首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic responses to increasing temperatures play important roles in regulating heat tolerance. The objectives of this study were to determine photosynthetic acclimation to increasing temperatures for creeping bentgrass (Agrostis stolonifera L.) and to examine changes in major photosynthetic components (photosynthetic pigments, photochemical efficiency, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activity, and activation state of rubisco) involved in heat responses of photosynthesis. 'Penncross' was exposed to 20, 25, 30, and 35 degrees C for 7d at each temperature (acclimated) before being exposed to 40 degrees C for 28d or directly exposed to 40 degrees C for 28d from 20 degrees C (non-acclimated) in growth chambers. Leaf net photosynthetic rate (Pn), photochemical efficiency, rubisco activity, rubisco activation state, chlorophyll content, and carotenoid content decreased when grasses were subjected to severe heat stress at 40 degrees C for 28d. The declines in rubisco activity and activation state were most dramatic among different photosynthetic components examined in this study. Heat-acclimated plants were able to maintain significantly higher Pn, the content of chlorophyll and carotenoid, and the level of rubisco activity and activation state during subsequent exposure to severe heat stress, compared to non-acclimated plants. These results suggested that photosynthetic acclimation to increasing temperatures contributed to creeping bentgrass tolerance to severe heat stress, which was associated with the maintenance of both higher light-harvesting capacity and carbon fixation activity during heat stress.  相似文献   

2.
Isolation and analysis of thermotolerant mutants of wheat   总被引:5,自引:0,他引:5  
Thermotolerant mutants of wheat cv. Guardian were isolated by selecting survivors from 5-d-old seedlings of M2 populations exposed to 47 degrees C for 90 min. Progeny testing, using triphenyl tetrazolium chloride reduction as a measure of tissue viability, following heat stress treatment for 120 min at each of three temperatures (32, 38 and 50 degrees C), confirmed the thermotolerant nature of seedlings of 13 mutants. Mutants were isolated at frequencies of 0.1% and 0.2% following the use of sodium azide and ethyl methanesulphonate, respectively. The relative thermotolerance of ten of the mutants and 'Guardian' was then tested by exposing plants to heat stresses of 38 degrees C for 6 h in every 24 h for five successive days at one of four growth stages between seedling and anthesis. Pmax (light-saturated net photosynthetic rate) and chlorophyll content were compared in stressed and unstressed plants. The Pmax of 'Guardian' was depressed by at least 23% by heat stress at each stage; this inhibition was least at ear emergence and greatest at anthesis, the latter being associated with reduced sink size as a result of lowered seed set. The stress-induced inhibition of Pmax in 'Guardian' plants at anthesis had not recovered 3 d after removal of the stress. Mutant lines exhibited different developmental profiles of Pmax thermostability. Mutant tht (thermotolerant) 10, for example, exhibited partial thermostability at each growth stage tested while the Pmax of mutant tht 2 was completely unaffected by heat stress at second node and ear emergence, but was as inhibited as that of 'Guardian' at anthesis; heat stress applied at anthesis in tht 2, but not tht 10, was associated with reduced seed set. Generally, the inhibitory effect of heat stress on Pmax in the mutants was reflected in declines in chlorophyll content. The ten mutants were grouped into nine categories, on the basis of thermotolerance characteristics.  相似文献   

3.
High temperature stress reduces grain growth in wheat (Triticum aestivum L.) by altering source activity and sink capacity. The impact of stress on source and sink interactions in two wheat cultivars of differing source thermotolerance was monitored by analysis of chlorophyll fluorescence transients, Fv (variable fluorescence) and PSM (peak, stationary, maximum), of attached flag leaves on intact and decapitated tillers grown at optimum (20°C) and stress (35°C) temperatures after anthesis. The thermotolerant cultivar Waverly had reduced Fv and PS quenching and a large increase of SM during heat stress. The less thermotolerant cultivar, Len, exhibited increased Fv and PS quenching and a small increase of SM. Fluorescence induction was similar in intact and decapitated tillers of Len, indicating diminished sinksource interaction during heat stress. The present results and previous observations of photosynthetic activities indicate that cyclic electron transport and photophosphorylation in flag leaves of the thermotolerant cultivar were stimulated by sink demand (increased SM in intact plants). Reduced grain development in the thermolabile cultivar resulted from limited capacity to support cyclic electron transport and photophosphorylation (slight increase in SM of intact plants and large reduction of Cytochrome f/b6-mediated electron transport capacity). It was concluded that heat stress injures the photosynthetic apparatus during reproductive growth of wheat and that diminished source activity and sink capacity may be equally important in reducing productivity.  相似文献   

