首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Previous studies have shown that some polyphenols have anti-ice nucleation activity (anti-INA) against ice-nucleating bacteria that contribute to frost damage. In the present study, leaf disk freezing assay, a test of in vitro application to plant leaves, was performed for the screening of anti-INA, which inhibits the ice nucleation activity of an ice-nucleating bacterium Erwinia ananas in water droplets on the leaf surfaces. The application of polyphenols with anti-INA, kaempferol 7-O-β-glucoside and (–)-epigallocatechin gallate, to the leaf disk freezing assay by cooling at ?4–?6 °C for 3 h, revealed that both the compounds showed anti-INAs against E. ananas in water droplets on the leaf surfaces. Further, this assay also revealed that the extracts of five plant leaves showed high anti-INA against E. ananas in water droplets on leaf surfaces, indicating that they are the candidate resources to protect crops from frost damage.  相似文献   

2.
A laboratory technique is described for the production of drops of simulated rain in which fungal spores were suspended. When such drops containing conidia of Botrytis fabae impacted on a target leaf the secondary droplets produced infections on receptor broad bean leaves. The capacity of fungicides applied to the target leaf to redistribute in secondary splash droplets was examined in terms of the infectivity of the spores in the droplets. The extent to which a copper fungicide reduced infection on the receptor leaves was related to the level and tenacity of the fungicide deposit on the target leaf. The effect of wetting agents on the redistribution of this fungicide could probably be explained by their influence on the tenacity of the initial deposit. In general the capacity of different fungicides to inhibit infection by the secondary droplets was related to the inherent toxicity of the fungicides to B. fabae. Implications of the dispersal of spores and fungicides by rain splash are briefly considered with reference to field conditions.  相似文献   

3.
Simulated rain (mean drop diameter c. 1 or 3 mm) was allowed to fall for 10 – 15 min on to barley leaves or straw infected by Rhynchosporium secalis (leaf blotch). The leaves were supported on a mesh through which run-off water drained and the straw was supported on a rigid surface on which run-off water collected. The numbers of R. secalis conidia and spore-carrying splash droplets collected by horizontal samplers (microscope slides and pieces of photographic film) decreased rapidly with increasing distance from and increasing height above the sources, with half-distances of 2 – 10 cm. Less than 10% of the spores or droplets reached heights of more than 30 cm. Incident drops 3 mm in diameter produced more spore-carrying droplets and dispersed more conidia than did 1 mm drops. The size category of splash droplets with the greatest proportion of the spore-carrying droplets dispersed by 3 mm drops was 200 – 400 μm, whether the source was infected barley leaves or barley straw. For leaves or straw the greatest proportions of spores were carried in droplets > 1000 μm in diameter. The mean diameter of spore-carrying droplets (478 μm) dispersed from free-draining leaves was less than that of droplets from straw plus run-off water (563 μm). However, the leaf source had more spores cm-2 and the mean number of spores per droplet was greater (113 as opposed to 6·8) than for the straw source.  相似文献   

4.
Groups of Lolium perenne plants selected for either deep or shallow adaxial epidermal ridging were grown in a 16 h day of 70 W m-2 at 25°C, and either watered daily to 33% or allowed to dry to and then watered daily to 21% or to 16% soil moisture. During a 9 day experimental period, adaxial leaf resistances (r1) were measured with a diffusion porometer four times daily, transpiration was estimated gravimetrically, and daily rates of leaf extension were recorded. Measurements were also made of minimum abaxial resistances, stomatal frequencies and lengths, and relative leaf water content (RLWC). At 33%, 21% or 16% soil moisture, leaf extension rates of deep ridged leaves were, respectively, slower, the same, and more rapid than those with shallow ridges. At 21% or 16% soil moisture, the adaxial rl of deep-ridged was much lower than that of shallow-ridged leaves at all four sampling times. This difference was most marked on leaves below the youngest fully expanded, and was observed among older leaves even when plants were well watered. At low RLWC (< 85%), leaf resistance was greatest in leaves with shallow ridges. There was no significant difference between the leaf types in the calculated contributions of stomatal frequency or of morphology at any one pore opening, to rl but deep-ridged leaves had more stomataonthe abaxial surface. Daily rate of plant water loss was directly correlated (r=+ 0.86, P < 0.01) with mean daily maximum stomatal conductance (1/rl), and rate of leaf extension negatively with maximum rl. It is suggested that stomata operating in the concavity formed by deep ridges open wider and are less responsive to internal changes in, for example, leaf water status, than those on shallow-ridged leaves because of a more humid microenvironment at the epidermal surface. The results are discussed in relation to the concept of ‘water-savers’ and ‘water-spenders’ and its application to breeding for dry conditions.  相似文献   

