首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IntracellularCa2+ release channels such asryanodine receptors play crucial roles in theCa2+-mediated signaling thattriggers excitation-contraction coupling in muscles. Although theexistence and the role of these channels are well characterized inskeletal and cardiac muscles, their existence in smooth muscles, andmore particularly in the myometrium, is very controversial. We have nowclearly demonstrated the expression of ryanodine receptorCa2+ release channels in ratmyometrial smooth muscle, and for the first time, intracellularCa2+ concentration experimentswith indo 1 on single myometrial cells have revealed the existence of afunctional ryanodine- and caffeine-sensitive Ca2+ release mechanism in 30% ofrat myometrial cells. RT-PCR and RNase protection assay on wholemyometrial smooth muscle demonstrate the existence of all threeryr mRNAs in the myometrium:ryr3 mRNA is the predominant subtype,with much lower levels of expression forryr1 andryr2 mRNAs, suggesting that theryanodine Ca2+ release mechanismin rat myometrium is largely encoded byryr3. Moreover, using intracellularCa2+ concentration measurementsand RNase protection assays, we have demonstrated that the expression,the percentage of cells responding to ryanodine, and the function ofthese channels are not modified during pregnancy.

  相似文献   

2.
To clarify whether activity of the ryanodine receptor type 2 (RyR2) is reduced in the sarcoplasmic reticulum (SR) of cardiac muscle, as is the case with the ryanodine receptor type 1 (RyR1), Ca2+-dependent [3H]ryanodine binding, a biochemical measure of Ca2+-induced Ca2+ release (CICR), was determined using SR vesicle fractions isolated from rabbit and rat cardiac muscles. In the absence of an adenine nucleotide or caffeine, the rat SR showed a complicated Ca2+ dependence, instead of the well-documented biphasic dependence of the rabbit SR. In the rat SR, [3H]ryanodine binding initially increased as [Ca2+] increased, with a plateau in the range of 10–100 µM Ca2+, and thereafter further increased to an apparent peak around 1 mM Ca2+, followed by a decrease. In the presence of these modulators, this complicated dependence prevailed, irrespective of the source. Addition of 0.3–1 mM Mg2+ unexpectedly increased the binding two- to threefold and enhanced the affinity for [3H]ryanodine at 10–100 µM Ca2+, resulting in the well-known biphasic dependence. In other words, the partial suppression of RyR2 is relieved by Mg2+. Ca2+ could be a substitute for Mg2+. Mg2+ also amplifies the responses of RyR2 to inhibitory and stimulatory modulators. This stimulating effect of Mg2+ on RyR2 is entirely new, and is referred to as the third effect, in addition to the well-known dual inhibitory effects. This effect is critical to describe the role of RyR2 in excitation-contraction coupling of cardiac muscle, in view of the intracellular Mg2+ concentration. [3H]ryanodine binding; CICR; stimulation by physiological Mg2+, excitation-contraction coupling in the heart  相似文献   

3.
The effects ofcyclopiazonic acid (CPA) were investigated on isolated skeletal musclefibers of frog semitendinosus muscle. CPA (0.5-10 µM) enhancedisometric twitch but produced little change in resting tension. Athigher concentrations (10-50 µM), CPA depressed twitch andinduced sustained contracture without affecting resting and actionpotentials. In Triton-skinned fibers, CPA had no significant effect onmyofibrillar Ca2+ sensitivity butdecreased maximal activated force at concentrations >5 µM. Inintact cells loaded with the Ca2+fluorescence indicator indo 1, CPA (2 µM) induced an increase inCa2+-transient amplitude (10 ± 2.5%), which was associated with an increase in time to peak and inthe time constant of decay. Consequently, peak force was increased by35 ± 4%, and both time to peak and the time constant of relaxationwere prolonged. It is concluded that CPA effects, at a concentration ofup to 2 µM, were associated with specific inhibition of sarcoplasmicreticulumCa2+-adenosinetriphosphatase inintact skeletal muscle and that inhibition of the pump directlyaffected the handling of intracellularCa2+ and force production.