4.
Potted tomato plants (Lycopersicon esculentum Mill. cv. Amalia) were submitted to three different treatments: control (C) plants were maintained at day/night temperature of 25/18 °C; preconditioned plants (PS) were submitted to two consecutive periods of 4 d each, of 30/23 and 35/28 °C before being exposed to a heat stress (40/33 °C lasting 4 d) and non-preconditioned (S) plants were maintained in the same conditions as the C plants and exposed to the heat stress. The inhibition of plant growth was observed only in PS plants. Heat stress decreased chlorophyll content, net photosynthetic rate and stomatal conductance in both PS and S plants. However, PS plants showed good osmotic adjustment, which enabled them to maintain leaf pressure potential higher than in S plants. Furthermore, at the end of the recovery period PS plants had higher pressure potential and stomatal conductance than in S plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The functional activities of the photosynthetic apparatus of two grapevine genotypes (Vitis vinifera L. cvs. Müller-Thurgau and Lagrein) were investigated after low night temperature (LNT) treatment for 7 d. LNT caused important reductions of the net photosynthetic rate (PN) of Lagrein plants due to non-stomatal components. These non-stomatal effects were not evident in Müller-Thurgau. At LNT treatment, the contents of photosynthetic pigments decreased significantly in Lagrein, but in Müller-Thurgau the contents of chlorophyll (Chl) remained unchanged whereas the contents of carotenoids (Car) increased. An increase and decrease of Chl a/b was shown in Mü ller-Thurgau and Lagrein stressed plants, respectively. RuBPC activity and content of soluble proteins were also significantly reduced in Lagrein. Under LNT treatment, photosystem (PS) 2 was markedly more inhibited in Lagrein than in Müller-Thurgau. The decrease in PS 2 activity in Lagrein was mostly due to the marked loss of D1, 47, 43, 33, 28-25, 23 and 17 kDa proteins determined by immunological and SDS-PAGE studies.  相似文献   

6.
Aerial parts of lettuce plants were grown under natural tropical fluctuating ambient temperatures, but with their roots exposed to two different root-zone temperatures (RZTs): a constant 20 degrees C-RZT and a fluctuating ambient (A-) RZT from 23-40 degrees C. Plants grown at A-RZT showed lower photosynthetic CO2 assimilation (A), stomatal conductance (gs), midday leaf relative water content (RWC), and chlorophyll fluorescence ratio Fv/Fm than 20 degrees C-RZT plants on both sunny and cloudy days. Substantial midday depression of A and g(s) occurred on both sunny and cloudy days in both RZT treatments, although Fv/Fm did not vary diurnally on cloudy days. Reciprocal temperature transfer experiments investigated the occurrence and possible causes of stomatal and non-stomatal limitations of photosynthesis. For both temperature transfers, light-saturated stomatal conductance (gs sat) and photosynthetic CO2 assimilation (A(sat)) were highly correlated with each other and with midday RWC, suggesting that A was limited by water stress-mediated stomatal closure. However, prolonged growth at A-RZT reduced light- and CO2-saturated photosynthetic O2 evolution (Pmax), indicating non-stomatal limitation of photosynthesis. Tight temporal coupling of leaf nitrogen content and P(max) during both temperature transfers suggested that decreased nutrient status caused this non-stomatal limitation of photosynthesis.  相似文献   

7.
采用人为控制土壤含水量的方法对欧李进行轻度和重度干旱的处理,测定叶片的气体交换和叶绿素荧光参数的日变化。结果表明,干旱胁迫下欧李叶片净光合速率、蒸腾速率、水分利用效率、气孔导度、PSII最大光化学效率、光化学量子效率显著下降,但胞间CO2浓度、非光化学猝灭系数以及叶黄素循脱环氧化状态(Z+0.5A)/(V+A+Z)和Z含量升高。两干旱处理植株的影响程度存在差异。这表明在长时间干旱条件下,欧李叶片光合作用的降低受到气孔与非气孔因素的双重影响,叶黄素循环的启动增加了胁迫条件下的热耗散能力以保护光合机构免受干旱胁迫的进一步伤害。  相似文献   

