首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: Oculocutaneous albinism (OCA) is caused by a group of genetically heterogeneous inherited defects that result in the loss of pigmentation in the eyes, skin and hair. Mutations in the TYR, OCA2, TYRP1 and SLC45A2 genes have been shown to cause isolated OCA. No comprehensive analysis has been conducted to study the spectrum of OCA alleles prevailing in Pakistani albino populations. METHODS: We enrolled 40 large Pakistani families and screened them for OCA genes and a candidate gene, SLC24A5. Protein function effects were evaluated using in silico prediction algorithms and ex vivo studies in human melanocytes. The effects of splice-site mutations were determined using an exon-trapping assay. RESULTS: Screening of the TYR gene revealed four known (p.Arg299His, p.Pro406Leu, p.Gly419Arg, p.Arg278*) and three novel mutations (p.Pro21Leu, p.Cys35Arg, p.Tyr411His) in ten families. Ex vivo studies revealed the retention of an EGFP-tagged mutant (p.Pro21Leu, p.Cys35Arg or p.Tyr411His) tyrosinase in the endoplasmic reticulum (ER) at 37degreesC, but a significant fraction of p.Cys35Arg and p.Tyr411His left the ER in cells grown at a permissive temperature (31degreesC). Three novel (p.Asp486Tyr, p.Leu527Arg, c.1045-15T>G) and two known mutations (p.Pro743Leu, p.Ala787Thr) of OCA2 were found in fourteen families. Exon-trapping assays with a construct containing a novel c.1045-15T>G mutation revealed an error in splicing. No mutation in TYRP1, SLC45A2, and SLC24A5 was found in the remaining 16 families. Clinical evaluation of the families segregating either TYR or OCA2 mutations showed nystagmus, photophobia, and loss of pigmentation in the skin or hair follicles. Most of the affected individuals had grayish-blue colored eyes. CONCLUSIONS: Our results show that ten and fourteen families harbored mutations in the TYR and OCA2 genes, respectively. Our findings, along with the results of previous studies, indicate that the p.Cys35Arg, p.Arg278* and p.Gly419Arg alleles of TYR and the p.Asp486Tyr and c.1045-15T>G alleles of OCA2 are the most common causes of OCA in Pakistani families. To the best of our knowledge, this study represents the first documentation of OCA2 alleles in the Pakistani population. A significant proportion of our cohort did not have mutations in known OCA genes. Overall, our study contributes to the development of genetic testing protocols and genetic counseling for OCA in Pakistani families.  相似文献   

2.
Oculocutaneous albinism (OCA) affects approximately 1/20,000 people worldwide. All forms of OCA exhibit generalized hypopigmentation. Reduced pigmentation during eye development results in misrouting of the optic nerves, nystagmus, alternating strabismus, and reduced visual acuity. Loss of pigmentation in the skin leads to an increased risk for skin cancer. Two common forms and one infrequent form of OCA have been described. OCA1 (MIM 203100) is associated with mutations of the TYR gene encoding tyrosinase (the rate-limiting enzyme in the production of melanin pigment) and accounts for approximately 40% of OCA worldwide. OCA2 (MIM 203200), the most common form of OCA, is associated with mutations of the P gene and accounts for approximately 50% of OCA worldwide. OCA3 (MIM 203290), a rare form of OCA and also known as "rufous/red albinism," is associated with mutations in TYRP1 (encoding tyrosinase-related protein 1). Analysis of the TYR and P genes in patients with OCA suggests that other genes may be associated with OCA. We have identified the mouse underwhite gene (uw) and its human orthologue, which underlies a new form of human OCA, termed "OCA4." The encoded protein, MATP (for "membrane-associated transporter protein") is predicted to span the membrane 12 times and likely functions as a transporter.  相似文献   

3.
Oculocutaneous albinism (OCA) is a group of autosomal recessive disorders characterized by deficient synthesis of melanin pigment. Type I (tyrosinase-deficient) OCA results from mutations of the tyrosinase gene (TYR gene) encoding tyrosinase, the enzyme that catalyzes the first two steps of melanin biosynthesis. Mutations of the TYR gene have been identified in a large number of patients, most of Caucasian ethnic origin, with various forms of type I OCA. Here, we present an analysis of the TYR gene in eight Indo-Pakistani patients with type I OCA. We describe four novel TYR gene mutations and a fifth mutation previously observed in a Caucasian patient.  相似文献   