  相似文献   

4.
To investigatethe Ca2+-dependent plasticity ofsarcoplasmic reticulum (SR) function in vascular smooth muscle,transient responses to agents releasing intracellularCa2+ by either ryanodine(caffeine) orD-myo-inositol1,4,5-trisphosphate [IP3;produced in response to norepinephrine (NE),5-hydroxytryptamine (5-HT), arginine vasopressin (AVP)] receptorsin rat tail arterial rings were evaluated after 4 days of organculture. Force transients induced by all agents were increased comparedwith those induced in fresh rings. Stimulation by 10% FCSduring culture further potentiated the force andCa2+ responses to caffeine (20 mM)but not to NE (10 µM), 5-HT (10 µM), or AVP (0.1 µM). The effectwas persistent, and SR capacity was not altered after reversibledepletion of stores with cyclopiazonic acid. The effects of serum couldbe mimicked by culture in depolarizing medium (30 mMK+) and blocked by the additionof verapamil (1 µM) or EGTA (1 mM) to the medium, loweringintracellular Ca2+ concentration([Ca2+]i)during culture. These results show that modulation of SR function canoccur in vitro by a mechanism dependent on long-term levels of basal[Ca2+]iand involving ryanodine- but notIP3 receptor-mediatedCa2+release.  相似文献   

5.
The relative contributions of Ca2+-induced Ca2+ release (CICR) versus Ca2+ influx through voltage-dependent Ca2+ channels (VDCCs) to excitation-contraction coupling has not been defined in most smooth muscle cells (SMCs). The present study was undertaken to address this issue in mouse urinary bladder (UB) smooth muscle cells (UBSMCs). Confocal Ca2+ images were obtained under voltage- or current-clamp conditions. When UBSMCs were activated by a 30-ms depolarization to 0 mV, intracellular Ca2+ concentration ([Ca2+]i) increased in several small, discrete areas just beneath the cell membrane. These Ca2+ "hot spots" then spread slowly through the myoplasm as Ca2+ waves, which continued even after repolarization. Shorter depolarizations (5 ms) elicited only a few Ca2+ sparks, which declined quickly. The number of Ca2+ sparks, or hot spots, was closely related to the depolarization duration in the range of 5–20 ms. There was an apparent threshold depolarization duration of 10 ms within which to induce enough Ca2+ transients to spread globally and then induce a contraction. Application of 100 µM ryanodine to the pipette solution did not change the resting [Ca2+]i or the VDCC current, but it did abolish Ca2+ hot spots elicited by depolarization. Application of 3 µM xestospongin C reduced ACh-induced Ca2+ release but did not affect depolarization-induced Ca2+ events. The addition of 100 µM ryanodine to tissue segments markedly reduced the amplitude of contractions triggered by direct electrical stimulation. In conclusion, global [Ca2+]i rise triggered by a single action potential is not due mainly to Ca2+ influx through VDCCs but is attributable to the subsequent two-step CICR. Ca2+-induced Ca2+ release; Ca2+-activated K+ current; voltage-dependent Ca2+ channel  相似文献   

6.
Mitochondria show extensive movement along neuronal processes, but the mechanisms and function of this movement are not clearly understood. We have used high-resolution confocal microscopy to simultaneously monitor movement of mitochondria and changes in intracellular [Ca2+] ([Ca2+]i) in rat cortical neurons. A significant percentage (27%) of the total mitochondria in cortical neuronal processes showed movement over distances of >2 µM. The average velocity was 0.52 µm/s. The velocity, direction, and pattern of mitochondrial movement were not affected by transient increases in [Ca2+]i associated with spontaneous firing of action potentials. Stimulation of Ca2+ transients with forskolin (10 µM) or bicuculline (10 µM), or sustained elevations of [Ca2+]i evoked by glutamate (10 µM) also had no effect on mitochondrial transit. Neither removal of extracellular Ca2+, depletion of intracellular Ca2+ stores with thapsigargin, or inhibition of synaptic activity with TTX (1 µM) or a cocktail of CNQX (10 µM) and MK801 (10 µM) affected mitochondrial movement. These results indicate that movement of mitochondria along processes is a fundamental activity in neurons that occurs independently of physiological changes in [Ca2+]i associated with action potential firing, synaptic activity, or release of Ca2+ from intracellular stores. calcium transient; dendrites  相似文献   

