首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endogenous opiates have been reported to have detrimental effects on the circulatory system during hemorrhagic shock. However, the specific opiate receptor subtype which mediates these actions has not been defined. In the present study, we have utilized the mixed agonist/antagonist, nalorphine (N-allylnormorphine), which exhibits kappa (kappa) and sigma (sigma) receptor agonism as well as mu (mu) receptor antagonism, to investigate the role of the mu receptor in hemorrhagic shock. Nalorphine (2 mg/kg) produced no significant changes in any observed experimental variable in sham-shocked animals. Shocked animals treated with nalorphine (2 mg/kg) maintained significantly higher final mean arterial blood pressures (MABP) than animals which received only vehicle (102 +/- 3.8 vs 61 +/- 6.6 mm Hg, respectively, p less than 0.001). In addition, nalorphine significantly reduced the rise in plasma MDF activity observed in untreated hemorrhaged animals (42 +/- 3.0 vs 59 +/- 4 U/ml, p less than 0.02). Our results support a significant role for the mu receptor in the deleterious actions of endogenous opioids during hemorrhagic shock.  相似文献   

2.
The effects of haloperidol, an antipsychotic butyrophenone, on excitability and action potential production in frog's sartorius muscle fibers were studied. This drug produced a local-anestheticlike effect which developed slowly over 1 to 5 h with lower concentrations (2.7 to 5.3 X 10(-6 M) but was completely reversed by exposing the muscles to a drug-free solution. In studies with intracellular microelectrodes, evidence was obtained showing that haloperidol decreased excitability and depressed action potential production by inhibiting the specific increase in sodium conductance (gNa) which normally follows an adequate stimulus. Evidence also was obtained showing an inhibition of the secondary increase in potassium conductance (gK). Haloperidol is structurally related to meperidine and it was found that the inhibition of gNa produced by haloperidol is partially antagonized by low concentrations of naloxone (2.8 X 10(-8) and 2.8 X 10(-7) M); as was previously shown for meperidine. Thus haloperidol, like meperidine, suppresses action potential production by two mechanisms of action: one, a nonspecific local-anaestheticlike effect; and the other, a specific inhibition of gNa mediated by means of an opiate drug receptor associated with the muscle fiber membrane. Naloxone did not antagonize the effects of chlorpromazine on gNa.  相似文献   

3.
Naloxone inhibits superoxide release from human neutrophils   总被引:12,自引:0,他引:12  
C O Simpkins  N Ives  E Tate  M Johnson 《Life sciences》1985,37(15):1381-1386
Using the superoxide dismutase inhibitable reduction of cytochrome c assay, we studied, the effect of (-) naloxone on N-formyl-methionyl-leucyl-phenylalanine (FMLP) stimulated superoxide (O2-) release from human neutrophils. Neutrophils were pre-incubated with the range of concentrations of (-) naloxone that is administered in models of experimental sepsis (10(-6) - 10(-4.5) M). (-) Naloxone inhibited O2- release in a dose dependent manner. 02- produced by a cell-free xanthine-xanthine oxidase system was not inhibited by (-) naloxone, indicating that (-) naloxone was not scavanging O2-. There was no difference between the effect of (-) and (+) naloxone suggesting that the inhibition of O2- was not specific for an opiate receptor. Another opiate antagonist, nalorphine, as well as the opiate agonist, morphine, also inhibited O2- release in the same concentration range. There was no difference between the effect of naloxone and morphine.  相似文献   