8.
Chinese hamster ovary (CHO) cells became thermotolerant after treatment with either heat for 10 min at 45.5 degrees C or incubation in 100 microM sodium arsenite for 1 h at 37 degrees C. Thermotolerance was tested using heat treatment at 45 degrees C or 43 degrees C administered 6-12 h after the inducing agent. At 45 degrees C thermotolerance ratios at 10(-2) isosurvival levels were 4.2 and 3.8 for heat and sodium arsenite, respectively. Recovery from heat damage as measured by resumption of protein synthesis was more rapid in heat-induced thermotolerant cells than in either sodium arsenite-induced thermotolerant cells or nonthermotolerant cells. Differences in inhibition of protein synthesis between heat-induced thermotolerant cells and sodium arsenite-induced thermotolerant cells were also evident after test heating at 43 degrees C for 5 h. At this temperature heat-induced thermotolerant cells were protected immediately from inhibition of protein synthesis, whereas sodium arsenite-induced thermotolerant cells, while initially suppressed, gradually recovered within 24 h. Furthermore, adding cycloheximide during the thermotolerance development period greatly inhibited sodium arsenite-induced thermotolerance (SF less than 10(-6] but not heat-induced thermotolerance (SF = 1.7 X 10(-1] when tested with 43 degrees C for 5 h. Our results suggest that both the development of thermotolerance and the thermotolerant state for the two agents, while similar in terms of survival, differed significantly for several parameters associated with protein synthesis.  相似文献   

9.
高温对仁用杏光合特性及PSⅡ光化学活性的影响   总被引:1,自引:0,他引:1  
Du GD  Lü DG  Zhao L  Wang SS  Cai Q 《应用生态学报》2011,22(3):701-706
为探讨高温胁迫下仁用杏叶片的光合适应机制,以科尔沁沙地生长的4年生'超仁'仁用杏为试材,设置环境温度为25℃、30℃、40℃和50℃处理,利用气体交换技术和快速叶绿素荧光诱导动力学曲线分析技术(JIP-test),研究了仁用杏叶片光合特性和PSⅡ光化学活性.结果表明:在一定温度范围内,随着温度升高,仁用杏通过提高光合色素含量和比例来维持光能的吸收、传递和转换能力,从而保证光合机构正常运转;当高温超过叶片自身生理调节限度后,叶绿素发生分解、净光合速率(Pn)明显下降、胞间CO2浓度(Ci)上升,说明光合作用的下降是由叶肉因素造成的.温度40℃导致单位面积有活性反应中心数量(RC/CSo)显著下降;而50℃高温下荧光诱导曲线中K点(Wk)和J点(Vj)明显增加,高温对仁用杏叶片放氧复合体(OEC)、受体侧和PsⅡ反应中心造成了伤害.此外,50℃高温还导致初始荧光(Fo)显著升高,为对照的2.26倍,PSⅡ最大光化学效率(Fv/Fm)和光化学性能指数(PI/ABS)分别下降为对照的37.9%和10.3%.高温损害了PSⅡ供体侧和受体侧的功能,造成光合效率下降,这是高温胁迫对仁用杏叶片光合机构伤害的主要机制之一.  相似文献   

10.
11.
Effects of heat stress on the photosynthesis system and antioxidant activities in Fingered citron (Citrus medica var. sarcodactylis Swingle) were investigated. Two-year-old Fingered citron plants were exposed to different temperature (28, 35, 40, and 45°C) for 6 h; then the photosynthetic capacity, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in the leaves were evaluated. Exposure to 40 and 45°C for 6 h resulted in a significant decrease in the photosynthetic rate (P n), carboxylation efficiency (CE), the maximal photochemical efficiency of photosystem II, and the light-saturated photosynthetic rate, which were related to the reduction of CO2 assimilation, inactivation of photosystem II and photosynthetic electron transport. Moreover, transmission electron microscopy showed chloroplast ultrastructural alterations, including their swelling, matrix zone expanding, and lamella structure loosening. Furthermore, heat stress, especially at 45°C, caused oxidative damage resulted from ROS accumulation in Fingered citron leaves accompanied by increases in activities of superoxide dismutase, peroxidase, and catalase. However, exposure to 35°C for 6 h or 40°C for 4 h had no significant influence on the photosynthetic capacity at all. The results suggest that Fingered citron plants show no heat injury when temperature is below 40°C.  相似文献   