5.
Alpine ecosystems are seriously threatened by climate change. One of the key mechanisms by which plants can adapt to changing environmental conditions is through evolutionary change. However, we still know little about the evolutionary potential in wild populations of long‐lived alpine plants. Here, we investigated heritabilities of phenological traits, leaf size, and performance traits in natural populations of the long‐lived alpine dwarf shrub Salix herbacea using relatedness estimates inferred from SSR (Simple Sequence Repeat) markers. Salix herbacea occurs in early‐ and late‐snowmelt microhabitats (ridges and snowbeds), and we assessed how performance consequences of phenological traits and leaf size differ between these microhabitats in order to infer potential for evolutionary responses. Salix herbacea showed low, but significant, heritabilities of leaf size, clonal and sexual reproduction, and moderate heritabilities of phenological traits. In both microhabitats, we found that larger leaves, longer intervals between snowmelt and leaf expansion, and longer GDD (growing‐degree days) until leaf expansion resulted in a stronger increase in the number of stems (clonal reproduction). In snowbeds, clonal reproduction increased with a shorter GDD until flowering, while the opposite was found on ridges. Furthermore, the proportion of flowering stems increased with GDD until flowering in both microhabitats. Our results suggest that the presence of significant heritable variation in morphology and phenology might help S. herbacea to adapt to changing environmental conditions. However, it remains to be seen if the rate of such an evolutionary response can keep pace with the rapid rate of climate change.  相似文献   

6.
This study shows that condensation on the hierarchically structured lotus leaf can facilitate self-propulsion of water droplets off the surface. Droplets on leaves inclined at high angles can be completely removed from the surface by self-propulsion with the assistance of gravity. Due to the small size of mobile droplets, light breezes may also fully remove the propelled droplets, which are typically projected beyond the boundary layer of the leaf cuticle. Moreover the self-propelled droplets/condensate were able to remove contaminants (eg silica particles) from the leaf surface. The biological significance of this process may be associated with maintaining a healthy cuticle surface when the action of rain to clean the surface via the lotus effect is not possible (due to no precipitation). Indeed, the native lotus plants in this study were located in a region with extended time periods (several months) without rain. Thus, dew formation on the leaf may provide an alternative self-cleaning mechanism during times of drought and optimise the functional efficiency of the leaf surface as well as protecting the surface from long term exposure to pathogens such as bacteria and fungi.  相似文献   

7.
Sphenophyllum was an important and long-surviving sphenopsid genus in the Paleozoic floras, with a worldwide distribution. A new species, Sphenophyllum changxingense sp. nov., is described from the Upper Devonian Wutong Formation of Changxing County, Zhejiang Province, China. This plant is characterized by two orders of slender axes and wedge-shaped leaves borne in whorls. The axes bear short spines and show longitudinal ridges and furrows on surface. Three to eight isophyllous leaves, with one, two, or no second-order axes, are attached at each node of first-order axes. Leaves bear spines and show a bilobate morphology; the two leaf lobes divide distally to form several marginal segments, each segment with a leaf vein. Sphenophyllum changxingense represents an early and primitive species within the genus, in light of the absence of heterophylly and specialized hook-like leaves. Like some Carboniferous and Permian species, it appears to have formed dense mats with mutually supportive axes. This plant adds to the known diversity of early sphenopsids in the Late Devonian.  相似文献   

