首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Organophosphorus hydrolase (OPH) is a bacterial enzyme that has been shown to degrade a wide range of neurotoxic organophosphate nerve agents. However, the effectiveness of degradation varies dramatically, ranging from highly efficient with paraoxon to relatively slow with methyl parathion. Sequential cycles of DNA shuffling and screening were used to fine-tune and enhance the activity of OPH towards poorly degraded substrates. Because of the inaccessibility of these pesticides across the cell membrane, OPH variants were displayed on the surface of Escherichia coli using the truncated ice nucleation protein in order to isolate novel enzymes with truly improved substrate specificities. A solid-phase top agar method based on the detection of the yellow product p-nitrophenol was developed for the rapid prescreening of potential variants with improved hydrolysis of methyl parathion. Two rounds of DNA shuffling and screening were carried out, and several improved variants were isolated. One variant in particular, 22A11, hydrolyzes methyl parathion 25-fold faster than does the wild type. Because of the success that we achieved with directed evolution of OPH for improved hydrolysis of methyl parathion, we believe that we can easily extend this method in creating other OPH variants with improved activity against poorly degraded pesticides such as diazinon and chlorpyrifos and nerve agents such as sarin and soman.  相似文献   

2.
Thymidine is an important precursor in the production of various antiviral drugs, including azidothymidine for the treatment of AIDS. Since thymidine-containing nucleotides are synthesized only by the de novo pathway during DNA synthesis, it is not easy to produce a large amount of thymidine biologically. In order to develop a host strain to produce thymidine, thymidine phosphorylase, thymidine kinase, and uridine phosphorylase genes were deleted from an Escherichia coli BL21 strain to develop BLdtu. Since the genes coding for the enzymes related to the nucleotide salvage pathway were disrupted, BLdtu was unable to utilize thymidine or thymine, and thymidine degradation activity was completely abrogated. We additionally expressed T4 thymidylate synthase, T4 nucleotide diphosphate reductase, bacteriophage PBS2 TMP phosphohydrolase, E. coli dCTP deaminase, and E. coli uridine kinase in the BLdtu strain to develop a thymidine-producing strain (BLdtu24). BLdtu24 produced 649.3 mg liter−1 of thymidine in a 7-liter batch fermenter for 24 h, and neither thymine nor uridine was detected. However, the dUTP/dTTP ratio was increased in BLdtu24, which could lead to increased double-strand breakages and eventually to cell deaths during fermentation. To enhance thymidine production and to prevent cell deaths during fermentation, we disrupted a gene (encoding uracil-DNA N-glycosylase) involved in DNA excision repair to suppress the consumption of dTTP and developed BLdtug24. Compared with the thymidine production in BLdtu24, the thymidine production in BLdtug24 was increased by ∼1.2-fold (740.3 mg liter−1). Here, we show that a thymidine-producing strain with a relatively high yield can be developed using a metabolic engineering approach.Thymidine, which is composed of 2-deoxyribose and a thymine base, is a commercially useful precursor in the chemical synthesis of various antiviral drugs, including stavudine and zidovudine (azidothymidine), the active ingredient in a formulation for the treatment of AIDS (18, 19). Because thymidine is required only in DNA synthesis, intracellular thymidine levels are very low and are tightly controlled (40). For the production of precursors for antiviral drugs, thymidine is either biologically produced in a low yield by a few modified microorganisms or chemically synthesized through a very costly process (17, 33, 48, 49). Thus, there is a need for developing a more efficient strain for thymidine production on a large scale.In nature, there are two distinct pathways for dTTP synthesis, the salvage and de novo pathways. The salvage pathway enables the cells to utilize preformed nucleobases and nucleosides for nucleotide synthesis, using thymidine phosphorylase (deoA), uridine phosphorylase (udp), and thymidine kinase (tdk) (Fig. (Fig.1)1) (40).Open in a separate windowFIG. 1.Thymidine biosynthetic pathway. The steps engineered in this study are indicated by the bold arrows and lines. Components of the catabolism are as follows: pyrA, carbamoylphosphate synthase; pyrBI, aspartate-carbamoyl transferase; pyrC, dihydroorotase; pyrD, dihydroorotate oxidase; pyrE, orotate phosphoribosyltransferase; pyrF, OMP decarboxylase; pyrG, CTP synthetase; pyrH, UMP kinase; TMPase, TMP phosphohydrolase; nrd, nucleotide diphosphate reductase; tdΔI, T4 thymidylate synthase (intron deleted); thyA, thymidylate synthase; dcd, dCTP deaminase; udk, uridine kinase; deoA, thymidine phosphorylase; tdk, thymidine kinase; udp, uridine phosphorylase; dut, deoxyribonucleotide triphosphatase; ndk, nucleotide diphosphate kinase; tmk, TMP kinase; ung, uracil-DNA N-glycosylase; upp, uracil phosphoribosyl-transferase; cdd, cytidine deaminase; codA, cytosine deaminase.As the name indicates, the de novo pathway enables