首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous experimental studies showed that the phytoplankton Chla-to-Carbon ratio (Chla:C) is highly variable, whereas most of the marine ecosystem models use a constant ratio. In this work, we tested three different formulations for computing the modelled Chla in a 3D coupled hydrodynamical-biogeochemical model of the Southwest lagoon of New Caledonia. The first formulation considers a constant Chla:C ratio. In the second one, Chla is a diagnostic variable related to the variable phytoplankton nitrogen-to-carbon ratio. In the last formulation, Chla is a state variable of the model, which is dynamically simulated. Results showed important differences between the formulations, the first leading to overestimate the Chla concentration in low nutrients conditions. Thus, this study strengthens the importance of the Chla modelling in a coupled model in order to better estimate a crucial variable for validation of ecosystem models.  相似文献   

2.
A hydrodynamic-transport coupled model is used to understand the transport of fine suspended sediments in the southwest lagoon of New Caledonia. The hydrodynamic model is briefly presented and the circulation due to the tide and to averaged trade wind forcings is analyzed. The transport model for fine suspended sediment is described. Parameters involved in this model (settling velocity, critical shear stresses, erosion rate coefficient, Schmidt number) are discussed and a calibration procedure is proposed. Using the resultant parameters, the erosion and deposition areas predicted by the sediment-transport model are in very good agreement with the distribution of the percentage of mud at the seabed. The sensitivity of the model to the different sedimentary parameters is studied, and the influences of the tide and wind on deposition and erosion are discussed. The influence of the wind is dominant in seabed exchange processes in shallow areas and produces large erosion rates where the water depth is less than 20 m. The tide controls the particulate transport, vertical mixing, and deposition rates in the areas where the influence of the wind is weak.  相似文献   

3.
A biogeochemical box model describing the south-west lagoon of New-Caledonia was developed in order to simulate the seasonal cycle of carbon and nitrogen. We used fluxes generated by a 3D hydrodynamic model to simulate horizontal exchanges between boxes and added freshwater influxes as nitrogen sources from the land. Average residence time proved to be less than 11 days for the lagoon as a whole. Standard simulations showed baseline values of chlorophyll a between 0.2 and 0.4 microgram.L-1. Influences of freshwater influxes proved to be significant (increases up to 1 microgram.L-1) only in shallow areas protected from wind exposure and during short periods of heavy rainfall (tropical depressions). Tropical climatic events have reduced impact in space and time and long-term simulations over decades with increased nutrient inputs did not show any significant process of eutrophication. Hydrodynamics seemed to be one of the major control factors with respect to organic matter cycling in the lagoon.  相似文献   

4.
Hydrochemical conditions in the A?u Lagoon are described using spatial and temporal variations of various limnological variables (water temperature, dissolved oxygen, electric conductivity, total alkalinity, carbon dioxide, dissolved and total nutrients (N, P and Si), and chlorophyll a). Collected data was used in order to understand the structure and functioning of an enclosed coastal lagoon strongly influenced by climatic conditions. Water samples were collected monthly (November 1999-December 2000) in five sampling stations established along the lagoon. A decreasing spatial gradient of electrical conductivity was observed beginning from a sand bar region between the lagoon and the sea in the direction of the sweet-water input area. The positive correlation observed between the pH and dissolved oxygen (DO) values, and the negative one observed between pH values and those of carbon dioxide (CO2), evidenced coupled biological processes, e.g., primary production and decomposition. Both spatial and temporal variation of dissolved nutrients showed fast increase and decrease in the beginning of summer, suggesting that nutrient input resulting from rainfall stimulates phytoplankton production, as reflected by chlorophyll a concentration increase.  相似文献   