7.
Spontaneous transient currents, due to activation of Ca2+-dependent K+ and Cl channels, occur in corpus cavernosum smooth muscle cells (CCSMC) of the penis. The Ca2+ events responsible for triggering Ca2+-dependent Cl channels have never been identified in vascular muscle. We used high-speed fluorescence imaging combined with patch-clamp electrophysiology to provide the first characterization of Ca2+ events underlying these currents. Freshly isolated rat CCSMC loaded with fluo-4 exhibited localized, spontaneous elevations of intracellular Ca2+ (Ca2+ sparks) in 57% of cells. There was an average of 6.4 ± 0.5 release sites/cell with a frequency of 0.9 ± 1 Hz/cell and peak amplitude F/Fo of 67 ± 10%. We addressed the controversy of whether these events are mediated by ryanodine or inositol 1,4,5 trisphosphate (IP3) receptors. Caffeine caused either a global Ca2+ rise at high concentrations or an increase in spark frequency at lower concentrations, whereas ryanodine dramatically reduced the amplitude and frequency of sparks. 2-Aminoethoxydiphenyl borate, an inhibitor of IP3 receptors, had no effect on spark frequency. Combined imaging and electrophysiological recording revealed strong coupling between Ca2+ sparks and biphasic transient currents, a relationship never before shown in vascular muscle. Moreover, spark frequency increased on depolarization, an effect abolished with the blockade of Ca2+ channels, consistent with Ca2+ influx regulating Ca2+ release from stores. We establish for the first time that Ca2+ sparks occur in CCSMC and arise from Ca2+ release through ryanodine receptors. Moreover, the voltage dependence of spark frequency demonstrated here provides novel functional evidence for voltage-dependent Ca2+ influx in CCSMC. calcium signaling; potassium and chloride channels; ryanodine receptors  相似文献   

8.
Calmodulin (CaM) activates the skeletal muscle ryanodine receptorCa2+ release channel (RyR1) in the presence of nanomolarCa2+ concentrations. However, the role of CaM activation inthe mechanisms that control Ca2+ release from thesarcoplasmic reticulum (SR) in skeletal muscle and in the heart remainsunclear. In media that contained 100 nM Ca2+, the rate of45Ca2+ release from porcine skeletal muscle SRvesicles was increased approximately threefold in the presence of CaM(1 µM). In contrast, cardiac SR vesicle45Ca2+ release was unaffected by CaM,suggesting that CaM activated the skeletal RyR1 but not the cardiacRyR2 channel isoform. The activation of RyR1 by CaM was associated withan approximately sixfold increase in the Ca2+ sensitivityof [3H]ryanodine binding to skeletal muscle SR, whereasthe Ca2+ sensitivity of cardiac SR[3H]ryanodine binding was similar in the absence andpresence of CaM. Cross-linking experiments identified both RyR1 andRyR2 as predominant CaM binding proteins in skeletal and cardiac SR,respectively, and [35S]CaM binding determinations furtherindicated comparable CaM binding to the two isoforms in the presence ofmicromolar Ca2+. In nanomolar Ca2+, however,the affinity and stoichiometry of RyR2 [35S]CaM bindingwas reduced compared with that of RyR1. Together, our results indicatethat CaM activates RyR1 by increasing the Ca2+ sensitivityof the channel, and further suggest differences in CaM's functionalinteractions with the RyR1 and RyR2 isoforms that may potentiallycontribute to differences in the Ca2+ dependence of channelactivation in skeletal and cardiac muscle.

  相似文献   

9.
Stretch-induced Ca(2+) release via an IP(3)-insensitive Ca(2+) channel   总被引:6,自引:0,他引:6  
Various mechanicalstimuli increase the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). A part of the increase in [Ca2+]i isdue to the release of Ca2+ from intracellular stores. Wehave investigated the effect of mechanical stimulation produced bycyclical stretch on the release of Ca2+ from theintracellular stores. Permeabilized VSMC loaded with 45Ca2+ were subjected to 7.5% average (15%maximal) cyclical stretch. This resulted in an increase in45Ca2+ rate constant by 0.126 ± 0.0035. Inhibition of inositol 1,4,5-trisphosphate (IP3),ryanodine, and nicotinic acid adenine dinucleotide phosphate channels(NAADP) with 50 µg/ml heparin, 50 µM ruthenium red, and 25 µMthio-NADP, respectively, did not block the increase in45Ca2+ efflux in response to cyclical stretch.However, 10 µM lanthanum, 10 µM gadolinium, and 10 µMcytochalasin D but not 10 µM nocodazole inhibited the increase in45Ca2+ efflux. This supports the existence of anovel stretch-sensitive intracellular Ca2+ store in VSMCthat is distinct from the IP3-, ryanodine-, and NAADP-sensitive stores.