12.
Mechanisms of high-temperature tolerance in the kelp Laminaria saccharina (L.) Lamour. were examined by comparing a heat-tolerant ecotype from Long Island Sound (LIS), New York, and a population from the Atlantic (ATL) coast of Maine. Greater heat tolerance was not attributable to greater thermal stability of the photosynthetic apparatus: LIS and ATL plants exhibited similar short-term effects of high temperature on photosynthetic capacity (Pmax) and quantum yield (estimated as the ratio of variable to maximum chlorophyll fluorescence, Fv/Fm. As LIS plants had consistently higher N and protein content than ATL plants, the interaction between nitrogen nutrition and high-temperature tolerance was examined. When grown under high N supply and optimal temperature (12° C), LIS plants had a higher density of photosystem II reaction centers (RCII), higher activity of two Calvin cycle enzymes (ribulose bisphosphate carboxylase oxygenase [RUBISCO] and NADP-dependent glyceraldehyde-3-phosphate dehydrogenase [G3PDH]), and higher Pmax and Fv/Fm than ATL plants. Individual ATL plants, furthermore, exhibited close correlations of RCII density and enzyme activity with N and/or protein content. Variation in RCII density and enzyme activity, in turn, largely accounted for plant-to-plant differences in Pmax and Fv/Fm. Relationships among these parameters were generally weak or lacking among individual LIS plants grown under optimal conditions, apparently because luxury N consumption resulted in excess reserves of photosynthetic apparatus components. Exposure of N-replete LIS and ATL plants to a superoptimal temperature (22° C) for 4 days caused an increase in the minimum turnover time of the photosynthetic apparatus (tau) and a decrease in Pmax, but had no consistent effect on Fv/Fm RCII density, PSU size (chlorophyll a/RCII), or enzyme activities. When plants were subjected to concurrent N limitation and heat stress, however, LIS and ATL populations exhibited quite different responses. All photosynthetic parameters of N-limited ATL plants declined sharply in response to high temperature, resulting in a negative rate of daily net C fixation. In contrast, LIS plants showed a reduction in PSU size, but maintained other parameters, including daily C fixation, at levels similar to those of N-limited plants at optimal temperature. Overall, the ability of LIS plants to accumulate and maintain high N reserves appears to be critical for heat tolerance and, therefore, for survival during summer periods of simultaneous low N supply and superoptimal temperature. ATL plants, which also experience low summer N supply but not superoptimal temperatures, do not accumulate large reserves of nitrogenous components and are unable to tolerate the combined stress. Because low N supply often co-occurs with high temperatures in temperate marine systems, large-scale declines in algal productivity, such as during El Niño events, are probably due to the interactive effect of N limitation and heat stress.  相似文献   

13.
为分析等渗盐分和水分胁迫对番茄叶片光合功能的影响,选用耐盐性不同的4种基因型番茄(小果型的辽园红玛瑙、野生醋栗番茄、大果型的金田粉冠、超402)进行等渗的140 mmol·L-1NaCl和15%PEG6000模拟盐分和水分胁迫.结果表明: 在光合特性方面,处理12 d后,两种胁迫导致4种不同基因型番茄的叶绿素含量(叶绿素a、叶绿素b、叶绿素总量)、光合速率、气孔导度、胞间CO2浓度、蒸腾效率降低,气孔限制值升高.两种胁迫导致的光合下降由气孔性因素所致.等渗的盐分胁迫对番茄的光合系统损伤大于水分胁迫,这是因为盐分胁迫除了渗透胁迫还会导致离子伤害.4种不同基因型番茄中,耐盐型的辽园红玛瑙具有高光合特性,金田粉冠光合效率最差.在叶绿体超微结构方面,两种胁迫会造成番茄叶片的气孔密度增加,气孔张开率降低,叶绿体长度增加,宽度变小,长宽比增大,叶绿体内基粒数减少,嗜锇颗粒数增多.盐分胁迫下两种番茄叶绿体结构的影响大于水分胁迫,耐盐种醋栗番茄气孔变化小于盐敏感品种金田粉冠.  相似文献   