8.
L. R. Jarvis  A. B. Wardrop 《Planta》1974,119(2):101-112
Summary As seen in the scanning electron microscope the surface wax of leaves of Phormium tenax L. consists of vertical, plate-like crystals. These increase in size and number and undergo a change in form during development. The abaxial surface has a dense covering of wax crystals, but none are present on the ridges over vascular tissues. Numerous papillae are found between these ridges in later stages of development. On the adaxial surface both wax crystals and papillae are present only around infrequent stomata.When viewed in section normal to the leaf surface the cuticle is first apparent as a thin, lamellate layer. Another layer containing a reticulum of electrondense material increases in thickness beneath the lamellae during development. This layer eventually becomes the most extensive component of the cuticle. Both the adaxial and abaxial cuticles show a similar pattern of development.  相似文献   

9.
Experiments were conducted with leek (Allium porrum L.) leaves to investigate whether aqueous solutions are able to penetrate stomata. Epidermal strips were used for the determination of transport rates. Stomata were opened by fusicoccin or closed by darkness or abscisic acid. A droplet containing the anionic fluorescent dye, uranine, was placed on the physiologically outer side of the epidermis and allowed to dry. With open stomata 30 times more uranine penetrated through the epidermal strips than with closed stomata (comparison of medians). In another experiment droplets of uranine solution were placed on leaf segments and epidermal strips were removed after drying of the droplets. Penetration of uranine through stomata was detectable under the microscope both with epidermal strips from the transport experiments and with strips obtained after application on leaf segments. As maximum uptake rates occurred during the drying process, it is concluded that penetration took place via water films. These results show that the physical restrictions preventing stomatal penetration of static droplets are not decisive for drying droplets and that stomatal uptake of dissolved ionic substances occurs under natural conditions, i.e. without surfactants or applied pressure.  相似文献   

10.
Abstract. Because CO2 diffuses 10000 times more slowly through water than air, there may be strong selective pressure for increased water repellency in terrestrial plant leaves. In the present study, leaf trichomes appeared to have a strong influence on leaf water repellency (i.e. degree of water droplet formation on the leaf surface) as well as the retention of droplets on the leaf. Based upon evaluation of 38 plant species from 21 families, we found that leaves with trichomes were more water repellent, especially where trichome density was greater than 25mm2. However, droplet repellency and retention were both high in some species where trichomes entrapped droplets. Finally, the lensing effects of water droplets on leaf surfaces increased incident sunlight by over 20-fold directly beneath individual droplets. These results may have important implications for such processes as stomatal function, whole leaf photosynthesis, and transpiration for a large variety of plant species.  相似文献   

11.
The upper leaf surfaces of velvetleaf (Abutilon theophrasti Medic.) contain trichomes which facilitate the adhesion of droplets of solution, even when the leaves are oriented in a vertical (night) position. Leaves of plants subjected to conditions of high relative humidity were more injured by bentazon (3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide) than leaves under low soil moisture and relative humidity. Although a significant 24-h oscillation in the sensitivity of leaves to bentazon was sometimes evident under both high and low humidity conditions, it was definitely more evident in the latter. Generally, the second leaves of plants in the three leaf stage were more consistent for displaying oscillations in sensitivity than the first. The youngest leaves were the most sensitive to bentazon but generally did not display pronounced daily oscillations. The abscission of cotyledons appeared to have possible merit as a bioassay for monitoring leaf injury.  相似文献   

12.
Non-antagonistic interactions between arthropods and leaves of insectivorous plants with adhesive traps so far have never been reported. The mites are common prey of such plants, but we have found a new subspecies of the mite Oribatula tibialis living on the leaves of Pinguicula longifolia. Because of its small size and the low glandular density of the host, the mite moves without being trapped by the mucilaginous droplets of the leaf surface. P. longifolia provides shelter and food for the mite, while the plant may also benefit because of its fungivorous and scavenging activities. This new interaction is another dramatic example of widespread miteplant associations.  相似文献   