4.
Oculocutaneous albinism(OCA)is an autosomal recessive disorder characterized by hypopigmentation in eyes,hair and skin,accompanied with vision loss.Currently,six genes have been identified as causative genes for non-syndromic OCA(OCA-1w4,6,7),and ten genes for syndromic OCA(HPS-1e9,CHS-1).Genetic counseling of 51 Chinese OCA families(39 OCA-1 with mutations in the TYR gene,6 OCA-2 with mutations in the OCA2 gene,4 OCA-4 with mutations in the SLC45A2 gene,1 HPS-1(Hermanskye Pudlak syndrome-1)with mutation in the HPS1 gene,and 1 mixed OCA-1 and OCA-4)led us to perform the prenatal genetic testing of OCA using amniotic fluid cells through the implementation of our optimized strategy.In our cohort,eleven previously unidentified alleles(PUAs)(5 in TYR,2 in OCA2,and 4 in SLC45A2)were found.Three missense PUAs(p.C112R,p.H363R and p.G379V of TYR)and one in-frame deletional PUA(p.S222del of SLC24A5)led to fetuses with OCA when co-inherited with other disease causative alleles.Three PUAs(p.P152H and p.W272X of TYR,p.A486T of SLC24A5)identified in the OCA probands did not co-transmit with known pathological alleles and thus gave rise to unaffected fetuses.Four PUAs(p.Q83X and p.A658T of TYR,p.G161R and p.G366R of SLC24A5)did not transmit to the unaffected fetuses.In addition,the in vitro transfection assays showed that the p.S192Y variant of TYR produced less pigment compared to the wild-type allele.A fetus with a digenic carrier of OCA-1 and OCA-4 was unaffected.In combination with functional assays,the family inheritance pattern is useful for the evaluation of pathogenicity of PUAs and genetic counseling of OCA.  相似文献   

5.
目的了解我国眼皮肤白化病(oculocutaneous albinism,OCA)的分型和相关基因突变类型,探讨新突变可能的分子致病机制。方法应用PCR方法扩增TYR基因,经DNA序列测定检出突变,采用错配引物PCR进行新突变的群体筛查,结合生物信息学方法探讨一种新突变的致病性和可能的分子致病机制。结果10名患者中有5人存在2个突变TYR等位基因,共计8种突变类型,其中c.71G〉A(C24Y)和c.841G〉T(E281X)是OCA1A致病性新突变;C24极可能参与二硫键形成,C24Y将导致酪氨酸酶肽链内此二硫键消失,进而引起蛋白空间构象变化和功能异常而致病。结论从基因水平初步了解了我国OCA1所占的比例,探讨了TYR基因C24Y的致病性并初步阐明了其致病的分子机制。本结果丰富了人类TYR基因突变类型,为我国OCA分型诊断、产前基因诊断和遗传咨询等积累了有价值的数据资料。  相似文献   

6.
We have analyzed the tyrosinase (TYR) gene in 38 unrelated patients with oculocutaneous albinism (OCA), derived from several different ethnic groups of the diverse population of Israel. We detected TYR gene mutations in 23 of the 34 patients with apparent type I (i.e., tyrosinase-deficient) OCA and in none of the patients with other clinical forms of albinism. Among Moroccan Jews with type IA (i.e., tyrosinase-negative) OCA, we detected a highly predominant mutant allele containing a missense substitution, Gly47Asp (G47D). This mutation occurs on the same haplotype as in patients from the Canary Islands and Puerto Rico, suggesting that the G47D mutation in these ethnically distinct populations may stem from a common origin.  相似文献   