the cells to synthesize nucleobases de novo. The de novo pathway leading to thymidine biosynthesis starts with the condensation of aspartate and carbamoylphosphate, synthesized by carbamoylphosphate synthase (pyrA) (41). This condensation reaction is catalyzed by aspartate-carbamoyl transferase (pyrBI) to produce carbamoyl aspartate, which undergoes several reactions to produce UMP, the common precursor for the synthesis of the pyrimidine ribonucleoside and deoxynucleosides (Fig. (Fig.1)1) (39-41). For thymidine biosynthesis, UMP is converted to UDP in a reaction catalyzed by UMP kinase (pyrH), and UDP is converted to dUDP by ribonucleoside diphosphate reductase (nrdAB), which is regulated by NTP effectors through binding to specific allosteric sites on ribonucleotide diphosphate reductase (nrdA). Escherichia coli can synthesize dUMP from both dCDP and dUDP. The major pathway involves phosphorylation of dCDP to dCTP, deamination of dCTP to dUTP, and hydrolysis of dUTP to dUMP. Only 20 to 30% of the cellular dUMP is supplied by hydrolysis of dUTP (29, 37). The deamination of dCTP (dcd) is located at a branch point in the pyrimidine metabolic pathway. Because of its importance, dcd is regulated by a positive homotropic cooperativity toward dCTP and by a feedback inhibition by dTTP (29, 31, 40).Deoxyuridine triphosphatase (dUTPase [dut]) is a pyrophosphatase that contains zinc ions (42). dUTPase catalyzes the hydrolysis of dUTP to PPi and dUMP, a substrate for thymidylate synthase (thyA). Generally, the intracellular concentration of dUTP is <10 nmol per 1 g dry cell weight (DCW), and that of dTTP exceeds 500 nmol per 1 g DCW (5, 39, 52). The intracellular dUTP-to-dTTP ratio is increased in dut-deficient mutants, leading to an increased frequency of misincorporation of uracil for thymine in DNA (34). This incorporation is transient only because uracil is removed from DNA via a subsequent excision repair initiated by uracil-DNA N-glycosylase, which is encoded by ung (15, 50). Attempted repair of deoxyuridine residues from DNA without adequate dTTP available to complete the repair reaction can result in multiple single-strand breaks, eventually leading to double-strand breaks (15). Indeed, single- and double-strand breaks accumulate in thymidine-deprived cells (16). In such cells, the loss of uracil glycosylase activity should decrease DNA breaks arising from attempted repair and thereby decrease the toxicity of thymidine depletion.The synthesis of dTMP from dUMP involves the transfer of a methylene group and two reducing equivalents from 5,10-methylenetetrahydrofolate to dUMP, catalyzed by the dimeric enzyme thymidylate synthase (thyA). Even though ThyA catalyzes the committed step for de novo synthesis of dTTP, neither the activity of the enzyme nor the expression of the thyA gene seems to be regulated (2, 3).The general strategy used for the development of a thymidine-overproducing strain involves the alleviation of control mechanisms in key pathways. Several different microorganisms have been modified for thymidine production, including E. coli, Brevibacterium helvolum, and Corynebacterium ammoniagenes, by classical mutagenesis methods, and they were selected based on their capacity to grow on toxic thymidine analogues (30, 33, 48, 49). In these studies, feedback inhibition-resistant variants of thymidine biosynthetic enzymes were obtained by random mutation, and high-producing variants were selected. The most optimum B. helvolum strain obtained by this procedure produced 500 mg liter−1 of thymidine by batch fermentation (33). However, engineered B. helvolum and E. coli mutants also produced thymine, deoxyuridine, and uracil, which are unfavorable for thymidine production since it increases costs during the purification process (30, 33, 48, 49). Furthermore, these thymidine-producing strains have residual thymidine degradation activities, resulting in decreased productivities.Thus, we tried to develop a more efficient thymidine-producing strain by enhancing the de novo pathway leading to thymidine biosynthesis and by disrupting the thymidine salvage pathway. The strategy reported here is based on disrupting genes which encode enzymes involved in thymidine degradation and on expressing foreign genes in the de novo pathway leading to thymidine biosynthesis which encode enzymes that are expected to be less sensitive to feedback inhibition by thymidine than the original enzymes in the host strain. The T4 ribonucleotide diphosphate reductase (nrdAB) operon, T4 thioredoxin (nrdC), T4 thymidylate synthase (td), and PBS2 TMP phosphohydrolase (TMPase) were expressed in an E. coli mutant strain which was modified to block the salvage pathway (deoA, tdk, and udp). In order to increase the influx of dUMP, E. coli dCTP deaminase (dcd), deoxyuridine triphosphatase (dut), and uridine kinase (udk) were expressed with phage-derived genes. We found that the dUTP/dTTP ratio was increased by increasing the level of dUTP in our mutant, leading to the frequent misincorporation of dUTP in DNA. In order to prevent frequent temporary DNA breaks and gaps by excision repair caused by the increased intracellular dUTP/dTTP ratio, uracil-DNA N-glycosylase (ung) was additionally disrupted.  相似文献   