4.
The role of adenosine on regulation of the (Na(+)+K(+))ATPase activity present in the Malpighian tubules isolated from Rhodnius prolixus was investigated. Adenosine decreases the (Na(+)+K(+)) ATPase specific activity by 88%, in a dose-dependent manner, with maximal effect at a concentration of 10(-9) M. This effect was mimicked by N(6)-cyclohexyladenosine (CHA) at 10(-8) M, an agonist for A(1) adenosine receptor, and was reversed by 10(-9) M 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), an antagonist for A(1) adenosine receptor. On the other hand, 5'-N-ethyl-carboxamide adenosine (NECA), an agonist for A(2) adenosine receptor, used in the range of 10(-9)-10(-5) M, did not change the (Na(+)+K(+))ATPase specific activity. In the same way, 10(-8) M 3, 7-dimethyl-1-propargylxanthine (DMPX), an antagonist for A(2) adenosine receptor, did not modify the inhibitory effect of adenosine. These data suggest that the inhibitory effect of adenosine on the (Na(+)+K(+))ATPase specific activity present in Malpighian tubules from Rhodnius prolixus is mediated by A(1) adenosine receptor activation. Arch.  相似文献   

5.
500 MHz H, homonuclear, intra-molecular, transferred Nuclear Overhauser Effect measurements have been performed on the bound forms of a classical opiate antagonist, nalorphine and an agonist, levorphanol at their respective binding sites in two different specific anti-opiate monoclonal antibody fragments. Based upon previous studies of opiate conformations in solution the results clearly show without extensive interpretation that one of these flexible haptens has the opposite (from solution) isomeric conformation in its bound form. For nalorphine the axial isomer of the N-allyl substituent is the bound form whereas in solution the equatorial isomer dominates at a ratio of 5:1. For levorphanol the bound form is that of equatorial N-methyl in accord with the low energy conformation in solution. In this preliminary report we discuss the initial measurements and results and their implications with respect to the conformations of flexible ligands at macromolecular binding sites including opiate receptors.  相似文献   

6.
The possible physiological role of testicular opioid peptides in the control of testicular functions has been studied. In neonatal rats intratesticular administration of opiate receptor antagonists (naloxone, nalmefene) stimulates Sertoli cell proliferation and secretion. Both in adult and neonatal rats local injection of the testis with opiate receptor antagonists or with beta-endorphin antiserum results in a decrease in steroidogenesis in long-term studies. Treatment of neonatal testis with an enkephalin analogue induces a short-term suppression of testosterone secretion. Further studies were carried out to investigate whether the above described local effects of opiate agonist or antagonist on testicular function are under the regulatory control of testicular nerves. Partial denervation of the testis was performed by testicular injection of 6-hydroxydopamine (a neurotoxin degenerating sympathetic neural structures) or by vasectomy (cutting the inferior spermatic nerve). If testicular administration of opioid agonist or antagonist was combined with partial denervation of the testis, the effects of pharmacological agents influencing testicular opioid level were not evident. The data indicate that opioid peptides synthesized in the testis are components of the intratesticular regulatory system and that local opioid actions are modulated by testicular nerves.  相似文献   

7.
Variations in incubation temperature can markedly differentiate opiate receptor binding of agonists and antagonists. In the presence of sodium increasing incubation temperatures from 0° to 30° reduces receptor binding of 3H-naloxone by 50% while tripling the binding of the agonist 3H-dihydromorphine. Lowering incubation temperature from 25° to 0° reduces the potency of morphine in inhibiting 3H-naloxone binding by 9-fold while not affecting the potency of the antagonist nalorphine. At temperatures of 25° and higher the number of binding sites for opiate antagonists is increased by sodium and the number of sites for agonists is decreased by sodium with no changes in affinity. By contrast, in the presence of sodium lowering of incubation temperature to 0° increases opiate receptor binding of the antagonist naloxone by enhancing its affinity for binding sites even though the total number of binding sites are not changed.  相似文献   

