首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is active at physiological pH (pH 6.5-8.5), many questions related to the active state of NhaA have remained unanswered. Our Cys scanning of the highly conserved transmembrane VIII at physiological pH reveals that (1) the Cys replacement G230C significantly increases the apparent Km of the antiporter to both Na+ (10-fold) and Li+ (6-fold). (2) Variants G223C and G230C cause a drastic alkaline shift of the pH profile of NhaA by 1 pH unit. (3) Residues Gly223-Ala226 line a periplasmic funnel at physiological pH as they do at pH 4. Both were modified by membrane-impermeant negatively charged 2-sulfonatoethyl methanethiosulfonate and positively charged 2-(trimethyl ammonium)-ethylmethanethiosulfonate sulfhydryl reagents that could reach Cys replacements from the periplasm via water-filled funnels only, whereas other Cys replacements on helix VIII were not accessible/reactive to the reagents. (4) Remarkably, the modification of variant V224C by 2-sulfonatoethyl methanethiosulfonate or 2-(trimethyl ammonium)-ethylmethanethiosulfonate totally inhibited antiporter activity, while N-ethyl maleimide modification had a very small effect on NhaA activity. Hence, the size—rather than the chemical modification or the charge—of the larger reagents interferes with the passage of ions through the periplasmic funnel. Taken together, our results at physiological pH reveal that amino acid residues in transmembrane VIII contribute to the cation passage of NhaA and its pH regulation.  相似文献   

2.
3.
The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was able to reduce Na(+) accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1-green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na(+) than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na(+) than did the wild type. There also was greater Na(+) content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na(+) transport from root to shoot. We present a model in which SOS1 functions in retrieving Na(+) from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na(+) into the xylem.  相似文献   

4.
Antiporters exporting Na(+) and K(+) in exchange for protons are conserved among yeast species. The only exception so far has been Zygosaccharomyces rouxii, an osmotolerant species closely related to Saccharomyces cerevisiae. Z. rouxii was described as possessing one plasma-membrane antiporter transporting only Na(+) (ZrSod2-22p in the CBS 732(T) type strain). We report the characterization of a second gene, ZrNHA1, encoding a new K(+)(Na(+))/H(+)-antiporter capable of both K(+) and Na(+) export. Synteny analyses suggested that ZrSOD2-22 originated by single duplication of the ZrNHA1 gene. Substrate specificities and transport properties of ZrNha1p and ZrSod2-22p were compared upon heterologous expression in S. cerevisiae, and then directly in Z. rouxii. Deletion mutants and phenotype analyses revealed that ZrSod2-22 antiporter is important for Na(+) detoxification, probably together with ZrEna1 ATPase; ZrNha1p is indispensable to maintain potassium homeostasis and ZrEna1p is not, in contrast to the situation in S. cerevisiae, involved in this function.  相似文献   

5.
A series of six different mutants (D804A, D804E, D804G, D804N, D804Q, and D804S) of aspartate 804 present in transmembrane segment 6 of the rat Na(+),K(+)-ATPase alpha(1)-subunit were prepared and expressed in Sf9 cells by use of the baculovirus expression system. In contrast to the wild-type enzyme all mutants except D804Q showed a very high Na(+)-ATPase activity, which was hardly further stimulated by the addition of K(+). The ATPase activity of the mutants was already nearly maximal at 10 microM ATP and most of them could be phosphorylated in the absence of Na(+) at pH 6.0 and 21 degrees C, suggesting that they strongly prefer the E(1) over the E(2) conformation. However, Na(+) dose-dependently lowered the steady-state phosphorylation level, as a consequence of the increased affinity for Na(+) in the dephosphorylation reaction of the mutants compared to the wild-type enzyme. Conversely, the affinity for K(+) in the dephosphorylation reaction was decreased for the mutants as compared to that for the wild-type enzyme. When the pH was increased or the temperature was decreased, the phosphorylation level of the mutants decreased and the Na(+) activation in the phosphorylation reaction became apparent. It is concluded that upon mutation of aspartate 804 the affinity of the cation-binding pocket is changed relatively in favor of Na(+) instead of K(+), as a consequence of which the enzyme has obtained a preference for the E(1) conformation.  相似文献   