5.
Summer heatwaves promote blooms of harmful cyanobacteria   总被引:13,自引:0,他引:13  
Dense surface blooms of toxic cyanobacteria in eutrophic lakes may lead to mass mortalities of fish and birds, and provide a serious health threat for cattle, pets, and humans. It has been argued that global warming may increase the incidence of harmful algal blooms. Here, we report on a lake experiment where intermittent artificial mixing failed to control blooms of the harmful cyanobacterium Microcystis during the summer of 2003, one of the hottest summers ever recorded in Europe. To understand this failure, we develop a coupled biological–physical model investigating how competition for light between buoyant cyanobacteria, diatoms, and green algae in eutrophic lakes is affected by the meteorological conditions of this extreme summer heatwave. The model consists of a phytoplankton competition model coupled to a one-dimensional hydrodynamic model, driven by meteorological data. The model predicts that high temperatures favour cyanobacteria directly, through increased growth rates. Moreover, high temperatures also increase the stability of the water column, thereby reducing vertical turbulent mixing, which shifts the competitive balance in favour of buoyant cyanobacteria. Through these direct and indirect temperature effects, in combination with reduced wind speed and reduced cloudiness, summer heatwaves boost the development of harmful cyanobacterial blooms. These findings warn that climate change is likely to yield an increased threat of harmful cyanobacteria in eutrophic freshwater ecosystems.  相似文献   

6.
The trophic transfer efficiency (TTE) is an important indicator of ecosystem functioning. However, TTE data from freshwater food webs are ambiguous due to differences in time scales and methods. We investigated the transfer of essential substances (carbon, nutrients, and polyunsaturated fatty acids) through plankton communities in 30 Polish lakes with different trophic status in the middle of summer. The results of our study revealed that different essential substances were transferred from phytoplankton to zooplankton with varying efficiencies. The average TTE of C, N, P, and the sum of ω‐3 PUFA were 6.55%, 9.82%, 15.82%, and 20.90%, respectively. Our results also show a large mismatch between the elemental and biochemical compositions of zooplankton and their food during the peak of the summer stagnation, which may further promote the accumulation of essential substances. There were also large differences in TTEs between trophic conditions, with the highest efficiencies in oligotrophic lakes and the lowest in dystrophic and eutrophic lakes. Therefore, our study indicates that disturbances like eutrophication and dystrophication similarly decrease the TTE of essential substances between phytoplankton and zooplankton in freshwater food webs.  相似文献   

7.
This paper investigates the potential of remotely sensed data to map turbidity in a coral reef lagoon and to calibrate a numerical model of fine suspended-sediment transport. Simultaneous measurements of turbidity depth-profile and above-water spectral reflectance integrated according Landsat 7 ETM+ band 2 spectral sensitivity provide a linear regression relationship for the southwest lagoon of New Caledonia (r2=0.95, n=40). This relationship is applied to an empirically atmospherically corrected Landsat ETM+ image of the lagoon acquired on October 23, 2002. A comparison between Landsat estimates of turbidity and concurrent measurements at 14 stations indicates that the mean standard error in the satellite-estimated turbidity is 17.5%. The numerical model introduced in Douillet et al. (2001) is used to simulate the transport of fine suspended sediments in the lagoon in October 2002. A calibration of the erosion rate coefficient required by the model is proposed using in situ turbidity profiles and the remotely sensed turbidity field. In situ data are used to tune locally the erosion rate coefficient, while satellite data are used to determine its spatial zonation. We discuss necessary improvements in coupled studies of fine-sediment transport in coastal zones, namely relationships between turbidity and sediment concentration, integration of wave influence in the model, and correction of bottom reflection in satellite data processing.  相似文献   