8.
In particulate preparations from guinea-pig ventricle, histamine in the concentration range 10(-6)--10(-3) M caused a 3--5fold stimulation of adenylate cyclase activity which was dependent on the presence of GTP. The effects of fourteen analogs of histamine were examined on this cyclase preparation. Five of the compounds studied proved to be partial agonists relative to histamine while nine others had essentially the same intrinsic activity as histamine. The intrinsic activities of the partial agonists were increased by GppNHp to the extent that dimaprit, which was a partial agonist in the presence of GTP, became a full agonist in the presence of GppNHp. The relative potencies of the full agonists as activators of the cyclase were found to correlate with the relative potencies on physiologically defined H2 receptor systems. Activation of the cyclase by histamine, as well as by several of the agonist analogs, including dimaprit and tolazoline, was completely blocked by the H2 antagonist cimetidine, but was not affected by pharmacologically relevant concentrations of the H1 antagonist mepyramine, the beta-blocker alprenolol, or the alpha-blocker phentolamine. The results suggest that all the agonists studied probably interact with a common H2 receptor site on the cardiac muscle cell leading to activation of adenylate cyclase. The accompanying increase in cyclic AMP is presumably responsible for the chronotropic and inotropic effects of histamine and related compounds on cardiac muscle.  相似文献   

9.
A number of opiate antagonists and the dextro isomers of some of these drugs were studied for antagonism of acute opiate effects on ilea isolated from opiate-naive guinea pigs, precipitation of a withdrawal contraction of ilea isolated from morphine-dependent guinea pigs, precipitation of withdrawal in morphine-dependent rhesus monkeys and stereospecific displacement of 3H-etorphine binding to rat-brain membranes. With the exception of d-naloxone, all of the compounds displaced 3H-etorphine. With the exception of d-naloxone, nalorphine, and quaternary nalorphine, all of the antagonists caused a contraction of ilea isolated from morphine-dependent guinea pigs. Moreover, the IC 50 values of the compounds for displacing 3H-etorphine binding were well correlated with both their Ke values for antagonism in the ileum (r = 0.95) and with their EC 50 values for precipitating a contraction in this preparation (r = 0.92). Generally, the concentration of antagonist necessary to precipitate half maximal contracture was 30-fold greater than the Ke value of the antagonist. Most of the opiate antagonists also precipitated withdrawal when administered to morphine-dependent rhesus monkeys and their in vivo potencies were well correlated with their in vitro potencies in ileum (with Ke: r = 0.95; with EC 50: r = 0.99) and in displacing 3H-etorphine (r = 0.95). The quaternary derivative of naltrexone, however, was an effective opiate antagonist only in vitro, and was ineffective in precipitating withdrawal in morphine-dependent rhesus monkeys. These results suggest that the receptor sites labeled by 3H-etorphine are the same as those involved in antagonism of acute opiate actions and in precipitation of withdrawal.  相似文献   

10.
Direct intracerebellar injections of N-methyl-D-aspartate (NMDA) or D-serine elicited dose-dependent increases in cerebellar cyclic GMP levels, in vivo in the mouse. The actions of D-serine were antagonized by the competitive NMDA receptor antagonist 3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid and by the phencyclidine receptor agonist MK-801, observations supporting actions at the NMDA-coupled glycine receptor. In addition, the actions of D-serine were antagonized by a partial agonist (D-cycloserine) and an antagonist (HA-966) of the NMDA-coupled glycine receptor. These data are all consistent with D-serine acting at the NMDA-coupled glycine receptor and represent the first demonstration of glycine receptor potentiation of ongoing NMDA-mediated neuronal activity in the CNS, rather than potentiation of exogenous NMDA.  相似文献   

11.
We report the molecular cloning of a fragment of human genomic DNA called S12, containing an open reading frame of 1170 nucleotides, which encodes a receptor for serotonin of 390 amino acids. The receptor function of the S12 protein was demonstrated by functional expression in mouse LS12 cells obtained by stable transfection of Ltk- cells, and LM5S12 cells, derived from LM5 cells (Ltk- cells previously transfected with the M5 muscarinic acetylcholine receptor). Adenylyl cyclase studies showed that the S12 receptor is able to mediate inhibition of adenylyl cyclase in response to serotonin in both types of cells. As studied in LM5S12 cells, the S12 receptor did not promote Ca2+ mobilization from internal stores, nor did it significantly modulate the sustained increase in [Ca2+]i elicited by stimulation of the phospholipase C stimulating M5 acetylcholine receptor. The pharmacologic profile of S12 as seen in adenylyl cyclase assays is as follows: (EC50 in nM): serotonin, full agonist (37 nM), 5-carboxamidotryptamine, full agonist (10 nM), sumatriptan, full agonist (50 nM), metergoline, partial agonist (10 nM), methysergide, partial agonist (40 nM), yohimbine, partial agonist (150 nM), metitepin, antagonist (KB = 0.7 to 1.2 nM). We propose that the human S12 serotonin receptor is a receptor of the 5-hydroxytryptamine1D subtype.  相似文献   