3.
The Rhodotorula glutinis epoxide hydrolase, Eph1, was produced in the heterologous host Escherichia coli BL21(DE3) in order to develop a highly effective epoxide hydrolysis system. A 138-fold increase in Eph1 activity was found in cell extracts of the recombinant E. coli when compared to cell extracts of Rhodotorula glutinis, despite the formation of Eph1 inclusion bodies. Optimization of cultivation conditions and co-expression of molecular chaperones resulted in a further increase in activity and a reduction of the inclusion bodies formation, respectively. Compared to Rhodotorula glutinis cells and cell extracts, a total increase in Eph1 activity of over 200 times was found for both Escherichia coli cells and crude enzyme preparations of these cells. The improved conditions for recombinant Eph1 production were used to demonstrate the Eph1-catalysed kinetic resolution of a new Eph1 substrate, 1-oxaspiro[2.5]octane-2-carbonitrile.  相似文献   

4.
The Rhodotorula glutinis epoxide hydrolase, Eph1, was produced in the heterologous host Escherichia coli BL21(DE3) in order to develop a highly effective epoxide hydrolysis system. A 138-fold increase in Eph1 activity was found in cell extracts of the recombinant E. coli when compared to cell extracts of Rhodotorula glutinis, despite the formation of Eph1 inclusion bodies. Optimization of cultivation conditions and co-expression of molecular chaperones resulted in a further increase in activity and a reduction of the inclusion bodies formation, respectively. Compared to Rhodotorula glutinis cells and cell extracts, a total increase in Eph1 activity of over 200 times was found for both Escherichia coli cells and crude enzyme preparations of these cells. The improved conditions for recombinant Eph1 production were used to demonstrate the Eph1-catalysed kinetic resolution of a new Eph1 substrate, 1-oxaspiro[2.5]octane-2-carbonitrile.  相似文献   

5.
An Escherichia coli strain that accumulated Ni(II) was constructed by introducing the nixA gene (coding for a nickel transport system) from Helicobacter pylori into JM109 cells that expressed a glutathione S-transferase–pea metallothionein fusion protein. The resulting strain accumulated 15 μmol of Ni(II) per g (dry weight) from a 10 μM Ni(II) solution, four times the level taken up by JM109 cells. Ni(II) accumulation did not require an energy source, was inhibited by only 50% by 0.1 M NaCl, and occurred over the pH range from 3 to 9.  相似文献   

6.
基因工程菌大肠杆菌JM109富集废水中镍离子的研究   总被引:4,自引:2,他引:4  
利用通过基因工程技术所构建的在细胞内同时表达出高特异性镍转运蛋白和金属硫蛋白的基因工程菌富集水体中的镍离子。菌体细胞对Ni2+的富集速率很快,富集过程满足Langmuir等温线模型。与原始宿主菌相比,经基因改造的基因工程菌不仅最大镍富集容量增加了5倍多,而且对pH值、离子强度的变化及其它共存重金属离子的影响都呈现出更强的适应性。相比而言,Na+、Ca2+、Cd2+、Pb2+的影响较小,但Mg2+、Hg2+和Cu2+所引起的负面效应较大。进一步的实验表明基因工程菌对Ni2+的富集行为不需要外加营养物质。  相似文献   