8.
In New Caledonia, the benthic communities living in the coral reef lagoon around Noumea city are subjected to regular shifts from oligotrophic conditions typical of lagoon waters to nutrient enrichment due to waste water inputs. The influence of ammonium pulses on microphytobenthos production was experimentally tested under varying light intensities in the vicinity of Noumea. Benthic oxygen, ammonium and silicon fluxes at the sediment-water interface were measured in situ using benthic enclosures. Three ammonium concentrations were tested. Gross primary production was doubled with a 13.8 μmol l−1 ammonium concentration increase. Fitted PI curves showed that maximum production (Fmax) was linearly related to ammonium concentration, but not the optimal irradiance (Ik). Silicon fluxes were characterized by dissolution in the absence of light, a process that declined with increasing illumination. These results were attributed to microphytobenthos activity, mainly diatoms that are nutrient-limited and strongly reactive to ammonium inputs. Production may result from a multiplication of cells, but migration up to the water sediment interface may also be involved. Oxygen consumption was also significantly influenced by ammonium concentration as a positive linear relationship with added ammonium concentration was established. Even during short-term experiments, ammonium enrichment stimulated photoautotrophic production, increasing the energy available to heterotrophs. Furthermore, microbenthic activities as well as nitrate production were increased by ammonia-oxidizing bacteria able to grow chemolithotrophically at the expense of oxygen. Therefore, in the study area, pulses of urban waste waters resulted in a decrease of plant-related autotrophy in benthic communities.  相似文献   

9.
A model coupling a 2D transport equation and a simple model of the nitrogen cycling was developed for the Thau lagoon (France). The model took into account the wind forcing on the hydrodynamism, the effect of the temperature on the biological processes, the input of the watershed area, the light dependence of the pelagic primary production and the prédation of the phytoplankton by the cultivated filter feeders. The model ran under two steady-state situations of wind with constant temperature and light values corresponding to spring weather conditions. Simulations showed that the biological flows were very sensitive to the wind. The budget of the nitrogen flows were computed for the three areas devoted to the filter feeder cultivation and the results highlighted the impact of cultivated oysters as a source of nutrients and an important nitrogen flow through the predation of phytoplankton.  相似文献   

10.
A coupled 3D hydrodynamic-biogeochemical model was developed and implemented for the Sacca di Goro coastal lagoon. The model considers nutrient and oxygen dynamics in water column and sediments. Among the biological elements, phytoplankton, zooplankton, bacteria, Ulva sp. and commercial shellfish (Tapes philippinarum) were taken into consideration. Nutrients fluxes from the watershed and open sea, as well as atmospheric inputs, heat flux, light intensity and wind shear stress at the water surface constituted the model forcing functions. The comparison of numerical results with available measurement data indicated that the model was able to capture the essential dynamics of the lagoon. This model has also been used to estimate clam productivity and its impacts on water quality and lagoon properties. Guest editors: A. Razinkovas, Z. R. Gasiūnaitė, J. M. Zaldívar & P. Viaroli European Lagoons and their Watersheds: Function and Biodiversity  相似文献   

11.
Phytoplankton composition and production are highly unpredictable within an estuary, due to the high variability of forcing factors, such as freshwater flow, salinity, nutrients and light. The Guadiana estuary has shown sharp inter-annual differences in freshwater flow, related to variable precipitation, which is expected to affect nutrient loadings, light availability and phytoplankton succession. Water retention due to dam construction will further enhance changes in river flow and ecosystem dynamics. The main goal of the present study was to describe and relate phytoplankton succession and environmental conditions, namely nutrients and light, in the Guadiana upper estuary (south-western Iberian Peninsula), a dam regulated temperate estuary. From March 2004 to October 2005, water samples were collected in three stations along a longitudinal transect covering the upper estuary. Several water variables were determined and phytoplankton composition was studied through inverted and epifluorescence microscopy. A typical freshwater phytoplankton succession was observed, from a diatom spring bloom to cyanobacteria dominance in the summer, and a second diatom bloom in the autumn. Neither nutrients nor light availability seemed to be related to the observed succession, especially the seasonal variation of diatom abundance. During summer, nutrient concentrations (especially Si) were high and non-limiting, whilst light was available in the mixing layer. However, diatoms were present in low numbers. Grazing pressure was probably responsible for the regulation of diatom seasonal succession in the Guadiana upper estuary, which should be addressed in future studies. Handling editor: K. Martens  相似文献   