12.
We examined, by using a specific PGE receptor subtype EP4 agonist and antagonist, the involvement of EP4 receptors in duodenal HCO(3)(-) secretion induced by PGE(2) and mucosal acidification in rats. Mucosal acidification was achieved by exposing a duodenal loop to 10 mM HCl for 10 min, and various EP agonists were given intravenously 10 min before the acidification. Secretion of HCO(3)(-) was dose-dependently stimulated by AE1-329 (EP4 agonist), the maximal response being equivalent to that induced by sulprostone (EP1/EP3 agonist) or PGE(2). The stimulatory action of AE1-329 and PGE(2) but not sulprostone was attenuated by AE3-208, a specific EP4 antagonist. This antagonist also significantly mitigated the acid-induced HCO(3)(-) secretion. Coadministration of sulprostone and AE1-329 caused a greater secretory response than either agent alone. IBMX potentiated the stimulatory action of both sulprostone and AE1-329, whereas verapamil mitigated the effect of sulprostone but not AE1-329. Chemical ablation of capsaicin-sensitive afferent neurons did not affect the response to any of the EP agonists used. We conclude that EP4 receptors are involved in the duodenal HCO(3)(-) response induced by PGE(2) or acidification in addition to EP3 receptors. The process by which HCO(3)(-) is secreted through these receptors differs regarding second-messenger coupling. Stimulation through EP4 receptors is mediated by cAMP, whereas that through EP3 receptors is regulated by both cAMP and Ca(2+); yet there is cooperation between the actions mediated by these two receptors. The neuronal reflex pathway is not involved in stimulatory actions of these prostanoids.  相似文献   

13.
A S Hwang  G L Wilcox 《Life sciences》1986,38(26):2389-2396
We report a nociceptive test involving peripheral irritation which produces behavior similar to that elicited by intrathecally injected substance P. Intradermal hypertonic saline injected to the lower abdominal area produced quantifiable behavior in mice. The behavior consisted of licking, biting and scratching directed to the location of i.d. injection, and was dose-dependent with respect to the concentration and volume of saline. Intrathecally administered (D-Pro2, D-Trp7,9)-SP, a substance P antagonist, dose-dependently blocked the behaviors induced by intrathecally administered substance P as well as those induced by intradermally injected hypertonic saline, indicating a possibly common final pathway at the spinal cord level for the manifestation of both behaviors. Hypertonic saline-induced behavior was blocked completely by morphine and a partial opiate agonist (pentazocine) in a dose-dependent manner, but was not blocked by another partial opiate agonist (nalorphine). The behavior was not blocked by non-steroidal anti-inflammatory agents. This nociceptive test, in conjunction with the substance P-induced behavior test, may allow discrimination between agents acting pre- or post-synaptically in the spinal cord. Baclofen, a GABAB agonist thought to act presynaptically, changed substance P-induced behavior and hypertonic saline-induced behavior in opposite directions.  相似文献   