7.
We report pyruvate formation in Escherichia coli strain ALS929 containing mutations in the aceEF, pfl, poxB, pps, and ldhA genes which encode, respectively, the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, phosphoenolpyruvate synthase, and lactate dehydrogenase. The glycolytic rate and pyruvate productivity were compared using glucose-, acetate-, nitrogen-, or phosphorus-limited chemostats at a growth rate of 0.15 h−1. Of these four nutrient limitation conditions, growth under acetate limitation resulted in the highest glycolytic flux (1.60 g/g · h), pyruvate formation rate (1.11 g/g · h), and pyruvate yield (0.70 g/g). Additional mutations in atpFH and arcA (strain ALS1059) further elevated the steady-state glycolytic flux to 2.38 g/g · h in an acetate-limited chemostat, with heterologous NADH oxidase expression causing only modest additional improvement. A fed-batch process with strain ALS1059 using defined medium with 5 mM betaine as osmoprotectant and an exponential feeding rate of 0.15 h−1 achieved 90 g/liter pyruvate, with an overall productivity of 2.1 g/liter · h and yield of 0.68 g/g.  相似文献   

8.
Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB).  相似文献   

9.
Escherichia coli was transformed with a recombinant plasmid (pEGFP) containing the genes for ampicillin resistance and Green Fluorescent Protein (GFP). Escherichia coli expressing GFP (E. coli/GFP+) was then fed to workers of the termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). The transformed bacteria in the termite guts were detected by growing the gut flora under selective conditions and then checking the cultures for fluorescence. Recombinant plasmids in the termite gut were detected by plasmid extraction with subsequent restriction enzyme digest. The presence of the GFP gene in the gut of termites fed with E. coli/GFP+ was verified by PCR amplification. Transformed E. coli were ingested rapidly when workers fed on filter paper inoculated with E. coli/GFP+. After 1 day, 42% of termite guts harbored E. coli/GFP+. Transfer of E. coli/GFP+ from donor termites (fed with E. coli/GFP+) to recipients (fed with moist filter paper) occurred within 1 day. However, without continuous inoculation, termites lost the transformed bacteria within 1 week.  相似文献   

10.
The photoquenching of the bioluminescence of the genetically engineered Escherichia coli TG1 (pXen7) strain was studied in the presence of the photosensitizer photodithazine, a glucosamine salt of chlorin e 6. The photosensitized quenching of the bioluminescence was found to correlate with the colony-forming ability of the strain. The data obtained are discussed from the standpoint of using biosensor luminescent bacterial systems for the assessment of the efficiency of photosensitizers in antimicrobial photochemotherapy.  相似文献   

11.
The recB268::Tn10 mutation was introduced into the HfrH strain of Escherichia coli. Compared with recB F and recB F+ cells, the viability of this mutant strain was much lower. Compared with wild-type HfrH, the recB derivative donated much shorter fragments of its chromosome to the recipient. It is suggested that the recB gene product (i.e., RecBCD enzyme) participates in Hfr transfer.  相似文献   