13.
《Palaeoworld》2020,29(4):695-705
The evolution of vascular plants during the Devonian Period has had great impacts on terrestrial ecosystems through innovations of key characters such as leaves, heterospory, seed reproduction, and woods. Here we report a new plant, Qianshouia mira n. gen. n. sp., from the Upper Devonian Wutong (Wutung) Formation of Fanwan section, Changxing County, Zhejiang Province, China. This plant has slender axes which seldom branch. Its leaves are arranged in pseudowhorls, departing from axes with an acute angle. The leaves are strap-shaped and each can be subdivided into proximal, middle and distal portions. At the proximal portion, a middle ridge develops, and at the middle portion this ridge divides at least three times forming four to six daughter ridges, and in between are grooves. The distal portion of leaves (leaf apex) is suggested to be adaxially curved, with no ridges but with forked tips. Qianshouia probably represents a small plant with a shrubby or herbaceous habit. Due to the unique leaf morphology and the lack of fertile structures and anatomy, the exact phylogenetic position of Qianshouia is uncertain. Qianshouia might be a lycopsid in light of the pseudowhorled phyllotaxis, or alternatively, could be a sphenopsid if the dichotomous ridge system of the leaf could be demonstrated to be leaf veins. Nevertheless, Qianshouia adds to the diversity of leaf morphologies among the Late Devonian vascular plants.  相似文献   

14.
The present study was carried out to investigate the degree of leaf wetness and its capacity to retain water droplets in relation to leaf morphological characteristics of Valeriana jatamansi J. grown under open and shade habitats. Leaves developed in open habitats had less wettability but higher capacity to retain water droplets and more number of stomata than shade leaves. A significant positive correlation of contact angle () were noticed with trichome length, droplet retention and wax content.  相似文献   

15.
Abstract Leaf wettability, cuticular wax composition, and microbial colonization of upper and lower leaf surfaces of ivy (Hedera helix L.) was investigated for young and old leaves sampled in June and September. Contact angles of aqueous buffered solutions measured on young leaf surfaces ranged between 76° and 86° and were not dependent on the pH value of the applied droplets. Contact angles measured on old leaf surfaces were up to 32°, significantly lower than on young leaf surfaces. Furthermore, contact angles were significantly lower using aqueous solutions of pH 9.0 compared to pH 3.0, indicating the influence of ionizable functional groups on leaf surface wetting properties. Observed changes in leaf wetting properties did not correlate with different levels of alkanoic acids in cuticular waxes. However, microscopic examination of the leaf surfaces indicated the influence of epiphytic microorganisms on wetting properties of old leaves, since their surfaces were always colonized by epiphytic microorganisms (filamentous fungi, yeasts, and bacteria), whereas surfaces of young leaves were basically clean. In order to analyze the effect of epiphytic microorganisms on leaf surface wetting, surfaces of young and clean ivy leaves were artificially colonized with Pseudomonas fluorescens. This resulted in a significant increase and a pH dependence of leaf surface wetting in the same way as it was observed on old ivy leaf surfaces. From these results it can be deduced that the native wetting properties of leaf surfaces can be significantly masked by the presence of epiphytic microorganisms. The ecological implications of altered wetting properties for microorganisms using the leaf/atmosphere interface as habitat are discussed. Received: 20 March 1999; Accepted: 5 July 1999; Online Publication: 18 July 2000  相似文献   

16.
Leaf scald of sugarcane, caused by Xanthomonas albilineans, is thought to be spread mainly in infected cuttings and transmitted on infested cutting implements. Several observations made in Guadeloupe indicated that other means of spreading also occur. The dispersal of the pathogen outside sugarcane was investigated with plants inoculated by an antibiotic-resistant marked strain of X. albilineans and with plants naturally infested with wild strains of the pathogen. The bacteria were isolated in water droplets (rain or dew) on the surface of sugarcane leaves at dawn. It was also detected on the surface of dry leaves during the day by leaf imprinting onto a selective culture medium. The bacteria were much more frequently isolated from the surface of symptomatic leaves than from symptomless ones. Aerial dispersal of X. albilineans was investigated by placing Petri dishes containing selective culture medium between sugarcane plants but without direct contact with the leaves. The pathogen was isolated in four out of 270 dishes which were randomly set 3–14 h in a diseased field. These results indicated that the pathogen exuded from the leaves and then was spread by aerial means (rain, insects, …) or by leaf contact. The bacteria were also found in roots and rhizospheric soil of infested sugarcane stools suggesting that X. albilineans could be transmitted by root to root contact or by the soil. Finally, isolations of the pathogen in sugarcane inflorescences were positive. So, fuzz transmission may also occur.  相似文献   