7.
Oculocutaneous albinism (OCA) is the most common autosomal recessive disorder among southern African Blacks. There are three forms that account for almost all OCA types in this region. Tyrosinase-positive OCA (OCA2), which is the most common, affects approximately 1/3,900 newborns and has a carrier frequency of approximately 1/33. It is caused by mutations in the P gene on chromosome 15. Brown OCA (BOCA) and rufous OCA (ROCA) account for the majority of the remaining phenotypes. The prevalence of BOCA is unknown, but for ROCA it is approximately 1/8,500. Linkage analysis performed on nine ROCA families showed that ROCA was linked to an intragenic marker at the TYRP1 locus (maximum LOD score = 3.80 at straight theta=.00). Mutation analysis of 19 unrelated ROCA individuals revealed a nonsense mutation at codon 166 (S166X) in 17 (45%) of 38 ROCA chromosomes, and a second mutation (368delA) was found in an additional 19 (50%) of 38 chromosomes; mutations were not identified in the remaining 2 ROCA chromosomes. In one family, two siblings with a phenotypically unclassified form of albinism were found to be compound heterozygotes for mutations (S166X/368delA) at the TYRP1 locus and were heterozygous for a common 2.7-kb deletion in the P gene. These findings have highlighted the influence of genetic background on phenotype, in which the genotype at one locus can be influenced by the genotype at a second locus, leading to a modified phenotype. ROCA, which in southern African Blacks is caused by mutations in the TYRP1 gene, therefore should be referred to as "OCA3," since this is the third locus that has been shown to cause an OCA phenotype in humans.  相似文献   

8.
Oculocutaneous albinism type 1A (OCA1A) is the most severe form of albinism characterized by a complete lack of melanin production throughout life and is caused by mutations in the TYR gene. TYR gene codes tyrosinase protein to its relation with melanin formation by knowing the function of these SNPs. Based on the computational approaches, we have analyzed the genetic variations that could change the functional behaviour by altering the structural arrangement in TYR protein which is responsible for OCA1A. Consequences of mutation on TYR structure were observed by analyzing the flexibility behaviour of native and mutant tyrosinase protein. Mutations T373K, N371Y, M370T and P313R were suggested as high deleterious effect on TYR protein and it is responsible for OCA1A which were also endorsed with previous in vivo experimental studies. Based on the quantitative assessment and flexibility analysis of OCA1A variants, T373K showed the most deleterious effect. Our analysis determines that certain mutations can affect the dynamic properties of protein and can lead to disease conditions. This study provides a significant insight into the underlying molecular mechanism involved in albinism associated with OCA1A.  相似文献   

9.
Albinism represents a group of genetic disorders with a broad spectrum of hypopigmentary phenotypes dependent on the genetic background of the patients. Oculocutaneous albinism (OCA) patients have little or no pigment in their eyes, skin and hair, whereas ocular albinism (OA) primarily presents the ocular symptoms, and the skin and hair color may vary from near normal to very fair. Mutations in genes directly or indirectly regulating melanin production are responsible for different forms of albinism with overlapping clinical features. In this study, 27 albinistic individuals from 24 families were screened for causal variants by a PCR-sequencing based approach. TYR, OCA2, TYRP1, SLC45A2, SLC24A5, TYRP2 and SILV were selected as candidate genes. We identified 5 TYR and 3 OCA2 mutations, majority in homozygous state, in 8 unrelated patients including a case of autosomal recessive ocular albinism (AROA). A homozygous 4-nucleotide novel insertion in SLC24A5 was detected in a person showing with extreme cutaneous hypopigmentation. A potential causal variant was identified in the TYRP2 gene in a single patient. Haplotype analyses in the patients carrying homozygous mutations in the classical OCA genes suggested founder effect. This is the first report of an Indian AROA patient harboring a mutation in OCA2. Our results also reveal for the first time that mutations in SLC24A5 could contribute to extreme hypopigmentation in humans.  相似文献   

10.

Background

Oculocutaneous Albinism (OCA) is a heterogeneous group of inherited diseases involving hair, skin and eyes. To date, six forms are recognized on the effects of different melanogenesis genes.OCA4 is caused by mutations in SLC45A2 showing a heterogeneous phenotype ranging from white hair, blue irides and nystagmus to brown/black hair, brown irides and no nystagmus. The high clinic variety often leads to misdiagnosis.Our aim is to contribute to OCA4 diagnosis defining SLC45A2 genetic variants in Italian patients with OCA without any TYR, OCA2 and TYRP1 gene defects.