12.
Organisms that overproduced l-cysteine and l-cystine from glucose were constructed by using Escherichia coli K-12 strains. cysE genes coding for altered serine acetyltransferase, which was genetically desensitized to feedback inhibition by l-cysteine, were constructed by replacing the methionine residue at position 256 of the serine acetyltransferase protein with 19 other amino acid residues or the termination codon to truncate the carboxy terminus from amino acid residues 256 to 273 through site-directed mutagenesis by using PCR. A cysteine auxotroph, strain JM39, was transformed with plasmids having these altered cysE genes. The serine acetyltransferase activities of most of the transformants, which were selected based on restored cysteine requirements and ampicillin resistance, were less sensitive than the serine acetyltransferase activity of the wild type to feedback inhibition by l-cysteine. At the same time, these transformants produced approximately 200 mg of l-cysteine plus l-cystine per liter, whereas these amino acids were not detected in the recombinant strain carrying the wild-type serine acetyltransferase gene. However, the production of l-cysteine and l-cystine by the transformants was very unstable, presumably due to a cysteine-degrading enzyme of the host, such as cysteine desulfhydrase. Therefore, mutants that did not utilize cysteine were derived from host strain JM39 by mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine. When a newly derived host was transformed with plasmids having the altered cysE genes, we found that the production of l-cysteine plus l-cystine was markedly increased compared to production in JM39.l-Cysteine, one of the important amino acids used in the pharmaceutical, food, and cosmetics industries, has been obtained by extracting it from acid hydrolysates of the keratinous proteins in human hair and feathers. The first successful microbial process used for industrial production of l-cysteine involved the asymmetric conversion of dl-2-aminothiazoline-4-carboxylic acid, an intermediate compound in the chemical synthesis of dl-cysteine, to l-cysteine by enzymes from a newly isolated bacterium, Pseudomonas thiazoliniphilum (11). Yamada and Kumagai (13) also described enzymatic synthesis of l-cysteine from beta-chloroalanine and sodium sulfide in which Enterobacter cloacae cysteine desulfhydrase (CD) was used. However, high level production of l-cysteine from glucose with microorganisms has not been studied.Biosynthesis of l-cysteine in wild-type strains of Escherichia coli and Salmonella typhimurium is regulated through feedback inhibition by l-cysteine of serine acetyltransferase (SAT), a key enzyme in l-cysteine biosynthesis, and repression of expression of a series of enzymes used for sulfide reduction from sulfate by l-cysteine (4), as shown in Fig. Fig.1.1. Denk and Böck reported that a small amount of l-cysteine was excreted by a revertant of a cysteine auxotroph of E. coli. In this revertant, SAT encoded by the cysE gene was desensitized to feedback inhibition by l-cysteine, and the methionine residue at position 256 in SAT was replaced by isoleucine (2). These results indicate that it may be possible to construct organisms that produce high levels of l-cysteine by amplifying an altered cysE gene. Although the residue at position 256 is supposedly part of the allosteric site for cysteine binding, no attention has been given to the effect of an amino acid substitution at position 256 in SAT on feedback inhibition by l-cysteine and production of l-cysteine. It is also not known whether isoleucine is the best residue for desensitization to feedback inhibition. Open in a separate windowFIG. 1Biosynthesis and regulation of l-cysteine in E. coli. Abbreviations: APS, adenosine 5′-phosphosulfate; PAPS, phosphoadenosine 5′-phosphosulfate; Acetyl CoA, acetyl coenzyme A. The open arrow indicates feedback inhibition, and the dotted arrows indicate repression.On the other hand, l-cysteine appears to be degraded by E. coli cells. Therefore, in order to obtain l-cysteine producers, a host strain with a lower level of l-cysteine degradation activity must be isolated. In this paper we describe high-level production of l-cysteine plus l-cystine from glucose by E. coli resulting from construction of altered cysE genes. The methionine residue at position 256 in SAT was replaced by other amino acids or the termination codon in order to truncate the carboxy terminus from amino acid residues 256 to 273 by site-directed mutagenesis. A newly derived cysteine-nondegrading E. coli strain with plasmids having the altered cysE genes was used to investigate production of l-cysteine plus l-cystine.  相似文献   