12.
  1. Rivers often transport phytoplankton to coastal embayments and introduce nutrients that can enrich coastal plankton communities. We investigated the effects of the Nottawasaga River on the nearshore (i.e. within 500 μm of shore) phytoplankton composition along a 10-km transect of Nottawasaga Bay, Lake Huron in 2015 and 2016. Imaging flow cytometry was used to identify and enumerate algal taxa, which were resolved at sizes larger than small nanoplankton (i.e. >5 μm). Multivariate analysis (perMANOVA and redundancy analysis) and a dilution model were used to examine how nutrients and the transport of algal taxa affected community composition in the bay.
  2. Sampling stations with different percentages of river water had significantly different phytoplankton communities. Phytoplankton community composition was also strongly associated with nutrients, including total phosphorus, which also varied with the percentage of river water. The majority of the 51 phytoplankton taxa identified in 2016 had numerical abundances in the bay that could be explained simply by the dilution of incoming river water.
  3. Phytoplankton transported from the river had a higher proportion of edible-sized cells (<30 μm), particularly in summer when colonial cyanobacteria were numerically dominant in the bay. Six taxa were more abundant than expected from the dilution of river water and included some cyanobacteria with late summer maxima. Five of the taxa that were transported from the river were less abundant than expected in the bay.
  4. Whereas impacts of fertilisation due to the characteristically higher nutrient concentration in the river are to be expected, the strong and highly correlated effects of transport within the narrow coastal band of this study largely concealed any distinct fertilisation effects.
  5. Riverine inputs may strongly influence the nearshore assemblage of phytoplankton in oligotrophic embayments in large lakes, creating hotspots for productivity, species turnover, and trophic dynamics.
  相似文献   

13.
This work constitutes the first floristic and ecological analysis of the phytoplankton community of a volcanic freshwater lake in Deception Island (62°57′S, 60°38′W, South Shetland Islands, Antarctica). The main limnological features and phytoplankton size fractions were analyzed. Samples were taken during the austral summer of 2002 at two opposite sites. According to ANOVA results performed with abiotic variables, no significant differences between sites were found. The phytoplankton community showed low algal species richness, with an important contribution of the tychoplanktonic taxa. In terms of species number, Bacillariophyceae was the dominant class. Autotrophic picoplankton registered the highest densities from the second sampling date onwards. Nanophytoplankton was represented by unidentified chrysophycean organisms, which showed different distribution patterns between sites. The net phytoplankton abundance remained low during the sampling period and was strongly correlated with chlorophyll a concentration. Both nutrient concentrations and chlorophyll a values indicated oligotrophic conditions.  相似文献   

14.
Based on an analysis of long-term (1991–2007) hydrological and hydrochemical data, as well as data on phytoplankton primary production, the ecological state of the Curonian and Vistula Lagoons of the Baltic Sea is assessed. The main abiotic factors influencing the trophic status of the lagoons are indicated. Water temperature is the key factor determining phytoplankton production and abundance in the Curonian Lagoon. An intensive warming-up of the lagoon water in the 1990s and 2000s (a possible result of climate warming) combined with freshwater and a slow-flow velocity created the conditions for the mass development of bluegreen algae. Despite a significant reduction in the external nutrients load, the occurrences of water hyperblooms” become more frequent, which points to a continuation of the eutrophication processes in the lagoon. The biological productivity of the Vistula Lagoon is below the potentially possible level because hydrodynamic activity and brackish water prevent the intensive development of blue-green algae. The increase in water temperature in the 1990s and 2000s had no significant effect on the ecological state of the lagoon.  相似文献   