  相似文献   

10.
To activate skeletal muscle contraction, action potentials must be sensed by dihydropyridine receptors (DHPRs) in the T tubule, which signal the Ca2+ release channels or ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) to open. We demonstrate here an inhibitory effect of the T tubule on the production of sparks of Ca2+ release. Murine primary cultures were confocally imaged for Ca2+ detection and T tubule visualization. After 72 h of differentiation, T tubules extended from the periphery for less than one-third of the myotube radius. Spontaneous Ca2+ sparks were found away from the region of cells where tubules were found. Immunostaining showed RyR1 and RyR3 isoforms in all areas, implying inhibition of both isoforms by a T tubule component. To test for a role of DHPRs in this inhibition, we imaged myotubes from dysgenic mice (mdg) that lack DHPRs. These exhibited T tubule development similar to that of normal myotubes, but produced few sparks, even in regions where tubules were absent. To increase spark frequency, a high-Ca2+ saline with 1 mM caffeine was used. Wild-type cells in this saline plus 50 µM nifedipine retained the topographic suppression pattern of sparks, but dysgenic cells in high-Ca2+ saline did not. Shifted excitation and emission ratios of indo-1 in the cytosol or mag-indo-1 in the SR were used to image [Ca2+] in these compartments. Under the conditions of interest, wild-type and mdg cells had similar levels of free [Ca2+] in cytosol and SR. These data suggest that DHPRs play a critical role in reducing the rate of spontaneous opening of Ca2+ release channels and/or their susceptibility to Ca2+-induced activation, thereby suppressing the production of Ca2+ sparks. excitation-contraction coupling; sarcoplasmic reticulum; ryanodine receptors; Ca2+ imaging  相似文献   

11.
The purpose ofthe present study was to determine whether cyclic ADP-ribose (cADPR)acts as a second messenger forCa2+ release through ryanodinereceptor (RyR) channels in tracheal smooth muscle (TSM). Freshlydissociated porcine TSM cells were permeabilized with -escin, andreal-time confocal microscopy was used to examine changes inintracellular Ca2+ concentration([Ca2+]i).cADPR (10 nM-10 µM) induced a dose-dependent increase in [Ca2+]i,which was blocked by the cADPR receptor antagonist 8-amino-cADPR (20 µM) and by the RyR blockers ruthenium red (10 µM) and ryanodine (10 µM), but not by the inositol 1,4,5-trisphosphate receptor blockerheparin (0.5 mg/ml). During steady-state[Ca2+]ioscillations induced by acetylcholine (ACh), addition of 100 nM and 1 µM cADPR increased oscillation frequency and decreased peak-to-troughamplitude. ACh-induced[Ca2+]ioscillations were blocked by 8-amino-cADPR; however, 8-amino-cADPR didnot block the[Ca2+]iresponse to a subsequent exposure to caffeine. These results indicatethat cADPR acts as a second messenger forCa2+ release through RyR channelsin TSM cells and may be necessary for initiating ACh-induced[Ca2+]ioscillations.

  相似文献   

12.
To examine the natureof inositol 1,4,5-trisphosphate (IP3)-sensitive andryanodine (Ryn)-sensitive Ca2+ stores in isolated caninepulmonary arterial smooth cells (PASMC), agonist-induced changes inglobal intracellular Ca2+ concentration([Ca2+]i) were measured using fura2-AM fluorescence. Properties of elementary local Ca2+release events were characterized using fluo 3-AM or fluo 4-AM, incombination with confocal laser scanning microscopy. In PASMC, depletion of sarcoplasmic reticulum Ca2+ stores with Ryn(300 µM) and caffeine (Caf; 10 mM) eliminated subsequent Caf-inducedintracellular Ca2+ transients but had little or no effecton the initial IP3-mediated intracellular Ca2+transient induced by ANG II (1 µM). Cyclopiazonic acid (CPA; 10 µM) abolished IP3-induced intracellularCa2+ transients but failed to attenuate the initialCaf-induced intracellular Ca2+ transient. These resultssuggest that in canine PASMC, IP3-, and Ryn-sensitiveCa2+ stores are organized into spatially distinctcompartments while similar experiments in canine renal arterial smoothmuscle cells (RASMC) reveal that these Ca2+ stores arespatially conjoined. In PASMC, spontaneous local intracellular Ca2+ transients sensitive to modulation by Caf and Ryn weredetected, exhibiting spatial-temporal characteristics similar to thosepreviously described for "Ca2+ sparks" in cardiac andother types of smooth muscle cells. After depletion of Ryn-sensitiveCa2+ stores, ANG II (8 nM) induced slow, sustained[Ca2+]i increases originating at sites nearthe cell surface, which were abolished by depleting IP3stores. Discrete quantal-like events expected due to the coordinatedopening of IP3 receptor clusters ("Ca2+puffs") were not observed. These data provide new information regarding the functional properties and organization of intracellular Ca2+ stores and elementary Ca2+ release eventsin isolated PASMC.