13.
The fermentative metabolism of Escherichia coli was reengineered to efficiently convert glycerol to succinate under anaerobic conditions without the use of foreign genes. Formate and ethanol were the dominant fermentation products from glycerol in wild-type Escherichia coli ATCC 8739, followed by succinate and acetate. Inactivation of pyruvate formate-lyase (pflB) in the wild-type strain eliminated the production of formate and ethanol and reduced the production of acetate. However, this deletion slowed growth and decreased cell yields due to either insufficient energy production or insufficient levels of electron acceptors. Reversing the direction of the gluconeogenic phosphoenolpyruvate carboxykinase reaction offered an approach to solve both problems, conserving energy as an additional ATP and increasing the pool of electron acceptors (fumarate and malate). Recruiting this enzyme through a promoter mutation (pck*) to increase expression also increased the rate of growth, cell yield, and succinate production. Presumably, the high NADH/NAD+ ratio served to establish the direction of carbon flow. Additional mutations were also beneficial. Glycerol dehydrogenase and the phosphotransferase-dependent dihydroxyacetone kinase are regarded as the primary route for glycerol metabolism under anaerobic conditions. However, this is not true for succinate production by engineered strains. Deletion of the ptsI gene or any other gene essential for the phosphotranferase system was found to increase succinate yield. Deletion of pflB in this background provided a further increase in the succinate yield. Together, these three core mutations (pck*, ptsI, and pflB) effectively redirected carbon flow from glycerol to succinate at 80% of the maximum theoretical yield during anaerobic fermentation in mineral salts medium.Renewable bioenergy offers the potential to solve many environmental problems associated with petroleum-based fuels and chemicals. Biodiesel is produced by reacting vegetable oil or animal fat with alcohol (methanol or ethanol) and used as a transportation fuel in many countries (33). Glycerol is formed as an abundant waste product with limited commercial uses. As the worldwide production of biodiesel continues to increase, the development of effective uses for glycerol may prove essential for the economics and competitiveness of the biodiesel industry. The value of glycerol waste from biodiesel is similar to that of sugars currently used to produce fuel ethanol. Bioconversion of glycerol to higher-value products that replace petroleum, such as polymers, surfactants, solvents, and chemical intermediates, represents an opportunity to decrease waste and improve the economics of the biodiesel industry (5).Many previous investigations have focused on the fermentative production of 1,3-propanediol (1,3-PD) from glycerol (2, 26, 35). Microorganisms including Klebsiella (14), Citrobacter (6), Enterobacter (1), Lactobacillus (29), and Clostridium (10, 28) have the native ability to ferment glycerol into this product. Dupont and Genencor have commercialized a 1,3-PD-based polyester, a condensation product of 1,3-PD and terephthalic acid using glucose as the feedstock. Potential demand for this polymer is estimated to be 1 billion to 2 billion pounds per year over the next 10 years (26). Other investigations of glycerol fermentation have described the production of hydrogen and ethanol (15), polyhydroxyalkanoates (PHAs) (20, 27), glyceric acid (13), and small amounts of succinate (21).Succinic acid is currently used as a specialty chemical in the agricultural, food, and pharmaceutical industries (24, 34). It has also been identified by the U.S. Department of Energy as one of the top 12 building block chemicals (31) because it can be converted into a wide variety of products, including green solvents, pharmaceutical products, and biodegradable plastics (24, 34). Succinate is primarily produced from petroleum-derived maleic anhydride. Recent increases in the petroleum price have generated considerable interest in the fermentative production of succinate from sugars using either natural succinate-producing rumen bacteria or metabolically engineered Escherichia coli strains (24, 36, 38). Succinate can also be produced from glycerol by rumen bacteria, such as Anaerobiospirillum succiniciproducens (21). However, these strains require complex nutrients that increase costs of production, purification, and waste treatment.E. coli has been previously engineered for the commercial production of 1,3-PD from sugars by Dupont and Genecor (26). It is an excellent organism for biotechnology applications but was long thought incapable of anaerobic growth on glycerol (23). Recent studies demonstrated that E. coli can ferment glycerol anaerobically (8, 11, 25, 33), and a new model was proposed for glycerol fermentation (11). In this model, glycerol is metabolized through the glycerol dehydrogenase (encoded by gldA) and dihydroxyacetone kinase (encoded by dhaKLM) pathway with the production of ethanol and acetate as primary fermentation products (11). Small amounts of succinate and 1,2-propanediol were also produced. Native genes encoding glycerol dehydrogenase and dihydroxyacetone kinase were expressed from a plasmid to increase the rates of glycerol metabolism and ethanol production (32). Succinate production has also been increased by expressing Clostridium freundii dihydroxyacetone kinase (encoded by dhaKL) (11). However, neither of these enhanced pathways would appear suitable for efficient succinate production due to the absence of net ATP production and the requirement for phosphoenolpyruvate as a phosphoryl donor for dihydroxyacetone, limiting the carboxylation of this intermediate (Fig. (Fig.11).Open in a separate windowFIG. 1.Glycerol uptake and fermentation by E. coli. (A) Native E. coli pathways. Bold black arrows represent dominant fermentation reactions prior to engineering; thin black arrows represent minor fermentation reactions. GlpK and GlpD are thought to function primarily during aerobic metabolism. Pathways are based on current reviews in EcoSal (3, 4, 22), data available in Ecocyc (19), and primary literature (11, 12, 18, 25, 30). (B) Engineered pathway for the fermentative metabolism of glycerol to succinate. Bold black arrows represent the engineered reactions for glycerol fermentation to succinate as the dominant product; thin black arrows represent minor fermentation reactions in the engineered strain. Dashed arrows represent reactions that are not functional due to deletions in ptsI and pflB. Deleted genes are marked with a black X. In native E. coli strains, phosphoenolpyruvate carboxykinase functions during gluconeogenesis to produce phosphoenolpyruvate. Mutational activation of the pck gene (denoted pck*) allows this enzyme to function in the reverse direction and to serve as the dominant carboxylation step, conserving energy as ATP. With this engineered pathway, competing needs for PEP have been eliminated and net ATP production has been increased. PEP is boxed to indicate a common pool. Abbreviations: DHA, dihydroxyacetone; DHAP, dihydroxyacetone 3-phosphate; PEP, phosphoenolpyruvate; G3P, glycerol 3-phosphate; GA3P, glyceraldehydes 3-phosphate.Previous studies in our laboratory (16, 17, 36, 38) have engineered E. coli ATCC 8739 for the efficient production of succinate from glucose by recruiting genes from alternative pathways (36, 38). In this paper, we report the use of a similar approach to engineer strains for succinate production from glycerol in mineral salts medium.  相似文献   