14.
Plant responses to elevated CO2 and high temperature are critically regulated through a complex network of phytohormones and redox homeostasis. However, the involvement of abscisic acid (ABA) in plant adaptation to heat stress under elevated CO2 conditions has not been thoroughly studied. This study investigated the interactive effects of elevated CO2 (800 μmol·mol?1) and heat stress (42 °C for 24 h) on the endogenous level of ABA and the cellular redox state of two genotypes of tomato with different ABA biosynthesis capacities. Heat stress significantly decreased maximum photochemical efficiency of PSII (Fv/Fm) and leaf water potential, but also increased levels of malondialdehyde (MDA) and electrolyte leakage (EL) in both genotypes. Heat‐induced damage was more severe in the ABA‐deficient mutant notabilis (not) than in its parental cultivar Ailsa Craig (Ailsa), suggesting that a certain level of endogenous ABA is required to minimise the heat‐induced oxidative damage to the photosynthetic apparatus. Irrespective of genotype, the enrichment of CO2 remarkably stimulated Fv/Fm, MDA and EL in heat‐stressed plants towards enhanced tolerance. In addition, elevated CO2 significantly strengthened the antioxidant capacity of heat‐stressed tomato seedlings towards a reduced cellular redox state for a prolonged period, thereby mitigating oxidative stress. However, elevated CO2 and heat stress did not alter the endogenous level of ABA or the expression of its biosynthetic gene NCED2 in either genotype, indicating that ABA is not involved in elevated CO2‐induced heat stress alleviation. The results of this study suggest that elevated CO2 alleviated heat stress through efficient regulation of the cellular redox poise in an ABA‐independent manner in tomato plants.  相似文献   

15.
Seedlings of Lycopersicon esculentum Mill. var. Amalia were grown in a growth chamber under a photoperiod of 16 h light at 25 degrees C and 8 h dark at 20 degrees C. Five different treatments were applied to 30-day-old plants: Control treatment (plants maintained in the normal growth conditions throughout the experimental time), heat acclimation (plants exposed to 35 degrees C for 4 h in dark for 3 days), dark treatment (plants exposed to 25 degrees C for 4 h in dark for 3 days), heat acclimation plus heat shock (plants that previously received the heat acclimation treatment were exposed to 45 degrees C air temperature for 3 h in the light) and dark treatment plus heat shock (plants that previously received the dark treatment were exposed to 45 degrees C air temperature for 3 h in the light). Only the heat acclimation treatment increased the thermotolerance of the photosynthesis apparatus when the heat shock (45 degrees C) was imposed. In these plants, the CO(2) assimilation rate was not affected by heat shock and there was a slight and non-significant reduction in maximum carboxylation velocity of Rubisco (V(cmax)) and maximum electron transport rate contributing to Rubisco regeneration (J(max)). However, the plants exposed to dark treatment plus heat shock showed a significant reduction in the CO(2) assimilation rate and also in the values of V(cmax) and J(max). Chlorophyll fluorescence measurements showed increased thermotolerance in heat-acclimated plants. The values of maximum chlorophyll fluorescence (F(m)) were not modified by heat shock in these plants, while in the dark-treated plants that received the heat shock, the F(m) values were reduced, which provoked a significant reduction in the efficiency of photosystem II. A slight rise in the total superoxide dismutase (SOD) activity was found in the plants that had been subjected to both heat acclimation and heat shock, and this SOD activity was significantly higher than that found in the plants subjected to dark treatment plus heat shock. The activity of Fe-SOD isoenzymes was most enhanced in heat-acclimated plants but was unaltered in the plants that received the dark treatment. Total CuZn-SOD activity was reduced in all treatments. Darkness had an inhibitory effect on the Mn-SOD isoenzyme activity, which was compensated by the effect of a rise in air temperature to 35 degrees C. These results show that the heat tolerance of tomatoplants may be increased by the previous imposition of a moderately high temperature and could be related with the thermal stability in the photochemical reactions and a readjustment of V(cmax) and J(max). Some isoenzymes, such as the Fe-SODs, may also play a role in the development of heat-shock tolerance through heat acclimation. In fact, the pattern found for these isoenzymes in heat-acclimated Amalia plants was similar to that previously described in other heat-tolerant tomato genotypes.  相似文献   

16.
Abstract Exposure of tomato plants to a mild chilling temperature and relatively low ambient photon flux density for an extended period (10°C and 400 μmol photons m?2 s?1 d and 5°C night for 6 d) resulted in a significant decrease in the variable chlorophyll fluorescence, the quantum yield of oxygen evolution and the amount of total absorbed energy stored in photochemical intermediates, but not in the chlorophyll concentration or in the activity of ribulose biphosphate carboxylase. These results indicate that photochemical processes involving PSII were affected, and might reflect photoinhibitory effects on the photosynthetic apparatus. Chilling treatment had relatively small influence on the maximal extent of the Emerson effect. This observation, together with the sharp decrease found in the quantum yield of oxygen evolution, could be reconciled with the above results only if some dependency between the two photosystems was assumed. On the basis of this interpretation, it was concluded that the strong Emerson effect after chilling still reflects the typical imbalance between PSI and PSII centres, even though populations of such unaffected pairs are smaller than in the untreated plants. The relatively new photoacoustic technique employed in this study is shown to be useful both as a diagnostic tool and as a means of investigating changes in photochemical activity in the study of environmental stress effects on photosynthesis. The results support the view that photoinhibition can play an important role in limiting photosynthetic activity, and therefore productivity, in chilling-sensitive plants such as the tomato under the natural conditions that prevail during the winter in mediterranean climates.  相似文献   