  相似文献   

13.
Volatileanesthetics have multiple actions on intracellular Ca2+homeostasis, including activation of the ryanodine channel (RyR) andsensitization of this channel to agonists such as caffeine andryanodine. Recently it has been described that the nucleotide cADP-ribose (cADPR) is the endogenous regulator of the RyR in manymammalian cells, and cADPR has been proposed to be a second messengerin many signaling pathways. I investigated the effect of volatileanesthetics on the cADPR signaling system, using sea urchin egghomogenates as a model of intracellular Ca2+ stores.Ca2+ uptake and release were monitored in sea urchin egghomogenates by using the fluo-3 fluorescence technique. Activity of theADP-ribosyl cyclase was monitored by using a fluorometricmethod using nicotinamide guanine dinucleotide as a substrate.Halothane in concentrations up to 800 µM did not induceCa2+ release by itself in sea urchin egg homogenates.However, halothane potentiates the Ca2+ release mediated byagonists of the ryanodine channel, such as ryanodine. Furthermore,other volatile anesthetics such as isoflurane and sevoflurane had noeffect. Halothane also potentiated the activation of the ryanodinechannel mediated by the endogenous nucleotide cADPR. The half-maximalconcentration for cADPR-induced Ca2+ release was decreasedabout three times by addition of 800 µM halothane. The reverse wasalso true: addition of subthreshold concentrations of cADPR sensitizedthe homogenates to halothane. In contrast, all the volatile anestheticsused had no effect on the activity of the enzyme that synthesizescADPR. I propose that the complex effect of volatile anesthetics onintracellular Ca2+ homeostasis may involve modulation ofthe cADPR signaling system.

  相似文献   

14.
Thenotion that intracellular Ca2+ (Cai2+)stores play a significant role in the chemoreception process inchemoreceptor cells of the carotid body (CB) appears in the literaturein a recurrent manner. However, the structural identity of theCa2+ stores and their real significance in the function ofchemoreceptor cells are unknown. To assess the functional significanceof Cai2+ stores in chemoreceptor cells, we havemonitored 1) the release of catecholamines (CA) from thecells using an in vitro preparation of intact rabbit CB and2) the intracellular Ca2+ concentration([Ca2+]i) using isolated chemoreceptor cells;both parameters were measured in the absence or the presence of agentsinterfering with the storage of Ca2+. We found thatthreshold [Ca2+]i for high extracellularK+ (Ke+) to elicit a release response is250 nM. Caffeine (10-40 mM), ryanodine (0.5 µM), thapsigargin(0.05-1 µM), and cyclopiazonic acid (10 µM) did not alter thebasal or the stimulus (hypoxia, high Ke+)-inducedrelease of CA. The same agents produced Cai2+transients of amplitude below secretory threshold; ryanodine (0.5 µM), thapsigargin (1 µM), and cyclopiazonic acid (10 µM) did notalter the magnitude or time course of the Cai2+responses elicited by high Ke+. Several potentialactivators of the phospholipase C system (bethanechol, ATP, andbradykinin), and thereby of inositol 1,4,5-trisphosphate receptors,produced minimal or no changes in [Ca2+]i anddid not affect the basal release of CA. It is concluded that, in therabbit CB chemoreceptor cells, Cai2+ stores do not playa significant role in the instant-to-instant chemoreception process.