14.
Escherichia coli-expressed a hybrid xylanase, Btx, encoded by a designed hybrid xylanase gene Btx was purified. The molecular mass of the enzyme was estimated to be 22 kDa. The K(m) and k(cat) values for Btx were 1.9 mg/ml and 140 s(-1), respectively. It hydrolyzed xylan principally to xylobiose and xylotriose, and was functionally similar to family 11 xylanases. As some differences were found in the hydrolytic products between birchwood xylan and wheat bran insoluble xylan, the xylan binding domains in xylanase Btx must have different effects on soluble and insoluble xylan.  相似文献   

15.
Transformation of Nicotiana tabacum leaf explants was attempted with Escherichia coli as a DNA donor either alone or in combination with Agrobacterium tumefaciens. We constructed E. coli donor strains harboring either the promiscuous IncP-type or IncN-type conjugal transfer system and second plasmids containing the respective origins of transfer and plant-selectable markers. Neither of these conjugation systems was able to stably transform plant cells at detectable levels, even when VirE2 was expressed in the donor cells. However, when an E. coli strain expressing the IncN-type conjugation system was coinoculated with a disarmed A. tumefaciens strain, plant tumors arose at high frequencies. This was caused by a two-step process in which the IncN transfer system mobilized the entire shuttle plasmid from E. coli to the disarmed A. tumefaciens strain, which in turn processed the T-DNA and transferred it to recipient plant cells. The mobilizable plasmid does not require a broad-host-range replication origin for this process to occur, thus reducing its size and genetic complexity. Tumorigenesis efficiency was further enhanced by incubation of the bacterial strains on medium optimized for bacterial conjugation prior to inoculation of leaf explants. These techniques circumvent the need to construct A. tumefaciens strains containing binary vectors and could simplify the creation of transgenic plants.  相似文献   

16.
The goal of this work was to construct Escherichia coli strains capable of enhanced arginine production. The arginine biosynthetic capacity of previously engineered E. coli strains with a derepressed arginine regulon was limited by the availability of endogenous ornithine (M. Tuchman, B. S. Rajagopal, M. T. McCann, and M. H. Malamy, Appl. Environ. Microbiol. 63:33–38, 1997). Ornithine biosynthesis is limited due to feedback inhibition by arginine of N-acetylglutamate synthetase (NAGS), the product of the argA gene and the first enzyme in the pathway of arginine biosynthesis in E. coli. To circumvent this inhibition, the argA genes from E. coli mutants with feedback-resistant (fbr) NAGS were cloned into plasmids that contain “arg boxes,” which titrate the ArgR repressor protein, with or without the E. coli carAB genes encoding carbamyl phosphate synthetase and the argI gene for ornithine transcarbamylase. The free arginine production rates of “arg-derepressed” E. coli cells overexpressing plasmid-encoded carAB, argI, and fbr argA genes were 3- to 15-fold higher than that of an equivalent system overexpressing feedback-sensitive wild-type (wt) argA. The expression system with fbr argA produced 7- to 35-fold more arginine than a system overexpressing carAB and argI genes on a plasmid in a strain with a wt argA gene on the chromosome. The arginine biosynthetic capacity of arg-derepressed DH5α strains with plasmids containing only the fbr argA gene was similar to that of cells with plasmids also containing the carAB and argI genes. Plasmids containing wt or fbr argA were stably maintained under normal growth conditions for at least 18 generations. DNA sequencing identified different point mutations in each of the fbr argA mutants, specifically H15Y, Y19C, S54N, R58H, G287S, and Q432R.  相似文献   