17.
To determine the thermosensitive periods and physiological processes in tomato flowers exposed to moderately elevated temperatures, tomato plants (Lycopersicon esculentum Mill., cv. NC 8288) were grown at 28/22 degrees C or 32/26 degrees C day/night temperature regimes and then transferred to the opposite regime for 0-15 d before or 0-24 h after anthesis. For plants initially grown at 28/22 degrees C, moderate temperature stress before anthesis decreased the percentage of fruit set per plant, but did not clarify the thermosensitive period. The same level of stress did not significantly reduce fruit set when applied immediately after anthesis. For plants initially grown at 32/26 degrees C, fruit set was completely prevented unless a relief period of more than 5 d was provided before anthesis. The same level of stress relief for 3-24 h after anthesis also increased fruit set. Plants were most sensitive to 32/26 degrees C temperatures 7-15 d before anthesis. Microscopic investigation of anthers in plants grown continuously at high temperature indicated disruption of development in the pollen, endothecium, epidermis, and stomium. This disruption was reduced, but still observable in plants relieved from high temperature for 10 d before anthesis.  相似文献   

18.
Proline and quaternary ammonium compounds (QAC), in addition to being N-rich, are known to accumulate in plants under different environmental stress conditions. The accumulation of N-rich compounds in plants has been shown to confer stress resistance. The aim of our work is two-fold: first, to study the influence of temperature on proline, QAC, and choline metabolism in tomato leaves; and second, to investigate the relationship between N source applied (NO3- or NH4+) and thermal stress resistance in these plants. To do this, experiments were conducted at three different temperatures (10 degrees C, 25 degrees C, 35 degrees C); at each temperature half of the plants received NO3-, and the other half received NH4+. At 35 degrees C the plants had the lowest biomass production with respect to 25 degrees C (optimal temperature) and 10 degrees C (cold stress), suggesting that tomato plants were most affected by heat stress. At 35 degrees C, there were also high levels of choline and proline due to the activation of Delta1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine aminotransferase (OAT), and simultaneous inhibition of proline dehydrogenase (PDH) and proline oxidase (PO). However, plants with NH4+ as the N source exhibited reduced growth with respect to the plants fed with NO3-. This is interesting because, under heat stress (35 degrees C), biomass production, as well as proline and choline accumulation, in NH4+ fed plants was higher than in NO3- fed plants. From this, we concluded that tomato plants fed with NH4+ as the N source show higher tolerance to heat stress (35 degrees C) than plants fed with NO3-.  相似文献   

19.
Heat tolerance of groundnut (Arachis hypogaea L.) genotypes was evaluated by solute leakage and chlorophyll fluorescence techniques in heat-hardened and non-hardened plants. To determine the appropriate hardening treatment, 1-month-old plants of two groundnut genotypes, ICGV 86707 and Chico were conditioned at five combinations of hardening (37°C) and non-hardening (30°C) air temperatures over a 5-day period. Heat injury, was assessed through measurements of electrolyte leakage after stressing leaf discs to 55°C for 15 min. The relative injury was significantly influenced by the conditioning temperatures and by the temperature during 24 h prior to measurement if those involved non-hardening conditions. Relative injury and chlorophyll fluorescence were measured after stressing leaves of six genotypes at a range of temperatures between 49°C and 55°C. Significant genotype × hardening treatment interactions were observed in relative injury and chlorophyll fluorescence. Chico was susceptible to heat stress, the relative injury test identified ICGV 86707 as tolerant, and the chlorophyll fluorescence test identified ICGV 86707 as tolerant under hardened conditions and ICGV 87358 as tolerant when non-hardened. When expressed as percentage of control values, the relative injury and chlorophyll fluorescence measurements over the 49–53°C stress temperature range were strongly correlated. Chlorophyll concentrations were increased by hardening in all genotypes except Chico. In Chico, chlb concentration was decreased and the chla/b ratio increased by hardening, and chlorophyll concentrations were correlated with chlorophyll fluorescence parameters. Chlorophyll concentration may therefore provide an alternative means of screening for heat tolerance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号