Materials and methods

After the clinical diagnosis of OCA, all patients received genetic counseling and genetic test. Automatic sequencing of TYR, OCA2, and TYRP1 genes was performed on DNA of 117 albino patients. Multiplex Ligation-dependent Probe Amplification (MLPA) was carried out on TYR and OCA2 genes to increase the mutation rate. SLC45A2 gene sequencing was then executed in the patients with a single mutation in one of the TYR, OCA2, TYRP1 genes and in the patients, which resulted negative at the screening of these genes.

Results

SLC45A2 gene analysis was performed in 41 patients and gene alterations were found in 5 patients. Four previously reported SLC45A2 mutations were found: p.G100S, p.W202C, p.A511E and c.986delC, and three novel variants were identified: p.M265L, p.H94D, and c.1156+1G>A. All the alterations have been detected in the group of patients without mutations in the other OCA genes.

Conclusions

Three new variants were identified in OCA4 gene; the analysis allowed the classification of a patient previously misdiagnosed as OA1 because of skin and hair pigmentation presence. The molecular defects in SLC45A2 gene represent the 3.4% in this cohort of Italian patients, similar to other Caucasian populations; our data differ from those previously published by an Italian researcher group, obtained on a smaller cohort of patients.  相似文献   

11.
Oculocutaneous albinism (OCA) is a genetic disease characterized by the reduction or deficiency of melanin in eyes, skin, and hair. OCA exhibits genetic heterogeneity. Presently, there are four types of OCA named as OCA1, OCA2, OCA3, and OCA4. OCA3 is more common in African born blacks but rarely found in other ethnic populations. Our recent genotyping of patients with OCA of Chinese descent has identified two patients who were not OCA1, OCA2, or OCA4. Examination and analysis of the TYRP1 gene identified them to be having OCA3. PCR and DNA sequencing analysis found that the mutant TYPR1 alleles were present in each of the two patients, c.780-791del/c.1067G>A (p.R356Q) and c.625G>TT (p.G209LfsX1)/c.643C>T (p.H215Y). The c.780-791del and c.1067G>A mutations have been already reported. However, the c.625G>TT and c.643C>T mutations have not been previously reported and were found to be maternal and paternal mutations, respectively. Moreover, population screening and bioinformatic analysis were carried out to determine the effects of these two mutations which revealed that both the mutation were pathogenic. Based on the similar mild phenotype of these two patients, we suggest that OCA3 might be prevalent within the Chinese population.  相似文献   

12.
Oculocutaneous albinism (OCA) is caused by mutations in six different genes, and their molecular diagnosis encompasses the search for point mutations and intragenic rearrangements. Here, we used high‐resolution array‐comparative genome hybridization (CGH) to search for rearrangements across exons, introns and regulatory sequences of four OCA genes: TYR, OCA2, TYRP1, and SLC45A2. We identified a total of ten new deletions in TYR, OCA2, and SLC45A2. A complex rearrangement of OCA2 was found in two unrelated patients. Whole‐genome sequencing showed deletion of a 184‐kb fragment (identical to a deletion previously found in Polish patients), whereby a large portion of the deleted sequence was re‐inserted after severe reshuffling into intron 1 of OCA2. The high‐resolution array‐CGH presented here is a powerful tool to detect gene rearrangements. Finally, we review all known deletions of the OCA1–4 genes reported so far in the literature and show that deletions or duplications account for 5.6% of all mutations identified in the OCA1–4 genes.  相似文献   

13.
In southern Africa, brown oculocutaneous albinism (BOCA) is a distinct pigmentation phenotype. In at least two cases, it has occurred in the same families as tyrosinase-positive oculocutaneous albinism (OCA2), suggesting that it may be allelic, despite the fact that this phenotype was attributed to mutations in the TYRP1 gene in an American individual of mixed ancestry. Linkage analysis in five families mapped the BOCA locus to the same region as the OCA2 locus (maximum LOD 3.07; theta=0 using a six-marker haplotype). Mutation analysis of the human homologue of the mouse pink-eyed dilution gene (P), in 10 unrelated individuals with BOCA revealed that 9 had one copy of the 2.7-kb deletion. No other mutations were identified. Additional haplotype studies, based on closely linked markers (telomere to centromere: D15S1048, D15S1019, D15S1533, P-gene 2.7-kb deletion, D15S219, and D15S156) revealed several BOCA-associated P haplotypes. These could be divided into two core haplotypes, suggesting that a limited number of P-gene mutations give rise to this phenotype.  相似文献   

