-derived samples. An assessment of the effects of employing touchdown PCR cycling conditions was also made. For DGGE profiling of eubacteria within rumen samples, primers F968gc and R1401 proved the most specific and sensitive providing that touchdown PCR is not used.  相似文献   

18.
AIMS: To characterize the lactobacilli community of 20 sourdoughs using a novel polyphasic approach. METHODS AND RESULTS: A polyphasic approach, consisting of a two-step multiplex polymerase chain reaction (PCR) system, 16S rRNA gene sequence analysis and physiological features, was applied to identify 127 isolates, representing about 37% of the presumptive lactobacilli collected from sourdough samples. Multiplex PCR successfully identified 111 isolates, while 16S rRNA gene sequencing was applied for the other 16 isolates, two of which could not be associated with any previously described lactic acid bacteria (LAB) species. Strain diversity was evaluated by phenotypic and random amplified polymorphic DNA-PCR analysis. Molecular detection of Lactobacillus group species was also performed on total DNA extracted from the doughs. CONCLUSIONS: Abruzzo region sourdough lactobacilli biodiversity, reflected in both Lactobacillus species composition and strain polymorphism, is similar to that of other Italian regions and is a source of novel LAB species. SIGNIFICANCE AND IMPACT OF THE STUDY: Within culture-independent methods, multiplex PCR is a rapid tool to study the lactobacilli population of sourdoughs.  相似文献   

19.
The vaginal bacterial microbiota of 19 premenopausal women was examined by PCR-denaturing gradient gel electrophoresis (DGGE) and sequencing of the V2-V3 region of the 16S rRNA gene. Ten of the women were studied further to investigate the effect and persistence of vaginally inserted capsules containing viable lactobacilli. PCR-DGGE indicated that most subjects had a microbiota represented by one to three dominant DNA fragments. Analysis of these fragments revealed that 79% of the women possessed sequences with high levels of similarity to Lactobacillus species sequences. Sequences homologous to Lactobacillus iners sequences were the most common and were detected in 42% of the women tested. Alteration of the vaginal microbiota could be detected by PCR-DGGE in several women after the instillation of lactobacilli. Additionally, randomly amplified polymorphic DNA analysis of lactobacilli isolated from selective media demonstrated that the exogenous strains could be detected for up to 21 days in some subjects. This study demonstrates that non-culture-based techniques, such as PCR-DGGE, are useful adjuncts for studies of the vaginal microbiota.  相似文献   

20.
We have used heterotrophic plate counts, together with live-dead direct staining and denaturing gradient gel electrophoresis (DGGE), to characterize the eubacterial communities that had formed as biofilms within domestic sink drain outlets. Laboratory microcosms of these environments were established using excised biofilms from two separate drain biofilm samples to inoculate constant-depth film fermentors (CDFFs). Drain biofilms harbored 9.8 to 11.3 log10 cells of viable enteric species and pseudomonads/g, while CDFF-grown biofilms harbored 10.6 to 11.4 log10 cells/g. Since live-dead direct staining revealed various efficiencies of recovery by culture, samples were analyzed by DGGE, utilizing primers specific for the V2-V3 region of eubacterial 16S rDNA. These analyses showed that the major PCR amplicons from in situ material were represented in the microcosms and maintained there over extended periods. Sequencing of amplicons resolved by DGGE revealed that the biofilms were dominated by a small number of genera, which were also isolated by culture. One drain sample harbored the protozoan Colpoda maupasi, together with rhabtidid nematodes and bdelloid rotifers. The microcosm enables the maintenance of stable drain-type bacterial communities and represents a useful tool for the modeling of this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号