14.
Using sodium azide (NaN3)-induced anoxia plus aglycaemia as a model of chemically-induced ischemia in the hippocampal slice, we have evaluated the effects of the novel 5-HT(1A) partial agonist/5-HT(2) receptor antagonist adatanserin and the 5-HT(1A) receptor agonist BAYx3702 on the efflux of endogenous glutamate, aspartate and GABA. BAYx3702 (10-1000 nM) produced a significant (P<0.05) dose-related attenuation of ischemic efflux of both glutamate and GABA with maximum decrease being observed at 100 nM (73 and 69%, respectively). This attenuation was completely reversed by the addition of the 5-HT(1A) antagonist, WAY-100635 (100 nM). Similarly, adatanserin (10-1000 nM) produced a significant (P<0.05) dose-related attenuation in glutamate and GABA efflux with a maximum of 72 and 81% at 100 nM, respectively. This effect was completely reversed by the 5-HT(2A/C) receptor agonist, DOI but unaffected by WAY-100635. The 5-HT(2A) receptor antagonist MDL-100907 produced a comparable attenuation of glutamate when compared to adatanserin, while the 5-HT(2C) receptor antagonist, SB-206553, had no effect on ischemic efflux. None of these compounds significantly altered aspartate efflux from this preparation. In conclusion, the 5-HT(1A) receptor partial agonist 5-HT(2) receptor antagonist, adatanserin is able to attenuate ischemic amino acid efflux in a comparable manner to the full 5-HT(1A) agonist BAYx3702. However, in contrast to BAYx3702, adatanserin appears to produce it effects via blockade of the 5-HT(2A) receptor. This suggests that adatanserin may be an effective neuroprotectant, as has been previously demonstrated for full 5-HT(1A) receptor agonists such as BAYx3702.  相似文献   

15.
Studies of the physiological actions of melatonin have been hindered by the lack of specific, potent and subtype selective agonists and antagonists. In the present study, we describe the utility of a melanophore cell line from Xenopus laevis for exploring structure-activity relationships among novel melatonin analogues and report a novel MT2-selective agonist (IIK7) and MT2-selective receptor antagonist (K185). IIK7 is a potent melatonin receptor agonist in the melanophore model, and in NIH3T3 cells expressing human mt1 and MT2 receptor subtypes. In radioligand binding experiments IIK7 is 90-fold selective for the MT2 subtype. K185 is devoid of agonist activity, but acts as a competitive melatonin antagonist in melanophores. A low concentration (10(-9) M) antagonizes melatonin inhibition of forskolin stimulation of cyclic AMP in NIH3T3 cells expressing human MT2 receptors, but has no effect in cells expressing mt1 receptors. In binding assays, K185 is 140-fold selective for the MT2 subtype.  相似文献   

16.
The ability of thyroliberin to interact with opiate receptors of the rat midbrain and hypothalamus has been studied. It was shown by competitive displacement analysis that thyroliberin did not replace labeled opioid peptides in opiate receptor binding sites when added in vitro at concentrations of up to 10(-5) M. The specific binding of opioid peptides was increased by 10-20% in the presence of 10(-7)-10(-6) M thyroliberin. This effect was, probably, due to the rise in the affinity of high-affinity opiate receptors. At the same time the affinity of low-affinity binding sites was decreased. It is suggested that the antagonistic properties of thyroliberin are mediated by the modulation of the binding characteristics of enkephalin-low-affinity opiate receptors.  相似文献   

17.
Experimental evidence suggests that serotonin (5HT) is excitatory to the hypothalamic-pituitary-adrenal axis and that this effect involves activation of both hypothalamic corticotropin-releasing hormone (CRH) and pituitary ACTH secretion. The present study was undertaken to examine the mechanism by which 5HT stimulates the central component of the HPA axis. To accomplish this we employed an in vitro rat hypothalamic organ culture system in which CRH secretion from single explanted hypothalami was measured by specific radioimmunoassay (IR-rCRH). All experiments were performed after an overnight (15-18 hr) preincubation. Serotonin stimulated IR-rCRH secretion in a dose-dependent fashion. The response was bell-shaped and the peak effect was observed at the concentration of 10(-9) M. The stimulatory effect of 10(-9) M 5HT was antagonized by the 5HT1 and 5HT2 receptor metergoline and by the selective 5HT2 receptor antagonists ketanserin and ritanserin. The muscarinic antagonist atropine, the nicotinic antagonist hexamethonium and the alpha-adrenergic receptor antagonist phentolamine, on the other hand, did not inhibit 5HT-induced IR-rCRH secretion. The specific 5HT2 receptor agonist 1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane (DOI) stimulated IR-rCRH secretion in a dose-dependent fashion. The response was bell-shaped with peak of effect reached at the concentration of 10(-9) M. We also tested the ability of the 5HT agonist meta-chlorophenylpiperazine (m-CPP) and of the selective 5HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) to cause CRH secretion. Although both m-CPP and 8-OH-DPAT stimulated IR-rCRH secretion in a dose-dependent fashion, several differences were observed when their effect was compared to that of 5HT. These included a different shape of the dose-response curve, a lower maximal stimulatory effect and a different maximal stimulatory concentration. These findings suggest that serotonin stimulates CRH secretion by explanted rat hypothalami and that this effect appears to be mediated mainly through a 5HT2 receptor mechanism.  相似文献   