17.
Escherichia coli was metabolically engineered by expanding the shikimate pathway to generate strains capable of producing six kinds of aromatic compounds, phenyllactic acid, 4-hydroxyphenyllactic acid, phenylacetic acid, 4-hydroxyphenylacetic acid, 2-phenylethanol, and 2-(4-hydroxyphenyl)ethanol, which are used in several fields of industries including pharmaceutical, agrochemical, antibiotic, flavor industries, etc. To generate strains that produce phenyllactic acid and 4-hydroxyphenyllactic acid, the lactate dehydrogenase gene (ldhA) from Cupriavidus necator was introduced into the chromosomes of phenylalanine and tyrosine overproducers, respectively. Both the phenylpyruvate decarboxylase gene (ipdC) from Azospirillum brasilense and the phenylacetaldehyde dehydrogenase gene (feaB) from E. coli were introduced into the chromosomes of phenylalanine and tyrosine overproducers to generate phenylacetic acid and 4-hydroxyphenylacetic acid producers, respectively, whereas ipdC and the alcohol dehydrogenase gene (adhC) from Lactobacillus brevis were introduced to generate 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol producers, respectively. Expression of the respective introduced genes was controlled by the T7 promoter. While generating the 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol producers, we found that produced phenylacetaldehyde and 4-hydroxyphenylacetaldehyde were automatically reduced to 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol by endogenous aldehyde reductases in E. coli encoded by the yqhD, yjgB, and yahK genes. Cointroduction and cooverexpression of each gene with ipdC in the phenylalanine and tyrosine overproducers enhanced the production of 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol from glucose. Introduction of the yahK gene yielded the most efficient production of both aromatic alcohols. During the production of 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, phenylacetic acid, and 4-hydroxyphenylacetic acid, accumulation of some by-products were observed. Deletion of feaB, pheA, and/or tyrA genes from the chromosomes of the constructed strains resulted in increased desired aromatic compounds with decreased by-products. Finally, each of the six constructed strains was able to successfully produce a different aromatic compound as a major product. We show here that six aromatic compounds are able to be produced from renewable resources without supplementing with expensive precursors.  相似文献   

18.
19.
Adherence of human enterotoxigenic and bovine mastitis Escherichia coli to rat embryonic fibroblasts was studied. Adhesion of E. coli strains B34289c (human) and 1407 (bovine) was rapid and reached maximum after 30–40 min. Strain 1410 (bovine), which binds fibronectin but not its 29K amino-terminal fragment, did not adhere to the fibroblasts. Strain B34289c grown at 25 C or below and at 40 C or above lost its binding and adhesive properties simultaneously. Maximum binding and adhesion for this strain was achieved when it was grown at 33 C. Strains grown at this temperature adsorbed to fibronectin-, 29K fragment-, and Octyl Sepharose, with the exception of bovine strain 1410, which did not adsorb to 29K-Sepharose as expected. None of the strains adsorbed to cross-linked Sepharose 4B. 29K-IgG and Fab fragments thereof specifically blocked both binding (max 55%) and adhesion (>95%). Sonicated and trypsin-treated bacteria were no longer able to bind or adhere. The supernatant of sonicated bacteria inhibited both binding and adhesion. Penicillin G at 0.5 μg/ml (1/5 minimal inhibitory concentration: MIC) and tetracycline at 0.2 μg/ml (1/5 MIC), when included in the growth medium, suppressed the cell surface components responsible for fibronectin binding and fibroblast adhesion. The presence of fibronectin was demonstrated in the fibroblast extracellular matrix by immunofluorescens with 29K-IgG antibodies.  相似文献   

20.
用生物工程技术将萤火虫荧光素酶基因转移到大肠杆菌,在大肠杆菌中合成荧光素酶。这种工程菌已可通过发酵大量培养,并从菌体分离得到接近纯化的荧光素酶。这种酶的分子量是103kD;巯基试剂5,5’-巯基-2(2-硝基苯甲酸)“DTNB”能抑制酶的活性;对于底物荧光素的K_m为1.2μmol/L;酶反应最适pH为7.77;酶催化的生物发光峰在560nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号