17.
Sorghum genotypes known to be resistant or susceptible to shoot fly, Atherigona soccata Rondani were examined by scanning electron microscopy for differences in epicuticular wax structure and wetness of the central leaf whorl. Two major types of wax structures were observed: shoot fly resistant and moderately resistant genotypes were characterised by a smooth amorphous wax layer and sparse wax crystals while susceptible genotypes possessed a dense meshwork of crystalline epicuticular wax. The density of wax crystals decreased from the third leaf to the seventh leaf stage and was related to both seedling age and leaf position. Water droplets on susceptible genotypes with dense wax crystals showed spreading at the edges indicating a tendency to wet easily. In resistant genotypes with less dense wax crystals the droplets remained intact and did not spread.  相似文献   

18.
Leaf scald of sugarcane, caused by Xanthomonas albilineans, is thought to be spread mainly in infected cuttings and transmitted on infested cutting implements. Several observations made in Guadeloupe indicated that other means of spreading also occur. The dispersal of the pathogen outside sugarcane was investigated with plants inoculated by an antibiotic-resistant marked strain of X. albilineans and with plants naturally infested with wild strains of the pathogen. The bacteria were isolated in water droplets (rain or dew) on the surface of sugarcane leaves at dawn. It was also detected on the surface of dry leaves during the day by leaf imprinting onto a selective culture medium. The bacteria were much more frequently isolated from the surface of symptomatic leaves than from symptomless ones. Aerial dispersal of X. albilineans was investigated by placing Petri dishes containing selective culture medium between sugarcane plants but without direct contact with the leaves. The pathogen was isolated in four out of 270 dishes which were randomly set 3-14 h in a diseased field. These results indicated that the pathogen exuded from the leaves and then was spread by aerial means (rain, insects,…) or by leaf contact. The bacteria were also found in roots and rhizospheric soil of infested sugarcane stools suggesting that X. albilineans could be transmitted by root to root contact or by the soil. Finally, isolations of the pathogen in sugarcane inflorescences were positive. So, fuzz transmission may also occur.  相似文献   

19.
The impact of the grape leafhopper,Empoasca vitis, on leaf gas exchange, plant growth, yield, fruit quality and carbohydrate reserves of the grapevines,Vitis vinifera L., was studied. Gas exchange was measured on the discolored (red) and the green parts of infested main leaves and on leaves from uninfested vines. Photosynthesis and mesophyll conductance were severely reduced on main leaves showing leafhopper feeding symptoms. The stomatal conductance of the red leaf section of infested main leaves was lower than on undamaged control leaves. Additionally, the red leaf section of infested main leaves showed lower transpiration rates when compared to the green parts of the same leaves and to undamaged control leaves. Gas exchange processes of lateral leaves were not affected by leafhopper feeding. Leafhopperload on main leaves was correlated to visual damage symptoms. At 71.8 leafhopper-days per leaf up to 40% of the main leaf area of the infested plants was discolored from the borders towards the center. Lateral leaves showed no feeding symptoms. Shoot diameter, pruning weight and carbohydrate reserves in the wood were not affected by leafhoppers. Lateral leaf area growth was significantly stimulated on plants infested by leafhoppers. No decrease in yield and fruit quality with leafhopper-loads up to 71.8 leafhopper-days per leaf were observed.  相似文献   

20.
An electron microscope has been used to investigate the ultrastructure of leaf cells in Deschampsia antarctica Desv. (Poaceae). The leaf anatomy exhibits features typical of xerophytes. New ultrastructural features were found in mesophyll cells. Chloroplasts in mesophyll cells of D. antarctica leaves form small vesicles and pockets. The outer chloroplast membrane forms vesicles, and pockets are invaginations of both membranes. The invaginations contain small vesicles, mitochondria, or lipid droplets. The mitochondria or peroxisomes adhere very tightly to the chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号