18.
19.
The heptadecapeptide nociceptin/orphanin FQ (N/OFQ) has recently been isolated from porcine and rat brain and identified as the endogenous ligand of the N/OFQ receptor (NOP). It shows structural similarity with opioid peptides. N/OFQ has also been demonstrated in the gastrointestinal tract, where it inhibits gastrointestinal motility. The effect of N/OFQ on gastric neuroendocrine function is unknown as yet.In the isolated perfused rat stomach, N/OFQ 10(-6) M shows a small, but not significant decrease of basal somatostatin (SRIF) secretion. At the doses of 10(-12) M, 10(-10) and 10(-8) M N/OFQ has neither an effect on basal SRIF nor on basal vasoactive intestinal polypeptide (VIP), gastrin, substance P or bombesin secretion, respectively. However, gastric inhibitory polypeptide (GIP) 10(-9) M prestimulated SRIF secretion is significantly inhibited by N/OFQ 10(-8) M (-45+/-11%; p<0.05 vs. GIP). During concomitant infusion of the specific competitive NOP receptor antagonist [Nphe(1)]nociceptin(1-13)NH(2) 10(-6) M, the effect of N/OFQ is abolished (6+/-11%; p<0.05 vs. GIP and N/OFQ) while the opiate receptor antagonist naloxone 10(-6) M has no significant effect (-32+/-9%; ns vs. GIP and N/OFQ). At the higher concentration of N/OFQ 10(-6) M, the inhibition of prestimulated SRIF secretion (-58+/-6%; p<0.05 vs. GIP) is not influenced by the NOP receptor antagonist at the concentration of 10(-6) M (-49+/-9%; ns vs. GIP and N/OFQ) and 10(-5) M (-69+/-10%; ns vs. GIP and N/OFQ), respectively. On the other hand, infusion of naloxone 10(-6) M attenuates the inhibitory effect of N/OFQ 10(-6) M significantly (-21+/-6%; p<0.05 vs. GIP and N/OFQ).Thus, N/OFQ is an inhibitor of gastric somatostatin secretion. At the lower dose, this effect is transmitted via NOP receptors, while at the higher dose of 10(-6) M, the effect is at least in part mediated via opiate receptors.  相似文献   

20.
Opioid peptides are the most effective drugs in controlling pain; their action is elicited by binding to specific membrane receptors. The gastrointestinal tract represents, after the nervous system, the site in which the opioid receptors are expressed at high levels. The opioid agonist morphine has a significant inhibitory effect on intestinal motility, this action is blocked by naloxone an opioid antagonist mainly active at mu and kappa receptors. In this study the presence of mu opioid receptor on rabbit jejunum was investigated by western blot. The effects of beta-endorphin, the endogenous opioid peptide with the highest affinity to the mu opioid receptor and those of naloxone on spontaneous rabbit jejunum contractions were evaluated. Beta-endorphin (10(-6) M) showed a relaxant effect on jejunum contractility while naloxone showed a dual effect inducing an increase of spontaneous contractility at low concentrations (10(-6) M, 10(-7) M, 10(-8) M) and a decrease when high concentrations (10(-3) M, 10(-4) M, 10(-5) M) were utilized. The obtained results demonstrate that mu opioid receptor is expressed in rabbit jejunum and suggest that this receptor may be involved in mediating the effects of both opioid agonist and antagonist on jejunum contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号