14.
Tyrosinase related protein 1 (TYRP1) is the most abundant melanosomal protein of the melanocyte, where plays an important role in the synthesis of eumelanin, possibly catalyzing the oxidation of 5,6-dihydroxyindole-2-carboxylic acid to 5,6-quinone-2-carboxylic acid. Mutations to the TYRP1 gene can result in oculocutaneous albinism type 3 (OCA3), a rare disease characterized by reduced synthesis of melanin in skin, hair, and eyes. To investigate the effect of genetic mutations on the TYRP1 structure, function, and stability, we engineered the intramelanosomal domain of TYRP1 and its mutant variants mimicking either OCA3-related changes, C30R, H215Y, D308N, and R326H or R87G mutant variant, analogous to OCA1-related pathogenic effect in tyrosinase. Proteins were produced in Trichoplusia Ni larvae, then purified, and analyzed by biochemical methods. Data shows that D308N and R326H mutants keep the native conformations and demonstrate no change in their stability and enzymatic activity. In contrast, mutations C30R and R87G localized in the Cys-rich domain show the variants misfolding during the purification process. The H215Y variant disrupts the binding of Zn2+ in the active site and thus reduces the strength of the enzyme/substrate interactions. Our results, consistent with the clinical and in silico studies, show that mutations at the protein surface are expected to have a negligible phenotype change compared to that of TYRP1. For the mutations with severe phenotype changes, which were localized in the Cys-rich domain or the active site, we confirmed a complete or partial protein misfolding as the possible mechanism of protein malfunction caused by OCA3 inherited mutations.  相似文献   

15.
目的:对临床诊断为眼皮肤白化病(OCA)患者的酪氨酸酶(TYR)基因进行突变筛查,了解我国大陆OCA患者TYR基因突变类型,探讨基因突变对人TYR蛋白结构和功能的影响。方法:应用PCR技术,扩增患者及其父母的TYR基因外显子、外显子-内含子交界区及启动子区;以DNA序列测定技术,进行突变筛查与鉴定;利用生物信息学方法,对突变引起蛋白结构和功能的改变进行预测与分析。结果:在15名患者的30个TYR等位基因内,查明11种突变;其中错义突变5种(W400L、R299H、E294K、R77Q和K142M),无义突变3种(R116X、R278X和G295X),插入突变2种(929insC和232insGGG),剪切位点突变1种(IVS1-3 C〉G);对4个突变W400L、R299H、929insC、232insGGG的生物信息学分析显示,突变的致病性与蛋白结构和功能的改变相关。结论:W400L占本研究所检出全部OCA1突变等位基因的30.0%(9/30),可能为中国大陆人群中较常见的TYR基因突变类型;应用生物信息学分析方法对TYR基因突变的致病性做出一些合理可能的解释是可行的。  相似文献   

16.
Oculocutaneous albinism type 4 (OCA4) is an autosomal recessive hypopigmentary disorder caused by mutations in the Membrane-Associated Transporter Protein gene (SLC45A2). The SLC45A2 protein is a 530-amino-acid polypeptide that contains 12 putative transmembrane domains, and appears to be a transporter that mediates melanin synthesis. Eighteen pathological mutations have been reported so far. In this study, six novel mutations, p.Y49C (c.146A > G), p.G89R (c.265G > A), p.C229Y (c.686G > A), p.T437A (c.1309A > G), p.T440A (c.1318A > G) and p.G473D (c.1418G > A) were found in eight Japanese patients with various clinical phenotypes. The phenotypes of OCA4 were as various as the other types of OCA and probably depended on the mutation sites in the SLC45A2 gene.  相似文献   