6.
The function of vacuolar Na+/H+ antiporter(s) in plants has been studied primarily in the context of salinity tolerance. By facilitating the accumulation of Na+ away from the cytosol, plant cells can avert ion toxicity and also utilize vacuolar Na+ as osmoticum to maintain turgor. As many genes encoding these antiporters have been cloned from salt-sensitive plants, it is likely that they function in some capacity other than salinity tolerance. The wide expression pattern of Arabidopsis thaliana sodium proton exchanger 1 (AtNHX1) in this study supports this hypothesis. Here, we report the isolation of a T-DNA insertional mutant of AtNHX1, a vacuolar Na+/H+ antiporter in Arabidopsis. Vacuoles isolated from leaves of the nhx1 plants had a much lower Na+/H+ and K+/H+ exchange activity. nhx1 plants also showed an altered leaf development, with reduction in the frequency of large epidermal cells and a reduction in overall leaf area compared to wild-type plants. The overexpression of AtNHX1 in the nhx1 background complemented these phenotypes. In the presence of NaCl, nhx1 seedling establishment was impaired. These results place AtNHX1 as the dominant K+ and Na+/H+ antiporter in leaf vacuoles in Arabidopsis and also suggest that its contribution to ion homeostasis is important for not only salinity tolerance but development as well.  相似文献   

7.
In lactating rats, ANG II receptor binding in the arcuate nucleus (ARH) and median eminence is decreased. To further evaluate brain angiotensinergic activity during lactation, we assessed angiotensinogen (AON) mRNA by in situ hybridization in forebrains of day 10 or 11 postpartum lactating and diestrous rats. AON mRNA was abundantly expressed in the ARH, preoptic, suprachiasmatic, supraoptic, paraventricular, and dorsomedial hypothalamic nuclei, and other regions, similar to that reported in male rat brains. AON mRNA levels were decreased 27% in the midcaudal ARH of lactating rats but did not differ between lactating or diestrous rats in any of the other brain areas examined. Immunofluorescence for AON and glial fibrillary acidic protein or tyrosine hydroxylase confirmed that the AON immunoreactivity in the ARH was limited to astrocytes. Confocal microscopy revealed close appositions of AON-positive astrocytes to dopaminergic neurons in the ARH. The decrease in AON mRNA in the midcaudal ARH during lactation coupled with decreased ARH ANG II receptor binding suggests that lactating rats are less subject to ANG II-mediated inhibition of prolactin secretion.  相似文献   

8.
李东  张笑娇  杨娇  潘皎  朱旭东 《菌物学报》2012,31(2):235-242
新型隐球酵母Cryptococcus neoformans有两个变种(varieties),即grubii和neoformans。目前研究最多的两个菌株H99(血清型A)和JEC21(血清型D)分别代表这两个变种,两者的毒性差别显著,为研究新型隐球酵母菌株间毒性的进化提供了良好模型。我们通过比较JEC21的clc1-突变体Tx1与早先鉴定的H99 clc1-菌株Mlac3发现,JEC21 CLC1同样决定铜离子的吸收。Tx1中丧失的漆酶活力可以通过外源Cu2+的加入得以恢复,而漆酶基因LAC1的转录与野生  相似文献   

9.
10.
11.
Ma B  Xiang Y  An L 《Cellular signalling》2011,23(8):1244-1256
Vacuolar-type H+-ATPases (V-ATPases) is a large multi-protein complex containing at least 14 different subunits, in which subunits A, B, C, D, E, F, G, and H compose the peripheral 500-kDa V1 responsible for ATP hydrolysis, and subunits a, c, c′, c″, and d assembly the 250-kDa membrane-integral V0 harboring the rotary mechanism to transport protons across the membrane. The assembly of V-ATPases requires the presence of all V1 and V0 subunits, in which the V1 must be completely assembled prior to association with the V0, accordingly the V0 failing to assemble cannot provide a membrane anchor for the V1, thereby prohibiting membrane association of the V-ATPase subunits. The V-ATPase mediates acidification of intracellular compartments and regulates diverse critical physiological processes of cell for functions of its numerous functional subunits. The core catalytic mechanism of the V-ATPase is a rotational catalytic mechanism. The V-ATPase holoenzyme activity is regulated by the reversible assembly/disassembly of the V1 and V0, the targeting and recycling of V-ATPase-containing vesicles to and from the plasma membrane, the coupling ratio between ATP hydrolysis and proton pumping, ATP, Ca2+, and its inhibitors and activators.  相似文献   