15.
Although prokaryotes are small in size, they are a significant biomass component in aquatic planktonic ecosystems and play a major role in biogeochemical processes. A review of the recent literature shows that the relative importance of prokaryotes to material and energy fluxes is maximized in low-productivity (oligotrophic) ecosystems and decreases in high-productivity (eutrophic) ecosystems. We conclude that competition with eukaryotic autotrophs for dissolved nutrients and competition with phagotrophic heterotrophs and physical processes (sinking, photooxidation) for organic carbon (C) play important roles in determining the relative abundance and impact of prokaryotes in aquatic systems. Oligotrophic systems have low nutrient concentrations, with high proportions of dissolved nutrients in organic form, which favors prokaryotic heterotrophs over phytoplankton. Furthermore, a high proportion of the available organic C is dissolved rather than particulate, which favors prokaryotic heterotrophs over phagotrophic heterotrophs. In eutrophic systems, increased relative concentrations and loading of inorganic nutrients and increased relative concentrations of particulate organic C select for phytoplankton and phagotrophic heterotrophs over prokaryotic heterotrophs. Increased particle sinking fluxes and/or decreased excretion of organic carbon (EOC) may also decrease the relative importance of prokaryotic heterotrophs in eutrophic systems. In oligotrophic systems, interactions between autotrophs and heterotrophs are tightly coupled because the dominant heterotrophs are similar in size and growth rates, as well as having similar nutrient composition to the dominant autotrophs, small phytoplankton. In eutrophic systems, increased productivity passes through zooplankton that are larger and have slower growth rates than the autotrophs, leading to a greater potential for decoupled auto- and heterotrophic production and increased export production. Received 18 July 2000; Accepted 13 September 2001.  相似文献   

16.
Satellite pictures and in situ observations indicate strong phytoplankton blooms including harmful algae blooms (HABs) during southwest (SW) summer monsoon in the Vietnamese upwelling area. In this period, nutrients are provided by coastal upwelling and by the very high river runoff from the Mekong River. During SW monsoon, in general two circulation patterns exist which allow the prediction of advection and diffusion of HAB patches. A Lagrangian HAB model that is driven by a circulation model and applied to HABs in Vietnamese waters is presented. Advection which is the most complicated part in modelling transport of passive substances is validated with a Lagrangian sediment trap experiment. The model produces realistic results compared to in situ observations and satellite images and might be used for real time forecast in the future.  相似文献   

17.
The Gulf of Aden, although subject to seasonally reversing monsoonal winds, has been previously reported as an oligotrophic basin during summer, with elevated chlorophyll concentrations only occurring during winter due to convective mixing. However, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province distinct from the adjacent Arabian Sea. Climatological hydrographic data suggest that the thermocline, hence the nutricline, in the entire gulf is markedly shoaled by the southwest monsoon during summer and fall. Under this condition, cyclonic eddies in the gulf can effectively pump deep nutrients to the surface layer and lead to the chlorophyll bloom in late summer, and, after the transition to the northeast monsoon in fall, coastal upwelling driven by the northeasterly winds produces a pronounced increase in surface chlorophyll concentrations along the Somali coast.  相似文献   

18.
Hydrological and hydrodynamic characteristics are important controls in all wetlands including coastal lagoons. Enhanced understanding of lagoon functioning can be obtained through the acquisition and interpretation of hydrological, meteorological and related data. The MELMARINA Project investigated links between hydrological and ecological conditions within North African coastal lagoons. It employed three primary sites: Merja Zerga in Morocco, Ghar El Melh in Tunisia and Lake Manzala in Egypt. Hydrological, meteorological and related data were acquired for these lagoons. Data included precipitation, evaporation, wind speed and direction, freshwater discharges into the lagoons, tides beyond the lagoons in the open sea, lagoon bathymetry and time series of lagoon water levels/depths. Data were acquired from secondary sources (including online archives) and targeted field survey and monitoring programmes. Interpretation of these data provides insights into the hydrological functioning of the lagoons and contributed to the modelling requirements of MELMARINA. The functioning of Merja Zerga is dominated by the exchange of water between the Atlantic and the lagoon. Large, tidally induced oscillations in water level are responsible for the inundation of extensive inter-tidal mudflats whilst the rapid replacement of water by exchanges with the sea diminishes the influence of freshwater inflows and winter rainfall. The smaller Mediterranean tides reduce the magnitude of lagoon–sea exchanges and result in much smaller water level oscillations within Ghar El Melh. As a result, this lagoon lacks the inter-tidal environments found within the Moroccan site and hydrodynamic conditions are more likely influenced by wind set up. Although freshwater inflows to Ghar El Melh are smaller than those in Merja Zerga, their effects, coupled with heavy winter rainfall, can persist due to longer residence times of water within the lagoon. Freshwater inflows are central to the functioning of Lake Manzala. Large discharges of relatively freshwater are provided by major drains which cross the Nile Delta. These influence lake water levels and are responsible for the freshwater conditions within large parts of the lake. The small tidal range of the eastern Mediterranean, coupled with constricted connections with the sea, reduces the influence of lake–sea exchanges and tidally induced water level oscillations within Lake Manzala. Guest editors: J. R. Thompson & R. J. Flower Hydro-ecological Monitoring and Modelling of North African Coastal Lagoons  相似文献   