17.
Research on human albinism has been central to many of the major discoveries in human genetics. These include the first evidence that Mendel's rules of genetic segregation apply to humans, first published in 1903. Contrary to initial thought that albinism is caused by mutations in a single gene, we now know that the genetics of albinism are complex. The complexity of albinism was hinted at, in early publications, but has only recently been fully appreciated with the advent of molecular techniques. Currently, 12 different genes have been identified, that when mutated, result in a different type of albinism. Oculocutaneous albinism type 1 (OCA1), resulting from mutations of the tyrosinase gene, is genetically and biochemically the best understood type of albinism. Though much of the research in albinism has involved OCA1, there are many unanswered questions about OCA1 and albinism, in general. The next 100 yr should still provide many surprises as did the first 100 yr.  相似文献   

18.
Tyrosinase serves as a key enzyme in the synthesis of melanin. In humans mutations in the TYR gene are associated with type 1 oculocutaneous albinism (OCA1) that leads to reduced or absent pigmentation of skin, hair and eye. Various mutations causing OCA in man, mouse, rabbit and cattle have been identified throughout the Tyrosinase gene including nonsense, missense, frameshift and splice site alterations. Here we report a missense substitution at codon R299H in exon 2 of the Tyr gene in the albino Wistar rat. As this very exchange has already been described in OCA patients, our findings reinforce the significance of this region for normal catalytic activity of tyrosinase protein.  相似文献   

19.
Oculocutaneous albinism (OCA) is a common human genetic condition resulting from mutations in at least twelve different genes. OCA1 results from mutations of the tyrosinase gene and presents with the life-long absence of melanin pigment after birth (OCA1A) or with the development of minimal-to-moderate amounts of cutaneous and ocular pigment (OCA1B). Other types of OCA have variable amounts of cutaneous and ocular pigment. We hypothesized that white hair at birth indicates OCA1 and tested this in a sample of 120 probands with OCA and white hair at birth. We found that 102 (85%) of the probands had OCA1 with one or two identifiable tyrosinase gene mutations, with 169 (83%) of the 204 OCA1 tyrosinase gene alleles having identifiable mutations and 35 (17%) having no identifiable change in the coding, splice junction, or proximal promoter regions of the gene. The inability to identify the mutation was more common with OCA1B (24/35, 69%) than with OCA1A (11/35, 31%) alleles. Seven probands with no tyrosinase gene mutations were found to have OCA2 with one or two P gene mutations, and in eleven, no mutations were detected in either gene. We conclude that (1) the presence of white hair at birth is a useful clinical tool suggesting OCA1 in a child or adult with OCA, although OCA2 may also have this presentation; (2) the molecular analysis of the tyrosinase and P genes are necessary for precise diagnosis; and (3) the presence of alleles without identifiable mutations of the tyrosinase gene, particularly in OCA1B, suggests that more complex mutation mechanisms of this gene are common in OCA.Electronic database Information: accession numbers and URLs for data presented in this article are as follows:Albinism Database, , for a list of published mutations of the tyrosinase geneOnline Mendelian Inheritance in Man (OMIM), , for OCA1 (MIM 203100), OCA2 (MIM 203200)  相似文献   

20.
Albino phenotypes are documented in a variety of species including the domestic cat. As albino phenotypes in other species are associated with tyrosinase (TYR) mutations, TYR was proposed as a candidate gene for albinism in cats. An Oriental and Colourpoint Shorthair cat pedigree segregating for albinism was analysed for association with TYR by linkage and sequence analyses. Microsatellite FCA931, which is closely linked to TYR and TYR sequence variants were tested for segregation with the albinism phenotype. Sequence analysis of genomic DNA from wild-type and albino cats identified a cytosine deletion in TYR at position 975 in exon 2, which causes a frame shift resulting in a premature stop codon nine residues downstream from the mutation. The deletion mutation in TYR and an allele of FCA931 segregated concordantly with the albino phenotype. Taken together, our results suggest that the TYR gene corresponds to the colour locus in cats and its alleles, from dominant to recessive, are as follows: C (full colour) > c(b) (burmese) > or = c(s) (siamese) > c (albino).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号