12.
Emerging roles of alkali cation/proton exchangers in organellar homeostasis   总被引:4,自引:1,他引:3  
The regulated movement of monovalent cations such as H(+), Li(+), Na(+) and K(+) across biological membranes influences a myriad of cellular processes and is fundamental to all living organisms. This is accomplished by a multiplicity of ion channels, pumps and transporters. Our insight into their molecular, cellular and physiological diversity has increased greatly in the past few years with the advent of genome sequencing, genetic manipulation and sophisticated imaging techniques. One of the revelations from these studies is the emergence of novel alkali cation/protons exchangers that are present in endomembranes, where they function to regulate not only intraorganellar pH but also vesicular biogenesis, trafficking and other aspects of cellular homeostasis.  相似文献   

13.
Gastric H(+),K(+)-ATPase consists of alpha-subunit with 10 transmembrane domains and beta-subunit with a single transmembrane domain. We constructed cDNAs encoding chimeric beta-subunits between the gastric H(+),K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits and co-transfected them with the H(+),K(+)-ATPase alpha-subunit cDNA in HEK-293 cells. A chimeric beta-subunit that consists of the cytoplasmic plus transmembrane domains of Na(+),K(+)-ATPase beta-subunit and the ectodomain of H(+),K(+)-ATPase beta-subunit assembled with the H(+),K(+)-ATPase alpha-subunit and expressed the K(+)-ATPase activity. Therefore, the whole cytoplasmic and transmembrane domains of H(+),K(+)-ATPase beta-subunit were replaced by those of Na(+),K(+)-ATPase beta-subunit without losing the enzyme activity. However, most parts of the ectodomain of H(+),K(+)-ATPase beta-subunit were not replaced by the corresponding domains of Na(+), K(+)-ATPase beta-subunit. Interestingly, the extracellular segment between Cys(152) and Cys(178), which contains the second disulfide bond, was exchangeable between H(+),K(+)-ATPase and Na(+), K(+)-ATPase, preserving the K(+)-ATPase activity intact. Furthermore, the K(+)-ATPase activity was preserved when the N-terminal first 4 amino acids ((67)DPYT(70)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the corresponding amino acids ((63)SDFE(66)) of Na(+),K(+)-ATPase beta-subunit. The ATPase activity was abolished, however, when 4 amino acids ((76)QLKS(79)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the counterpart ((72)RVAP(75)) of Na(+),K(+)-ATPase beta-subunit, indicating that this region is the most N-terminal one that discriminates the H(+),K(+)-ATPase beta-subunit from that of Na(+), K(+)-ATPase.  相似文献   

14.
15.
The Vc-NhaD is an Na+/H+ antiporter from Vibrio cholerae belonging to a new family of bacterial Na+/H+ antiporters, the NhaD family. In the present work we mutagenized five conserved Asp and Glu residues and one conserved Thr residue to Ala in order to identify amino acids that are critical for the antiport activity. All mutations fall into two distinct groups: (i) four variants, Glu100Ala, Glu251Ala, Glu342Ala, and Asp393Ala, did not abolish antiport activity but shifted the pH optimum to more alkaline pH, and (ii) variants Asp344Ala, Asp344Asn, and Thr345Ala caused a complete loss of both Na+/H+ and Li+/H+ antiport activity whereas the Asp344Glu variant exhibited reduced Na+/H+ and Li+/H+ antiport activity. This is the first mutational analysis of the antiporter of NhaD type and the first demonstration of Thr residue being indispensable for Na+/H+ antiport. We discuss the possible role of Asp344 and Thr345 in the functioning of Vc-NhaD.  相似文献   