  相似文献   

15.
Osteoblasts can be activated by their collagen matrix and inparticular the DGEA peptide motif. We have reported that DGEA is ableto activate Ca2+ signalingpathways in the human osteoblast-like cell line, Saos-2, by a tyrosinekinase-dependent pathway (T. J. McCann, W. T. Mason, M. C. Meikle, andF. McDonald. Matrix Biol. 16:271-280, 1997). In the present study, we show that this activityis due to coupling of the signal to intracellularCa2+ stores, since the DGEA actionis not blocked by La3+ but is lostwhen Ca2+ stores are depleted with2 µM and blocked by 10 µM ryanodine. The activated stores alsodiffer functionally from those activated by thrombin, as blockade withU-73122 obstructs only thrombin-activated Ca2+ release. We have shown thatthe DGEA activity was not due to its high-charge density, since the twoacidic residues can be substituted with their uncharged homologues(asparagine and glutamine) without significant loss of activity. Thiswas in turn measured by an adhesion assay that also demonstrated thislevel of specificity. Furthermore, by constructing DGEA bound to FITC,we have shown that DGEA binding was dependent on divalent cations. Wehave also demonstrated that an intact actin cytoskeleton is notrequired for Ca2+ activation byinhibiting actin polymerization with the addition of cytochalasin B. These data strengthen the argument that collagen has a significant rolein regulating osteoblast function via this peptide motif.

  相似文献   

16.
Williams, Jay H. Contractile apparatus and sarcoplasmicreticulum function: effects of fatigue, recovery, and elevated Ca2+. J. Appl.Physiol. 83(2): 444-450, 1997.This investigationtested the notion that fatiguing stimulation induces intrinsic changes in the contractile apparatus and sarcoplasmic reticulum (SR) and thatthese changes are initiated by elevated intracellularCa2+ concentration([Ca2+]i).Immediately after stimulation of frog semitendinosus muscle, contractile apparatus and SR function were measured. Despite a largedecline in tetanic force (Po),maximal Ca2+-activated force(Fmax) of the contractileapparatus was not significantly altered. However,Ca2+ sensitivity was increased. Inconjunction, the rate constant ofCa2+ uptake by the SR wasdiminished, and the caffeine sensitivity ofCa2+ release was decreased. Duringrecovery, Po, contractileapparatus, and SR function each returned to near-initial levels.Exposure of skinned fibers to 0.5 µM freeCa2+ for 5 min depressed bothFmax andCa2+ sensitivity of thecontractile apparatus. In addition, caffeine sensitivity ofCa2+ release was diminished.Results suggest that fatigue induces intrinsic alterations incontractile apparatus and SR function. Changes in contractile apparatusfunction do not appear to be mediated by increased[Ca2+]i.However, a portion of the change in SRCa2+ release seems to be due toelevated[Ca2+]i.

  相似文献   

17.
Agonist stimulation of human pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) with histamine showed similar spatiotemporal patterns of Ca2+ release. Both sustained elevation and oscillatory patterns of changes in cytosolic Ca2+ concentration ([Ca2+]cyt) were observed in the absence of extracellular Ca2+. Capacitative Ca2+ entry (CCE) was induced in PASMC and PAEC by passive depletion of intracellular Ca2+ stores with 10 µM cyclopiazonic acid (CPA; 15–30 min). The pyrazole derivative BTP2 inhibited CPA-activated Ca2+ influx, suggesting that depletion of CPA-sensitive internal stores is sufficient to induce CCE in both PASMC and PAEC. The recourse of histamine-mediated Ca2+ release was examined after exposure of cells to CPA, thapsigargin, caffeine, ryanodine, FCCP, or bafilomycin. In PASMC bathed in Ca2+-free solution, treatment with CPA almost abolished histamine-induced rises in [Ca2+]cyt. In PAEC bathed in Ca2+-free solution, however, treatment with CPA eliminated histamine-induced sustained and oscillatory rises in [Ca2+]cyt but did not affect initial transient increase in [Ca2+]cyt. Furthermore, treatment of PAEC with a combination of CPA (or thapsigargin) and caffeine (and ryanodine), FCCP, or bafilomycin did not abolish histamine-induced transient [Ca2+]cyt increases. These observations indicate that 1) depletion of CPA-sensitive stores is sufficient to cause CCE in both PASMC and PAEC; 2) induction of CCE in PAEC does not require depletion of all internal Ca2+ stores; 3) the histamine-releasable internal stores in PASMC are mainly CPA-sensitive stores; 4) PAEC, in addition to a CPA-sensitive functional pool, contain other stores insensitive to CPA, thapsigargin, caffeine, ryanodine, FCCP, and bafilomycin; and 5) although the CPA-insensitive stores in PAEC may not contribute to CCE, they contribute to histamine-mediated Ca2+ release. intracellular calcium stores; oscillations; pulmonary hypertension  相似文献   