19.
Lake Baikal, Russian Siberia, was sampled in July 1990 during the period of spring mixing and initiation of thermal stratification. Vertical profiles of temperature, dissolved nutrients (nitrate and soluble reactive phosphorus), phytoplankton biomass, and primary productivity were determined in an eleven-station transect encompassing the entire 636 km length of the lake. Pronounced horizontal variability in hydrodynamic conditions was observed, with the southern region of the lake being strongly thermally stratified while the middle and north basins were largely isothermal through July. The extent of depletion of surface water nutrients, and the magnitude of phytoplankton biomass and productivity, were found to be strongly correlated with the degree of thermal stratification. Horizontal differences likely reflected the contribution of two important factors: variation in the timing of ice-out in different parts of the lake (driving large-scale patterns of thermal stratification and other limnological properties) and localized effects of river inflows that may contribute to the preliminary stabilization of the water column in the face of intense turbulent spring mixing (driving meso-scale patterns). Examination of the relationships between surface water inorganic N and P depletion suggested that during the spring and early summer, phytoplankton growth in unstratified portions of the lake was largely unconstrained by nutrient supplies. As summer progressed, the importance of co-limitation by both N and P became more apparent. Uptake and regeneration rates, measured directly using the stable isotope 15N, revealed that phytoplankton in stratified portions of the lake relied primarily on NH4 as their N source. Rates of NH4 regeneration were in approximate equilibrium with uptake; both processes were dominated by organisms <2 µm. This pattern is similar to that observed for oligotrophic marine systems. Our study underscores the importance of hydrodynamic conditions in influencing patterns of biological productivity and nutrient dynamics that occur in Lake Baikal during its brief growing season.  相似文献   

20.
In shallow environments, under certain conditions of fetch, wind velocity, bathymetry and bottom characteristics, resuspension can be generated by wind induced waves. In the tropical Ebrié lagoon, austral trade winds are dominant almost all year long, and their velocity shows a marked diel pattern with maximum speed between noon and midnight. Only austral trade winds with a speed >3 m s−1 allow particle resuspension which is effective for depths<1.5 m. In these areas, significantly higher values of chlorophyll biomass and mineral seston are noted during the windy sequences. Granulometric and mineralogical analyses showed that only the surficial sediment (0–3 cm) was involved in resuspension. This process induces several effects: 1) an increase of the suspended matter concentration in the water and thus a light attenuation due to a higher turbidity, 2) a redistribution in the whole water column of nutrients from the pore water and 3) a removal of the finer fractions from the superficial sediment. On the contrary, for depths>1.5 m, particle sinking is permanent in depressions which are spontaneously transformed into anoxic systems. At the lagoon scale, sedimentation is significantly modified by wind induced resuspension. According to the bathymetry and the distance from a river, three sedimentary facies are recognized. Their grain size distributions are parabolic in areas where resuspension occurs, logarithmic in areas where no resuspension is possible and hyperbolic in the hollows and the main channels. Finally, a large part of the allochthonous inputs (from drainage and rivers) and autochthonous pelagic production is trapped into the Ebrié lagoon and less than 10% of the particles entering the lagoon are exported toward the Atlantic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号