16.
A family of aryl isothiouronium derivatives was designed as probes for cation binding sites of Na(+),K(+)-ATPase. Previous work showed that 1-bromo-2,4,6-tris(methylisothiouronium)benzene (Br-TITU) acts as a competitive blocker of Na(+) or K(+) occlusion. In addition to a high-affinity cytoplasmic site (K(D) < 1 microM), a low-affinity site (K(D) approximately 10 microM) was detected, presumably extracellular. Here we describe properties of Br-TITU as a blocker at the extracellular surface. In human red blood cells Br-TITU inhibits ouabain-sensitive Na(+) transport (K(D) approximately 30 microM) in a manner antagonistic with respect to extracellular Na(+). In addition, Br-TITU impairs K(+)-stimulated dephosphorylation and Rb(+) occlusion from phosphorylated enzyme of renal Na(+),K(+)-ATPase, consistent with binding to an extracellular site. Incubation of renal Na(+),K(+)-ATPase with Br-TITU at pH 9 irreversibly inactivates Na(+),K(+)-ATPase activity and Rb(+) occlusion. Rb(+) or Na(+) ions protect. Preincubation of Br-TITU with red cells in a K(+)-free medium at pH 9 irreversibly inactivates ouabain-sensitive (22)Na(+) efflux, showing that inactivation occurs at an extracellular site. K(+), Cs(+), and Li(+) ions protect against this effect, but the apparent affinity for K(+), Cs(+), or Li(+) is similar (K(D) approximately 5 mM) despite their different affinities for external activation of the Na(+) pump. Br-TITU quenches tryptophan fluorescence of renal Na(+),K(+)-ATPase or of digested "19 kDa membranes". After incubation at pH 9 irreversible loss of tryptophan fluorescence is observed and Rb(+) or Na(+) ions protect. The Br-TITU appears to interact strongly with tryptophan residue(s) within the lipid or at the extracellular membrane-water interface and interfere with cation occlusion and Na(+),K(+)-ATPase activity.  相似文献   

17.
18.
Na+/H+ antiporters play important physiological roles in most biological membranes. Although they were first discovered in mitochondria (Mitchell, P., and Moyle, J. (1969) Eur. J. Biochem. 9, 149-155), the mitochondrial Na+/H+ antiporter has not yet been reconstituted nor has the protein responsible for its activity been identified. We used detergents to extract proteins from beef heart mitochondria and reconstituted these proteins into lipid vesicles loaded with the fluorescent probe, sodium-binding benzofuran isophthalate. The vesicles exhibited spontaneous, electroneutral Na+ transport that was inhibited by Li+ and Mn2+ with appropriate kinetic constants. These protocols were then used to follow fractionation of the solubilized proteins with DEAE-cellulose columns. We obtained a fraction that catalyzed Na+/H+ antiport with Vmax values of 75-120 mumol/mg protein/min, 500-700 times faster than observed in intact mitochondria. Na+ transport was inhibited by Li+ with I50 values of 0.5-1.0 mM and by Mn2+ with I50 value of 0.5 mM. The Km for Na+ was 31 mM. These values correspond to those found in intact mitochondria, and we conclude that the solubilized mitochondrial Na+/H+ antiporter has been partially purified in a reconstitutively active state.  相似文献   

19.
Preimplantation development is a period of cell division, cell shape change, and cell differentiation leading to the formation of an epithelium, the trophectoderm. The trophectoderm is the part of the conceptus that initiates uterine contact and, after transformation to become the trophoblast, uterine invasion. Thus, trophectoderm development during preimplantation stages is a necessary antecedent to the events of implantation. The preimplantation trophectoderm is a transporting epithelium with distinct apical and basolateral membrane domains that facilitate transepithelial Na+ and fluid transport for blastocoel formation. That transport is driven by Na+/K(+)-ATPase localized in basolateral membranes of the trophectoderm. Preimplantation embryos express multiple alpha and beta subunit isoforms of Na+/K(+)-ATPase, potentially constituting multiple isozymes, but the basolaterally located alpha1beta1, isozyme uniquely functions to drive fluid transport. They also express the gamma subunit, which is a modulator of Na+/K(+)-ATPase activity. In the mouse, two splice variants of the gamma subunit, gammaa and gammab, are expressed in the trophectoderm. Antisense knockdown of gamma subunit accumulation caused a delay of cavitation, implying an important role in trophectoderm function. The preimplantation trophectoderm offers a unique model for understanding the roles of Na+/K(+)-ATPase subunit isoforms in transepithelial transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号