18.
Ca2+influx via sarcolemmal voltage-dependent Ca2+ channels(L-type Ca2+ channels) is the fundamental step inexcitation-contraction (E-C) coupling in cardiac myocytes.Physiological and pharmacological studies reveal species-specificdifferences in E-C coupling resulting from a difference in thecontribution of Ca2+ influx and intracellularCa2+ release to activation of contraction. We investigatedthe distribution of L-type Ca2+ channels in isolatedcardiac myocytes from rabbit and rat ventricle by correlativeimmunoconfocal and immunogold electron microscopy. Immunofluorescence labeling revealed discrete spots in the surface plasma membrane and transverse (T) tubules in rabbit myocytes. In ratmyocytes, labeling appeared more intense in T tubules than in thesurface sarcolemma. Immunogold electron microscopy extended thesefindings, showing that the number of gold particles in the surfaceplasma membrane was significantly higher in rabbit than rat myocytes.In rabbit myocyte plasma membrane, the gold particles were distributedas clusters in both regions that were associated with junctionalsarcoplasmic reticulum and those that were not. The findings areconsistent with the idea that influx of Ca2+ via surfacesarcolemmal Ca2+ channels contributes to intracellularCa2+ to a greater degree in rabbit than in rat myocytes.

  相似文献   

19.
Inskeletal muscle fibers, the intracellular loop between domains II andIII of the 1-subunit of the dihydropyridine receptor (DHPR) may directly activate the adjacent Ca2+ releasechannel in the sarcoplasmic reticulum. We examined the effects ofsynthetic peptide segments of this loop on Ca2+ release inmechanically skinned skeletal muscle fibers with functional excitation-contraction coupling. In rat fibers at physiological Mg2+ concentration ([Mg2+]; 1 mM), a20-residue skeletal muscle DHPR peptide[AS(20);Thr671-Leu690; 30 µM], shown previously toinduce Ca2+ release in a triad preparation, caused onlysmall spontaneous force responses in ~40% of fibers, although itpotentiated responses to depolarization and caffeine in all fibers. TheCOOH-terminal half of AS(20)[AS(10)] induced much larger spontaneousresponses but also caused substantial inhibition of Ca2+release to both depolarization and caffeine. Both peptides induced orpotentiated Ca2+ release even when the voltage sensors wereinactivated, indicating direct action on the Ca2+ releasechannels. The corresponding 20-residue cardiac DHPR peptide [AC(20);Thr793-Ala812] was ineffective, but itsCOOH-terminal half [AC(10)] had effects similar to AS(20). In the presence of lower[Mg2+] (0.2 mM), exposure to eitherAS(20) or AC(10) (30 µM) induced substantial Ca2+ release. PeptideCS (100 µM), a loop segment reported to inhibit Ca2+ release in triads, caused partial inhibition ofdepolarization-induced Ca2+ release. In toad fibers, eachof the A peptides had effects similar to or greater than those in ratfibers. These findings suggest that the A and C regions of the skeletalDHPR II-III loop may have important roles in vivo.

  相似文献   

20.
Mutations in the central domain of the skeletal muscle ryanodinereceptor (RyR) cause malignant hyperthermia (MH). A synthetic peptide(DP4) in this domain (Leu-2442-Pro-2477) produces enhanced ryanodine binding and sensitized Ca2+ release in isolatedsarcoplasmic reticulum, similar to the properties in MH, possiblybecause the peptide disrupts the normal interdomain interactions thatstabilize the closed state of the RyR (Yamamoto T, El-Hayek R, andIkemoto N. J Biol Chem 275: 11618-11625, 2000). Here, DP4 was applied to mechanically skinned fibers of rat muscle thathad the normal excitation-contraction coupling mechanism stillfunctional to determine whether muscle fiber responsiveness wasenhanced. DP4 (100 µM) substantially potentiated the Ca2+release and force response to caffeine (8 mM) and to low[Mg2+] (0.2 mM) in every fiber examined, with nosignificant effect on the properties of the contractile apparatus. DP4also potentiated the response to submaximal depolarization of thetransverse tubular system by ionic substitution. Importantly, DP4 didnot significantly alter the size of the twitch response elicited byaction potential stimulation. These results support the proposal thatDP4 causes an MH-like aberration in RyR function and are consistentwith the voltage sensor triggering Ca2+ release bydestabilizing the closed state of the RyRs.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号